
© Adobe Systems Incorporated 2008 – All rights reserved i

PDF 32000-1:2008

First Edition

2008-7-1

Document management — Portable document format — Part 1:
PDF 1.7

PDF 32000-1:2008

ii © Adobe Systems Incorporated 2008 – All rights reserved

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or
viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer
performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing
policy.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-
creation parameters were optimized for printing.

Copyright Notice

This document has been derived directly from the copyright ISO 32000-1 standard document available for purchase from
the ISO web site at http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502. It is
being made available from the web site of Adobe Systems Incorporated (http://www.adobe.com/devnet/pdf/
pdf_reference.html) under agreement with ISO for those that do not need the official version containing the ISO logo and
copyright notices. This version of the ISO 32000-1 standard is copyright by Adobe Systems Incorporated through an
agreement with ISO who is the copyright owner of the official ISO 32000-1 document of which this is an authorized copy.\

The technical material is identical between this version and the ISO Standard; the page and sections numbers are also
preserved. Requests for permission to reproduce this document for any purpose should be arranged with ISO.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html

© Adobe Systems Incorporated 2008 – All rights reserved iii

PDF 32000-1:2008

Contents Page

Foreword. vi

Introduction . vii

1 Scope . 1

2 Conformance . 1
2.1 General. 1
2.2 Conforming readers . 1
2.3 Conforming writers. 1
2.4 Conforming products . 2

3 Normative references . 2

4 Terms and definitions . 6

5 Notation . 10

6 Version Designations . 10

7 Syntax . 11
7.1 General. 11
7.2 Lexical Conventions . 11
7.3 Objects. 13
7.4 Filters . 22
7.5 File Structure. 38
7.6 Encryption . 55
7.7 Document Structure . 70
7.8 Content Streams and Resources . 81
7.9 Common Data Structures. 84
7.10 Functions. 92
7.11 File Specifications . 99
7.12 Extensions Dictionary . 108

8 Graphics . 110
8.1 General. 110
8.2 Graphics Objects . 110
8.3 Coordinate Systems . 114
8.4 Graphics State. 121
8.5 Path Construction and Painting . 131
8.6 Colour Spaces. 138
8.7 Patterns . 173
8.8 External Objects . 201
8.9 Images . 203
8.10 Form XObjects . 217
8.11 Optional Content. 222

9 Text . 237
9.1 General. 237
9.2 Organization and Use of Fonts . 237
9.3 Text State Parameters and Operators. 243
9.4 Text Objects . 248
9.5 Introduction to Font Data Structures . 253
9.6 Simple Fonts . 254
9.7 Composite Fonts. 267
9.8 Font Descriptors . 281
9.9 Embedded Font Programs . 288
9.10 Extraction of Text Content . 292

10 Rendering . 296

PDF 32000-1:2008

iv © Adobe Systems Incorporated 2008 – All rights reserved

10.1 General. 296
10.2 CIE-Based Colour to Device Colour . 297
10.3 Conversions among Device Colour Spaces. 297
10.4 Transfer Functions . 300
10.5 Halftones . 301
10.6 Scan Conversion Details . 316

11 Transparency . 320
11.1 General. 320
11.2 Overview of Transparency . 320
11.3 Basic Compositing Computations . 322
11.4 Transparency Groups. 332
11.5 Soft Masks . 342
11.6 Specifying Transparency in PDF . 344
11.7 Colour Space and Rendering Issues. 353

12 Interactive Features . 362
12.1 General. 362
12.2 Viewer Preferences . 362
12.3 Document-Level Navigation. 365
12.4 Page-Level Navigation . 374
12.5 Annotations . 381
12.6 Actions . 414
12.7 Interactive Forms . 430
12.8 Digital Signatures . 466
12.9 Measurement Properties . 479
12.10 Document Requirements . 484

13 Multimedia Features . 486
13.1 General. 486
13.2 Multimedia . 486
13.3 Sounds . 506
13.4 Movies . 507
13.5 Alternate Presentations . 509
13.6 3D Artwork . 511

14 Document Interchange . 547
14.1 General. 547
14.2 Procedure Sets . 547
14.3 Metadata. 548
14.4 File Identifiers . 551
14.5 Page-Piece Dictionaries . 551
14.6 Marked Content . 552
14.7 Logical Structure. 556
14.8 Tagged PDF . 573
14.9 Accessibility Support . 610
14.10 . Web Capture616
14.11 Prepress Support . 627

Annex A
(informative)

Operator Summary. 643

Annex B
(normative)

Operators in Type 4 Functions . 647

Annex C

© Adobe Systems Incorporated 2008 – All rights reserved v

PDF 32000-1:2008

(normative)

Implementation Limits. 649

Annex D
(normative)

Character Sets and Encodings. 651

Annex E
(normative)

PDF Name Registry . 673

Annex F
(normative)

Linearized PDF . 675

Annex G
(informative)

Linearized PDF Access Strategies . 695

Annex H
(informative)

Example PDF Files. 699

Annex I
(normative)

PDF Versions and Compatibility . 727

Annex J
(informative)

FDF Rename Flag Implementation Example . 729

Annex K
(informative)

PostScript Compatibility — Transparent Imaging Model. 731

Annex L
(informative)

Colour Plates . 733

Bibliography . 745

PDF 32000-1:2008

vi © Adobe Systems Incorporated 2008 – All rights reserved

Foreword

On January 29, 2007, Adobe Systems Incorporated announced it’s intention to release the full Portable
Document Format (PDF) 1.7 specification to the American National Standard Institute (ANSI) and the
Enterprise Content Management Association (AIIM), for the purpose of publication by the International
Organization for Standardization (ISO).

PDF has become a de facto global standard for more secure and dependable information exchange since
Adobe published the complete PDF specification in 1993. Both government and private industry have come to
rely on PDF for the volumes of electronic records that need to be more securely and reliably shared, managed,
and in some cases preserved for generations. Since 1995 Adobe has participated in various working groups
that develop technical specifications for publication by ISO and worked within the ISO process to deliver
specialized subsets of PDF as standards for specific industries and functions. Today, PDF for Archive (PDF/A)
and PDF for Exchange (PDF/X) are ISO standards, and PDF for Engineering (PDF/E) and PDF for Universal
Access (PDF/UA) are proposed standards. Additionally, PDF for Healthcare (PDF/H) is an AIIM proposed Best
Practice Guide. AIIM serves as the administrator for PDF/A, PDF/E, PDF/UA and PDF/H.

In the spring of 2008 the ISO 32000 document was prepared by Adobe Systems Incorporated (based upon
PDF Reference, sixth edition, Adobe Portable Document Format version 1.7, November 2006) and was
reviewed, edited and adopted, under a special “fast-track procedure”, by Technical Committee ISO/TC 171,
Document management application, Subcommittee SC 2, Application issues, in parallel with its approval by the
ISO member bodies.

In January 2008, this ISO technical committee approved the final revised documentation for PDF 1.7 as the
international standard ISO 32000-1. In July 2008 the ISO document was placed for sale on the ISO web site
(http://www.iso.org).

This document you are now reading is a copy of the ISO 32000-1 standard. By agreement with ISO, Adobe
Systems is allowed to offer this version of the ISO standard as a free PDF file on it’s web site. It is not an official
ISO document but the technical content is identical including the section numbering and page numbering.

http://www.iso.org
http://www.iso.org

© Adobe Systems Incorporated 2008 – All rights reserved vii

PDF 32000-1:2008

Introduction

ISO 32000 specifies a digital form for representing documents called the Portable Document Format or usually
referred to as PDF. PDF was developed and specified by Adobe Systems Incorporated beginning in 1993 and
continuing until 2007 when this ISO standard was prepared. The Adobe Systems version PDF 1.7 is the basis
for this ISO 32000 edition. The specifications for PDF are backward inclusive, meaning that PDF 1.7 includes
all of the functionality previously documented in the Adobe PDF Specifications for versions 1.0 through 1.6. It
should be noted that where Adobe removed certain features of PDF from their standard, they too are not
contained herein.

The goal of PDF is to enable users to exchange and view electronic documents easily and reliably,
independent of the environment in which they were created or the environment in which they are viewed or
printed. At the core of PDF is an advanced imaging model derived from the PostScript® page description
language. This PDF Imaging Model enables the description of text and graphics in a device-independent and
resolution-independent manner. To improve performance for interactive viewing, PDF defines a more
structured format than that used by most PostScript language programs. Unlike Postscript, which is a
programming language, PDF is based on a structured binary file format that is optimized for high performance
in interactive viewing. PDF also includes objects, such as annotations and hypertext links, that are not part of
the page content itself but are useful for interactive viewing and document interchange.

PDF files may be created natively in PDF form, converted from other electronic formats or digitized from paper,
microform, or other hard copy format. Businesses, governments, libraries, archives and other institutions and
individuals around the world use PDF to represent considerable bodies of important information.

Over the past fourteen years, aided by the explosive growth of the Internet, PDF has become widely used for
the electronic exchange of documents. There are several specific applications of PDF that have evolved where
limiting the use of some features of PDF and requiring the use of others, enhances the usefulness of PDF. ISO
32000 is an ISO standard for the full function PDF; the following standards are for more specialized uses. PDF/
X (ISO 15930) is now the industry standard for the intermediate representation of printed material in electronic
prepress systems for conventional printing applications. PDF/A (ISO 19005) is now the industry standard for
the archiving of digital documents. PDF/E (ISO 24517) provides a mechanism for representing engineering
documents and exchange of engineering data. As major corporations, government agencies, and educational
institutions streamline their operations by replacing paper-based workflow with electronic exchange of
information, the impact and opportunity for the application of PDF will continue to grow at a rapid pace.

PDF, together with software for creating, viewing, printing and processing PDF files in a variety of ways, fulfils a
set of requirements for electronic documents including:

• preservation of document fidelity independent of the device, platform, and software,

• merging of content from diverse sources—Web sites, word processing and spreadsheet programs,
scanned documents, photos, and graphics—into one self-contained document while maintaining the
integrity of all original source documents,

• collaborative editing of documents from multiple locations or platforms,

• digital signatures to certify authenticity,

• security and permissions to allow the creator to retain control of the document and associated rights,

• accessibility of content to those with disabilities,

• extraction and reuse of content for use with other file formats and applications, and

• electronic forms to gather data and integrate it with business systems.

PDF 32000-1:2008

viii © Adobe Systems Incorporated 2008 – All rights reserved

The International Organization for Standardization draws attention to the fact that it is claimed that compliance
with this document may involve the use of patents concerning the creation, modification, display and
processing of PDF files which are owned by the following parties:

• Adobe Systems Incorporated, 345 Park Avenue, San Jose, California,95110-2704, USA

ISO takes no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights has assured the ISO that they are willing to negotiate licenses under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect,
the statements of the holders of these patent rights are registered with ISO. Information may be obtained from
those parties listed above.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights other than those identified above. ISO shall not be held responsible for identifying any or all such patent
rights.

A repository of referenced documents has been established by AIIM (http://www.aiim.org/pdfrefdocs). Not all
referenced documents can be found there because of copyright restrictions.

http://www.aiim.org/pdfrefdocs

© Adobe Systems Incorporated 2008 – All rights reserved 1

PDF 32000-1:2008

Document management — Portable document format —
Part 1:
PDF 1.7

IMPORTANT — The electronic file of this document contains colours which are considered to be useful
for the correct understanding of the document. Users should therefore consider printing this document
using a colour printer.

1 Scope

This International Standard specifies a digital form for representing electronic documents to enable users to
exchange and view electronic documents independent of the environment in which they were created or the
environment in which they are viewed or printed. It is intended for the developer of software that creates PDF
files (conforming writers), software that reads existing PDF files and interprets their contents for display and
interaction (conforming readers) and PDF products that read and/or write PDF files for a variety of other
purposes (conforming products).

This standard does not specify the following:

• specific processes for converting paper or electronic documents to the PDF format;

• specific technical design, user interface or implementation or operational details of rendering;

• specific physical methods of storing these documents such as media and storage conditions;

• methods for validating the conformance of PDF files or readers;

• required computer hardware and/or operating system.

2 Conformance

2.1 General

Conforming PDF files shall adhere to all requirements of the ISO 32000-1 specification and a conforming file is
not obligated to use any feature other than those explicitly required by ISO 32000-1.

NOTE 1 The proper mechanism by which a file can presumptively identify itself as being a PDF file of a given version
level is described in 7.5.2, "File Header".

2.2 Conforming readers

A conforming reader shall comply with all requirements regarding reader functional behaviour specified in
ISO 32000-1. The requirements of ISO 32000-1 with respect to reader behaviour are stated in terms of general
functional requirements applicable to all conforming readers. ISO 32000-1 does not prescribe any specific
technical design, user interface or implementation details of conforming readers. The rendering of conforming
files shall be performed as defined by ISO 32000-1.

2.3 Conforming writers

A conforming writer shall comply with all requirements regarding the creation of PDF files as specified in
ISO 32000-1. The requirements of ISO 32000-1 with respect to writer behaviour are stated in terms of general
functional requirements applicable to all conforming writers and focus on the creation of conforming files.
ISO 32000-1 does not prescribe any specific technical design, user interface or implementation details of
conforming writers.

PDF 32000-1:2008

2 © Adobe Systems Incorporated 2008 – All rights reserved

2.4 Conforming products

A conforming product shall comply with all requirements regarding the creation of PDF files as specified in
ISO 32000-1 as well as comply with all requirements regarding reader functional behavior specified in
ISO 32000-1.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISO 639-1:2002, Codes for the representation of names of languages -- Part 1: Alpha-2 code.

ISO 639-2:1998, Codes for the representation of names of languages -- Part 2: Alpha-3 code.

ISO 3166-1:2006, Codes for the representation of names of countries and their subdivisions -- Part 1: Country
codes.

ISO 3166-2:1998, Codes for the representation of names of countries and their subdivisions -- Part 2: Country
subdivision code.

ISO/IEC 8824-1:2002, Abstract Syntax Notation One (ASN.1): Specification of basic notation.

ISO/IEC 10918-1:1994, Digital Compression and Coding of Continuous-Tone Still Images (informally known as
the JPEG standard, for the Joint Photographic Experts Group, the ISO group that developed the standard).

ISO/IEC 15444-2:2004, Information Technology—JPEG 2000 Image Coding System: Extensions.

ISO/IEC 11544:1993/Cor 2:2001, Information technology—Coded representation of picture and audio
information—Progressive bi-level image compression (JBIG2).

IEC/3WD 61966-2.1:1999, Colour Measurement and Management in Multimedia Systems and Equipment, Part
2.1: Default RGB Colour Space—sRGB.

ISO 15076-1:2005, Image technology colour management - Architecture, profile format and data structure -
Part 1:Based on ICC.1:2004-10.

ISO 10646:2003, Information technology -- Universal Multiple-Octet Coded Character Set (UCS).

ISO/IEC 9541-1:1991, Information technology -- Font information interchange -- Part 1: Architecture.

ANSI X3.4-1986, Information Systems - Coded Sets 7-Bit American National Standard Code for Information
Interchange (7-bit ASCII).

NOTE 1 The following documents can be found at AIIM at http://www.aiim.org/pdfrefdocs as well as at the Adobe
Systems Incorporated Web Site http://www.adobe.com/go/pdf_ref_bibliography.

PDF Reference, Version 1.7, – 5th ed., (ISBN 0-321-30474-8), Adobe Systems Incorporated.

JavaScript for Acrobat API Reference, Version 8.0, (April 2007), Adobe Systems Incorporated.

Acrobat 3D JavaScript Reference, (April 2007), Adobe Systems Incorporated.

Adobe Glyph List, Version 2.0, (September 2002), Adobe Systems Incorporated.

OPI: Open Prepress Interface Specification 1.3, (September 1993), Adobe Systems Incorporated.

http://adobe.com/go/pdf_ref_bibliography
http://adobe.com/go/pdf_ref_bibliography
http://www.adobe.com/go/pdf_ref_bibliography
http://www.adobe.com/go/pdf_ref_bibliography

© Adobe Systems Incorporated 2008 – All rights reserved 3

PDF 32000-1:2008

PDF Signature Build Dictionary Specification v.1.4, (March 2008), Adobe Systems Incorporated.

Adobe XML Architecture, Forms Architecture (XFA) Specification, version 2.5, (June 2007), Adobe Systems
Incorporated.

Adobe XML Architecture, Forms Architecture (XFA) Specification, version 2.4, (September 2006), Adobe
Systems Incorporated.

Adobe XML Architecture, Forms Architecture (XFA) Specification, version 2.2, (June 2005), Adobe Systems
Incorporated.

Adobe XML Architecture, Forms Architecture (XFA) Specification, version 2.0, (October 2003), Adobe Systems
Incorporated.

NOTE 2 Beginning with XFA 2.2, the XFA specification includes the Template Specification, the Config Specification,
the XDP Specification, and all other XML specifications unique to the XML Forms Architecture (XFA).

Adobe XML Architecture, XML Data Package (XDP) Specification, version 2.0, (October 2003), Adobe
Systems Incorporated.

Adobe XML Architecture, Template Specification, version 2.0, (October 2003), Adobe Systems Incorporated.

XML Forms Data Format Specification, version 2.0, (September 2007), Adobe Systems Incorporated.

XMP: Extensible Metadata Platform, (September 2005), Adobe Systems Incorporated.

TIFF Revision 6.0, Final, (June 1992), Adobe Systems Incorporated.

NOTE 3 The following Adobe Technical Notes can be found at the AIIM website at http://www.aiim.org/pdfnotes as well
as at the Adobe Systems Incorporated Web Site (http://www.adobe.com) using the general search facility,
entering the Technical Note number.

Technical Note #5004, Adobe Font Metrics File Format Specification, Version 4.1, (October 1998), Adobe
Systems Incorporated.

NOTE 4 Adobe font metrics (AFM) files are available through the Type section of the ASN Web site.

Technical Note #5014, Adobe CMap and CID Font Files Specification, Version 1.0, (June 1993), Adobe
Systems Incorporated.

Technical Note #5015, Type 1 Font Format Supplement, (May 1994), Adobe Systems Incorporated.

Technical Note #5078, Adobe-Japan1-4 Character Collection for CID-Keyed Fonts, (June 2004), Adobe
Systems Incorporated.

Technical Note #5079, Adobe-GB1-4 Character Collection for CID-Keyed Fonts, (November 2000), Adobe
Systems Incorporated.

Technical Note #5080, Adobe-CNS1-4 Character Collection for CID-Keyed Fonts, (May 2003), Adobe Systems
Incorporated.

Technical Note #5087, Multiple Master Font Programs for the Macintosh, (February 1992), Adobe Systems
Incorporated.

Technical Note #5088, Font Naming Issues, (April 1993), Adobe Systems Incorporated.

Technical Note #5092, CID-Keyed Font Technology Overview, (September 1994), Adobe Systems
Incorporated.

http://www.aiim.org/pdfnotes
http://www.adobe.com

PDF 32000-1:2008

4 © Adobe Systems Incorporated 2008 – All rights reserved

Technical Note #5093, Adobe-Korea1-2 Character Collection for CID-Keyed Fonts, (May 2003), Adobe
Systems Incorporated.

Technical Note #5094, Adobe CJKV Character Collections and CMaps for CID-Keyed Fonts, (June 2004),
Adobe Systems Incorporated.

Technical Note #5097, Adobe-Japan2-0 Character Collection for CID-Keyed Fonts, (May 2003), Adobe
Systems Incorporated.

Technical Note #5116, Supporting the DCT Filters in PostScript Level 2, (November 1992), Adobe Systems
Incorporated.

Technical Note #5176, The Compact Font Format Specification, version 1.0, (December 2003), Adobe
Systems Incorporated.

Technical Note #5177, The Type 2 Charstring Format, (December 2003), Adobe Systems Incorporated.

Technical Note #5411, ToUnicode Mapping File Tutorial, (May 2003), Adobe Systems Incorporated.

Technical Note #5620, Portable Job Ticket Format, Version 1.1, (April 1999), Adobe Systems Incorporated.

Technical Note #5660, Open Prepress Interface (OPI) Specification, Version 2.0, (January 2000), Adobe
Systems Incorporated.

NOTE 5 The following documents are available as Federal Information Processing Standards Publications.

FIPS PUB 186-2, Digital Signature Standard, describes DSA signatures, (January 2000), Federal Information
Processing Standards.

FIPS PUB 197, Advanced Encryption Standard (AES), (November 2001), Federal Information Processing
Standards.

NOTE 6 The following documents are available as Internet Engineering Task Force RFCs.

RFC 1321, The MD5 Message-Digest Algorithm, (April 1992), Internet Engineering Task Force (IETF).

RFC 1738, Uniform Resource Locators, (December 1994), Internet Engineering Task Force (IETF).

RFC 1808, Relative Uniform Resource Locators, (June 1995), Internet Engineering Task Force (IETF).

RFC 1950, ZLIB Compressed Data Format Specification, Version 3.3, (May 1996), Internet Engineering Task
Force (IETF).

RFC 1951, DEFLATE Compressed Data Format Specification, Version 1.3, (May 1996), Internet Engineering
Task Force (IETF).

RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies,
(November 1996), Internet Engineering Task Force (IETF).

RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, (November 1996), Internet
Engineering Task Force (IETF).

RFC 2083, PNG (Portable Network Graphics) Specification, Version 1.0, (March 1997), Internet Engineering
Task Force (IETF).

RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5, (March 1998), Internet Engineering Task
Force (IETF).

© Adobe Systems Incorporated 2008 – All rights reserved 5

PDF 32000-1:2008

RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, (August 1998), Internet Engineering Task
Force (IETF).

RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol—OCSP, (June 1999),
Internet Engineering Task Force (IETF).

RFC 2616, Hypertext Transfer Protocol—HTTP/1.1, (June 1999), Internet Engineering Task Force (IETF).

RFC 2898, PKCS #5: Password-Based Cryptography Specification Version 2.0, (September 2000), Internet
Engineering Task Force (IETF).

RFC 3066, Tags for the Identification of Languages, (January 2001), Internet Engineering Task Force (IETF).

RFC 3161, Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP), (August 2001), Internet
Engineering Task Force (IETF).

RFC 3174, US Secure Hash Algorithm 1 (SHA1), (September 2001), Internet Engineering Task Force (IETF).

RFC 3280, Internet X.509 Public Key Infrastructure, Certificate and Certificate Revocation List (CRL) Profile,
(April 2002), Internet Engineering Task Force (IETF).

NOTE 7 The following documents are available from other sources.

Adobe Type 1 Font Format., Version 1.1, (February 1993), Addison-Wesley, ISBN 0-201-57044-0.

OpenType Font Specification 1.4, December 2004, Microsoft.

TrueType Reference Manual, (December 2002), Apple Computer, Inc.

Standard ECMA-363, Universal 3D File Format, 1st Edition (U3D), (December 2004), Ecma International.

PANOSE Classification Metrics Guide, (February 1997), Hewlett-Packard Corporation.

ICC Characterization Data Registry, International Color Consortium (ICC).

Recommendations T.4 and T.6, Group 3 and Group 4 facsimile encoding, International Telecommunication
Union (ITU).

TrueType 1.0 Font Files Technical Specification, Microsoft Corporation.

Client-Side JavaScript Reference, (May 1999), Mozilla Foundation.

The Unicode Standard, Version 4.0, Addison-Wesley, Boston, MA, 2003, Unicode Consortium.

Unicode Standard Annex #9, The Bidirectional Algorithm, Version 4.0.0, (April 2003), Unicode Consortium.

Unicode Standard Annex #14, Line Breaking Properties, Version 4.0.0, (April 2003), Unicode Consortium.

Unicode Standard Annex #29, Text Boundaries, Version 4.0.0, (March 2005), Unicode Consortium.

Extensible Markup Language (XML) 1.1, World Wide Web Consortium (W3C).

PDF 32000-1:2008

6 © Adobe Systems Incorporated 2008 – All rights reserved

4 Terms and definitions

For the purposes of this document, these terms and definitions apply.

4.1
… (ellipsis)
An ellipsis is used within PDF examples to indicate omitted detail. Pairs of ellipses are also used to bracket
comments, in italic, about such omitted detail.

4.2
8-bit value
(see byte)

4.3
array object
a one-dimensional collection of objects arranged sequentially and implicitly numbered starting at 0

4.4
ASCII
the American Standard Code for Information Interchange, a widely used convention for encoding a specific set
of 128 characters as binary numbers defined in ANSI X3.4-1986

4.5
binary data
an ordered sequence of bytes

4.6
boolean objects
either the keyword true or the keyword false

4.7
byte
a group of 8 binary digits which collectively can be configured to represent one of 256 different values and
various realizations of the 8 binary digits are widely used in today's electronic equipment

4.8
catalog
the primary dictionary object containing references directly or indirectly to all other objects in the document with
the exception that there may be objects in the trailer that are not referred to by the catalog

4.9
character
numeric code representing an abstract symbol according to some defined character encoding rule

NOTE 1 There are three manifestations of characters in PDF, depending on context:

• A PDF file is represented as a sequence of 8-bit bytes, some of which are interpreted as char-
acter codes in the ASCII character set and some of which are treated as arbitrary binary data
depending upon the context.

• The contents (data) of a string or stream object in some contexts are interpreted as character
codes in the PDFDocEncoding or UTF-16 character set.

• The contents of a string within a PDF content stream in some situations are interpreted as char-
acter codes that select glyphs to be drawn on the page according to a character encoding that
is associated with the text font.

4.10
character set
a defined set of symbols each assigned a unique character value

© Adobe Systems Incorporated 2008 – All rights reserved 7

PDF 32000-1:2008

4.11
conforming reader
software application that is able to read and process PDF files that have been made in conformance with this
specification and that itself conforms to requirements of conforming readers specified here [ISO 32000-1]

4.12
conforming product
software application that is both a conforming reader and a conforming writer

4.13
conforming writer
software application that is able to write PDF files that conform to this specification [ISO 32000-1]

4.14
content stream
stream object whose data consists of a sequence of instructions describing the graphical elements to be
painted on a page

4.15
cross reference table
data structure that contains the byte offset start for each of the indirect objects within the file

4.16
developer
Any entity, including individuals, companies, non-profits, standards bodies, open source groups, etc., who are
developing standards or software to use and extend ISO 32000-1.

4.17
dictionary object
an associative table containing pairs of objects, the first object being a name object serving as the key and the
second object serving as the value and may be any kind of object including another dictionary

4.18
direct object
any object that has not been made into an indirect object

4.19
electronic document
electronic representation of a page-oriented aggregation of text, image and graphic data, and metadata useful
to identify, understand and render that data, that can be reproduced on paper or displayed without significant
loss of its information content

4.20
end-of-line marker (EOL marker)
one or two character sequence marking the end of a line of text, consisting of a CARRIAGE RETURN
character (0Dh) or a LINE FEED character (0Ah) or a CARRIAGE RETURN followed immediately by a LINE
FEED

4.21
FDF file
File conforming to the Forms Data Format containing form data or annotations that may be imported into a PDF
file (see 12.7.7, “Forms Data Format”)

4.22
filter
an optional part of the specification of a stream object, indicating how the data in the stream should be decoded
before it is used

PDF 32000-1:2008

8 © Adobe Systems Incorporated 2008 – All rights reserved

4.23
font
identified collection of graphics that may be glyphs or other graphic elements [ISO 15930-4]

4.24
function
a special type of object that represents parameterized classes, including mathematical formulas and sampled
representations with arbitrary resolution

4.25
glyph
recognizable abstract graphic symbol that is independent of any specific design [ISO/IEC 9541-1]

4.26
graphic state
the top of a push down stack of the graphics control parameters that define the current global framework within
which the graphics operators execute

4.27
ICC profile
colour profile conforming to the ICC specification [ISO 15076-1:2005]

4.28
indirect object
an object that is labeled with a positive integer object number followed by a non-negative integer generation
number followed by obj and having endobj after it

4.29
integer object
mathematical integers with an implementation specified interval centered at 0 and written as one or more
decimal digits optionally preceded by a sign

4.30
name object
an atomic symbol uniquely defined by a sequence of characters introduced by a SOLIDUS (/), (2Fh) but the
SOLIDUS is not considered to be part of the name

4.31
name tree
similar to a dictionary that associates keys and values but the keys in a name tree are strings and are ordered

4.32
null object
a single object of type null, denoted by the keyword null, and having a type and value that are unequal to those
of any other object

4.33
number tree
similar to a dictionary that associates keys and values but the keys in a number tree are integers and are
ordered

4.34
numeric object
either an integer object or a real object

4.35
object
a basic data structure from which PDF files are constructed and includes these types: array, Boolean,
dictionary, integer, name, null, real, stream and string

© Adobe Systems Incorporated 2008 – All rights reserved 9

PDF 32000-1:2008

4.36
object reference
an object value used to allow one object to refer to another; that has the form “<n> <m> R” where <n> is an
indirect object number, <m> is its version number and R is the uppercase letter R

4.37
object stream
a stream that contains a sequence of PDF objects

4.38
PDF
Portable Document Format file format defined by this specification [ISO 32000-1]

4.39
real object
approximate mathematical real numbers, but with limited range and precision and written as one or more
decimal digits with an optional sign and a leading, trailing, or embedded PERIOD (2Eh) (decimal point)

4.40
rectangle
a specific array object used to describe locations on a page and bounding boxes for a variety of objects and
written as an array of four numbers giving the coordinates of a pair of diagonally opposite corners, typically in
the form [llx lly urx ury] specifying the lower-left x, lower-left y, upper-right x, and upper-right y coordinates of
the rectangle, in that order

4.41
resource dictionary
associates resource names, used in content streams, with the resource objects themselves and organized into
various categories (e.g., Font, ColorSpace, Pattern)

4.42
space character
text string character used to represent orthographic white space in text strings

NOTE 2 space characters include HORIZONTAL TAB (U+0009), LINE FEED (U+000A), VERTICAL TAB (U+000B),
FORM FEED (U+000C), CARRIAGE RETURN (U+000D), SPACE (U+0020), NOBREAK SPACE (U+00A0),
EN SPACE (U+2002), EM SPACE (U+2003), FIGURE SPACE (U+2007), PUNCTUATION SPACE (U+2008),
THIN SPACE (U+2009), HAIR SPACE (U+200A), ZERO WIDTH SPACE (U+200B), and IDEOGRAPHIC
SPACE (U+3000)

4.43
stream object
consists of a dictionary followed by zero or more bytes bracketed between the keywords stream and endstream

4.44
string object
consists of a series of bytes (unsigned integer values in the range 0 to 255) and the bytes are not integer
objects, but are stored in a more compact form

4.45
web capture
refers to the process of creating PDF content by importing and possibly converting internet-based or locally-
resident files. The files being imported may be any arbitrary format, such as HTML, GIF, JPEG, text, and PDF

4.46
white-space character
characters that separate PDF syntactic constructs such as names and numbers from each other; white space
characters are HORIZONTAL TAB (09h), LINE FEED (0Ah), FORM FEED (0Ch), CARRIAGE RETURN (0Dh),
SPACE (20h); (see Table 1 in 7.2.2, “Character Set”)

PDF 32000-1:2008

10 © Adobe Systems Incorporated 2008 – All rights reserved

4.47
XFDF file
file conforming to the XML Forms Data Format 2.0 specification, which is an XML transliteration of Forms Data
Format (FDF)

4.48
XMP packet
structured wrapper for serialized XML metadata that can be embedded in a wide variety of file formats

5 Notation

PDF operators, PDF keywords, the names of keys in PDF dictionaries, and other predefined names are written
in bold sans serif font; words that denote operands of PDF operators or values of dictionary keys are written in
italic sans serif font.

Token characters used to delimit objects and describe the structure of PDF files, as defined in 7.2, "Lexical
Conventions", may be identified by their ANSI X3.4-1986 (ASCII 7-bit USA codes) character name written in
upper case in bold sans serif font followed by a parenthetic two digit hexadecimal character value with the suffix
“h”.

Characters in text streams, as defined by 7.9.2, "String Object Types", may be identified by their ANSI X3.4-
1986 (ASCII 7-bit USA codes) character name written in uppercase in sans serif font followed by a parenthetic
four digit hexadecimal character code value with the prefix “U+” as shown in EXAMPLE 1 in this clause.

EXAMPLE 1 EN SPACE (U+2002).

6 Version Designations

For the convenience of the reader, the PDF versions in which various features were introduced are provided
informatively within this document. The first version of PDF was designated PDF 1.0 and was specified by
Adobe Systems Incorporated in the PDF Reference 1.0 document published by Adobe and Addison Wesley.
Since then, PDF has gone through seven revisions designated as: PDF 1.1, PDF 1.2, PDF 1.3, PDF 1.4, PDF
1.5, PDF 1.6 and PDF 1.7. All non-deprecated features defined in a previous PDF version were also included in
the subsequent PDF version. Since ISO 32000-1 is a PDF version matching PDF 1.7, it is also suitable for
interpretation of files made to conform with any of the PDF specifications 1.0 through 1.7. Throughout this
specification in order to indicate at which point in the sequence of versions a feature was introduced, a notation
with a PDF version number in parenthesis (e.g., (PDF 1.3)) is used. Thus if a feature is labelled with (PDF 1.3)
it means that PDF 1.0, PDF 1.1 and PDF 1.2 were not specified to support this feature whereas all versions of
PDF 1.3 and greater were defined to support it.

© Adobe Systems Incorporated 2008 – All rights reserved 11

PDF 32000-1:2008

7 Syntax

7.1 General

This clause covers everything about the syntax of PDF at the object, file, and document level. It sets the stage
for subsequent clauses, which describe how the contents of a PDF file are interpreted as page descriptions,
interactive navigational aids, and application-level logical structure.

PDF syntax is best understood by considering it as four parts, as shown in Figure 1:

• Objects. A PDF document is a data structure composed from a small set of basic types of data objects.
Sub-clause 7.2, "Lexical Conventions," describes the character set used to write objects and other
syntactic elements. Sub-clause 7.3, "Objects," describes the syntax and essential properties of the objects.
Sub-clause 7.3.8, "Stream Objects," provides complete details of the most complex data type, the stream
object.

• File structure. The PDF file structure determines how objects are stored in a PDF file, how they are
accessed, and how they are updated. This structure is independent of the semantics of the objects. Sub-
clause 7.5, "File Structure," describes the file structure. Sub-clause 7.6, "Encryption," describes a file-level
mechanism for protecting a document’s contents from unauthorized access.

• Document structure. The PDF document structure specifies how the basic object types are used to
represent components of a PDF document: pages, fonts, annotations, and so forth. Sub-clause 7.7,
"Document Structure," describes the overall document structure; later clauses address the detailed
semantics of the components.

• Content streams. A PDF content stream contains a sequence of instructions describing the appearance of
a page or other graphical entity. These instructions, while also represented as objects, are conceptually
distinct from the objects that represent the document structure and are described separately. Sub-clause
7.8, "Content Streams and Resources," discusses PDF content streams and their associated resources.

Figure 1 – PDF Components

In addition, this clause describes some data structures, built from basic objects, that are so widely used that
they can almost be considered basic object types in their own right. These objects are covered in: 7.9,
"Common Data Structures"; 7.10, "Functions"; and 7.11, "File Specifications."

NOTE Variants of PDF’s object and file syntax are also used as the basis for other file formats. These include the
Forms Data Format (FDF), described in 12.7.7, "Forms Data Format", and the Portable Job Ticket Format
(PJTF), described in Adobe Technical Note #5620, Portable Job Ticket Format.

7.2 Lexical Conventions

7.2.1 General

At the most fundamental level, a PDF file is a sequence of bytes. These bytes can be grouped into tokens
according to the syntax rules described in this sub-clause. One or more tokens are assembled to form higher-

Objects

File
structure

Document
structure

Content
stream

PDF 32000-1:2008

12 © Adobe Systems Incorporated 2008 – All rights reserved

level syntactic entities, principally objects, which are the basic data values from which a PDF document is
constructed.

A non-encrypted PDF can be entirely represented using byte values corresponding to the visible printable
subset of the character set defined in ANSI X3.4-1986, plus white space characters. However, a PDF file is not
restricted to the ASCII character set; it may contain arbitrary bytes, subject to the following considerations:

• The tokens that delimit objects and that describe the structure of a PDF file shall use the ASCII character
set. In addition all the reserved words and the names used as keys in PDF standard dictionaries and
certain types of arrays shall be defined using the ASCII character set.

• The data values of strings and streams objects may be written either entirely using the ASCII character set
or entirely in binary data. In actual practice, data that is naturally binary, such as sampled images, is
usually represented in binary for compactness and efficiency.

• A PDF file containing binary data shall be transported as a binary file rather than as a text file to insure that
all bytes of the file are faithfully preserved.

NOTE 1 A binary file is not portable to environments that impose reserved character codes, maximum line lengths, end-
of-line conventions, or other restrictions

NOTE 2 In this clause, the usage of the term character is entirely independent of any logical meaning that the value
may have when it is treated as data in specific contexts, such as representing human-readable text or
selecting a glyph from a font.

7.2.2 Character Set

The PDF character set is divided into three classes, called regular, delimiter, and white-space characters. This
classification determines the grouping of characters into tokens. The rules defined in this sub-clause apply to
all characters in the file except within strings, streams, and comments.

The White-space characters shown in Table 1 separate syntactic constructs such as names and numbers from
each other. All white-space characters are equivalent, except in comments, strings, and streams. In all other
contexts, PDF treats any sequence of consecutive white-space characters as one character.

The CARRIAGE RETURN (0Dh) and LINE FEED (0Ah) characters, also called newline characters, shall be
treated as end-of-line (EOL) markers. The combination of a CARRIAGE RETURN followed immediately by a
LINE FEED shall be treated as one EOL marker. EOL markers may be treated the same as any other white-
space characters. However, sometimes an EOL marker is required or recommended—that is, preceding a
token that must appear at the beginning of a line.

NOTE The examples in this standard use a convention that arranges tokens into lines. However, the examples’ use of
white space for indentation is purely for clarity of exposition and need not be included in practical use.

Table 1 – White-space characters

Decimal Hexadecimal Octal Name

0 00 000 Null (NUL)

9 09 011 HORIZONTAL TAB (HT)

10 0A 012 LINE FEED (LF)

12 0C 014 FORM FEED (FF)

13 0D 015 CARRIAGE RETURN (CR)

32 20 040 SPACE (SP)

© Adobe Systems Incorporated 2008 – All rights reserved 13

PDF 32000-1:2008

The delimiter characters (,), <, >, [,], {, }, /, and % are special (LEFT PARENTHESIS (28h), RIGHT
PARENTHESIS (29h), LESS-THAN SIGN (3Ch), GREATER-THAN SIGN (3Eh), LEFT SQUARE BRACKET
(5Bh), RIGHT SQUARE BRACKET (5Dh), LEFT CURLY BRACE (7Bh), RIGHT CURLY BRACE (07Dh),
SOLIDUS (2Fh) and PERCENT SIGN (25h), respectively). They delimit syntactic entities such as arrays,
names, and comments. Any of these characters terminates the entity preceding it and is not included in the
entity. Delimiter characters are allowed within the scope of a string when following the rules for composing
strings; see 7.3.4.2, “Literal Strings”. The leading (of a string does delimit a preceding entity and the closing) of
a string delimits the string’s end.

All characters except the white-space characters and delimiters are referred to as regular characters. These
characters include bytes that are outside the ASCII character set. A sequence of consecutive regular
characters comprises a single token. PDF is case-sensitive; corresponding uppercase and lowercase letters
shall be considered distinct.

7.2.3 Comments

Any occurrence of the PERCENT SIGN (25h) outside a string or stream introduces a comment. The comment
consists of all characters after the PERCENT SIGN and up to but not including the end of the line, including
regular, delimiter, SPACE (20h), and HORZONTAL TAB characters (09h). A conforming reader shall ignore
comments, and treat them as single white-space characters. That is, a comment separates the token preceding
it from the one following it.

EXAMPLE The PDF fragment in this example is syntactically equivalent to just the tokens abc and 123.

abc% comment (/%) blah blah blah
123

Comments (other than the %PDF–n.m and %%EOF comments described in 7.5, "File Structure") have no
semantics. They are not necessarily preserved by applications that edit PDF files.

7.3 Objects

7.3.1 General

PDF includes eight basic types of objects: Boolean values, Integer and Real numbers, Strings, Names, Arrays,
Dictionaries, Streams, and the null object.

Table 2 – Delimiter characters

Glyph Decimal Hexadecimal Octal Name

(40 28 50 LEFT PARENTHESIS

) 41 29 51 RIGHT PARENTHESIS

< 60 3C 60 LESS-THAN SIGN

> 62 3E 62 GREATER-THAN SIGN

[91 5B 133 LEFT SQUARE BRACKET

] 93 5D 135 RIGHT SQUARE BRACKET

{ 123 7B 173 LEFT CURLY BRACKET

} 125 7D 175 RIGHT CURLY BRACKET

/ 47 2F 57 SOLIDUS

% 37 25 45 PERCENT SIGN

PDF 32000-1:2008

14 © Adobe Systems Incorporated 2008 – All rights reserved

Objects may be labelled so that they can be referred to by other objects. A labelled object is called an indirect
object (see 7.3.10, "Indirect Objects").

Each object type, their method of creation and their proper referencing as indirect objects is described in 7.3.2,
"Boolean Objects" through 7.3.10, "Indirect Objects."

7.3.2 Boolean Objects

Boolean objects represent the logical values of true and false. They appear in PDF files using the keywords
true and false.

7.3.3 Numeric Objects

PDF provides two types of numeric objects: integer and real. Integer objects represent mathematical integers.
Real objects represent mathematical real numbers. The range and precision of numbers may be limited by the
internal representations used in the computer on which the conforming reader is running; Annex C gives these
limits for typical implementations.

An integer shall be written as one or more decimal digits optionally preceded by a sign. The value shall be
interpreted as a signed decimal integer and shall be converted to an integer object.

EXAMPLE 1 Integer objects

123 43445 +17 -98 0

A real value shall be written as one or more decimal digits with an optional sign and a leading, trailing, or
embedded PERIOD (2Eh) (decimal point). The value shall be interpreted as a real number and shall be
converted to a real object.

EXAMPLE 2 Real objects

34.5 -3.62 +123.6 4. -.002 0.0

NOTE 1 A conforming writer shall not use the PostScript syntax for numbers with non-decimal radices (such as
16#FFFE) or in exponential format (such as 6.02E23).

NOTE 2 Throughout this standard, the term number refers to an object whose type may be either integer or real.
Wherever a real number is expected, an integer may be used instead. For example, it is not necessary to write
the number 1.0 in real format; the integer 1 is sufficient.

7.3.4 String Objects

7.3.4.1 General

A string object shall consist of a series of zero or more bytes. String objects are not integer objects, but are
stored in a more compact format. The length of a string may be subject to implementation limits; see Annex C.

String objects shall be written in one of the following two ways:

• As a sequence of literal characters enclosed in parentheses () (using LEFT PARENTHESIS (28h) and
RIGHT PARENThESIS (29h)); see 7.3.4.2, "Literal Strings."

• As hexadecimal data enclosed in angle brackets < > (using LESS-THAN SIGN (3Ch) and GREATER-
THAN SIGN (3Eh)); see 7.3.4.3, "Hexadecimal Strings."

NOTE In many contexts, conventions exist for the interpretation of the contents of a string value. This sub-clause
defines only the basic syntax for writing a string as a sequence of bytes; conventions or rules governing the
contents of strings in particular contexts are described with the definition of those particular contexts.

© Adobe Systems Incorporated 2008 – All rights reserved 15

PDF 32000-1:2008

7.9.2, "String Object Types," describes the encoding schemes used for the contents of string objects.

7.3.4.2 Literal Strings

A literal string shall be written as an arbitrary number of characters enclosed in parentheses. Any characters
may appear in a string except unbalanced parentheses (LEFT PARENHESIS (28h) and RIGHT
PARENTHESIS (29h)) and the backslash (REVERSE SOLIDUS (5Ch)), which shall be treated specially as
described in this sub-clause. Balanced pairs of parentheses within a string require no special treatment.

EXAMPLE 1 The following are valid literal strings:
(This is a string)
(Strings may contain newlines
and such .)
(Strings may contain balanced parentheses () and
special characters (* ! & } ̂ % and so on) .)
(The following is an empty string .)
()
(It has zero (0) length .)

Within a literal string, the REVERSE SOLIDUS is used as an escape character. The character immediately
following the REVERSE SOLIDUS determines its precise interpretation as shown in Table 3. If the character
following the REVERSE SOLIDUS is not one of those shown in Table 3, the REVERSE SOLIDUS shall be
ignored.

A conforming writer may split a literal string across multiple lines. The REVERSE SOLIDUS (5Ch) (backslash
character) at the end of a line shall be used to indicate that the string continues on the following line. A
conforming reader shall disregard the REVERSE SOLIDUS and the end-of-line marker following it when
reading the string; the resulting string value shall be identical to that which would be read if the string were not
split.

EXAMPLE 2 (These \
two strings \
are the same .)
(These two strings are the same .)

An end-of-line marker appearing within a literal string without a preceding REVERSE SOLIDUS shall be treated
as a byte value of (0Ah), irrespective of whether the end-of-line marker was a CARRIAGE RETURN (0Dh), a
LINE FEED (0Ah), or both.

Table 3 – Escape sequences in literal strings

Sequence Meaning

\n LINE FEED (0Ah) (LF)

\r CARRIAGE RETURN (0Dh) (CR)

\t HORIZONTAL TAB (09h) (HT)

\b BACKSPACE (08h) (BS)

\f FORM FEED (FF)

\(LEFT PARENTHESIS (28h)

\) RIGHT PARENTHESIS (29h)

\\ REVERSE SOLIDUS (5Ch) (Backslash)

\ddd Character code ddd (octal)

PDF 32000-1:2008

16 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE 3 (This string has an end-of-line at the end of it .
)
(So does this one .\n)

The \ddd escape sequence provides a way to represent characters outside the printable ASCII character set.

EXAMPLE 4 (This string contains \245two octal characters\307 .)

The number ddd may consist of one, two, or three octal digits; high-order overflow shall be ignored. Three octal
digits shall be used, with leading zeros as needed, if the next character of the string is also a digit.

EXAMPLE 5 the literal
(\0053)

denotes a string containing two characters, \005 (Control-E) followed by the digit 3, whereas both
(\053)

and
(\53)

denote strings containing the single character \053, a plus sign (+).

Since any 8-bit value may appear in a string (with proper escaping for REVERSE SOLIDUS (backslash) and
unbalanced PARENTHESES) this \ddd notation provides a way to specify characters outside the ASCII
character set by using ASCII characters only. However, any 8-bit value may appear in a string, represented
either as itself or with the \ddd notation described.

When a document is encrypted (see 7.6, “Encryption”), all of its strings are encrypted; the encrypted string
values contain arbitrary 8-bit values. When writing encrypted strings using the literal string form, the conforming
writer shall follow the rules described. That is, the REVERSE SOLIDUS character shall be used as an escape
to specify unbalanced PARENTHESES or the REVERSE SOLIDUS character itself. The REVERSE SOLIDUS
may, but is not required, to be used to specify other, arbitrary 8-bit values.

7.3.4.3 Hexadecimal Strings

Strings may also be written in hexadecimal form, which is useful for including arbitrary binary data in a PDF file.
A hexadecimal string shall be written as a sequence of hexadecimal digits (0–9 and either A–F or a–f) encoded
as ASCII characters and enclosed within angle brackets (using LESS-THAN SIGN (3Ch) and GREATER-
THAN SIGN (3Eh)).

EXAMPLE 1 < 4E6F762073686D6F7A206B6120706F702E >

Each pair of hexadecimal digits defines one byte of the string. White-space characters (such as SPACE (20h),
HORIZONTAL TAB (09h), CARRIAGE RETURN (0Dh), LINE FEED (0Ah), and FORM FEED (0Ch)) shall be
ignored.

If the final digit of a hexadecimal string is missing—that is, if there is an odd number of digits—the final digit
shall be assumed to be 0.

EXAMPLE 2 < 901FA3 >
is a 3-byte string consisting of the characters whose hexadecimal codes are 90, 1F, and A3, but
< 901FA >
is a 3-byte string containing the characters whose hexadecimal codes are 90, 1F, and A0.

7.3.5 Name Objects

Beginning with PDF 1.2 a name object is an atomic symbol uniquely defined by a sequence of any characters
(8-bit values) except null (character code 0). Uniquely defined means that any two name objects made up of
the same sequence of characters denote the same object. Atomic means that a name has no internal structure;
although it is defined by a sequence of characters, those characters are not considered elements of the name.

© Adobe Systems Incorporated 2008 – All rights reserved 17

PDF 32000-1:2008

When writing a name in a PDF file, a SOLIDUS (2Fh) (/) shall be used to introduce a name. The SOLIDUS is
not part of the name but is a prefix indicating that what follows is a sequence of characters representing the
name in the PDF file and shall follow these rules:

a) A NUMBER SIGN (23h) (#) in a name shall be written by using its 2-digit hexadecimal code (23), preceded
by the NUMBER SIGN.

b) Any character in a name that is a regular character (other than NUMBER SIGN) shall be written as itself or
by using its 2-digit hexadecimal code, preceded by the NUMBER SIGN.

c) Any character that is not a regular character shall be written using its 2-digit hexadecimal code, preceded
by the NUMBER SIGN only.

NOTE 1 There is not a unique encoding of names into the PDF file because regular characters may be
coded in either of two ways.

White space used as part of a name shall always be coded using the 2-digit hexadecimal notation and no white
space may intervene between the SOLIDUS and the encoded name.

Regular characters that are outside the range EXCLAMATION MARK(21h) (!) to TILDE (7Eh) (~) should be
written using the hexadecimal notation.

The token SOLIDUS (a slash followed by no regular characters) introduces a unique valid name defined by the
empty sequence of characters.

NOTE 2 The examples shown in Table 4 and containing # are not valid literal names in PDF 1.0 or 1.1.

In PDF, literal names shall always be introduced by the SOLIDUS character (/), unlike keywords such as true,
false, and obj.

NOTE 3 This standard follows a typographic convention of writing names without the leading SOLIDUS when they
appear in running text and tables. For example, Type and FullScreen denote names that would actually be
written in a PDF file (and in code examples in this standard) as /Type and /FullScreen.

The length of a name shall be subject to an implementation limit; see Annex C. The limit applies to the number
of characters in the name’s internal representation. For example, the name /A#20B has three characters (A,
SPACE, B), not six.

Table 4 – Examples of literal names

Syntax for Literal name Resulting Name

/Name1 Name1

/ASomewhatLongerName ASomewhatLongerName

/A;Name_With-Various***Characters? A;Name_With-Various***Characters?

/1 . 2 1 . 2

/$$ $$

/@pattern @pattern

/. notdef . notdef

/lime#20Green Lime Green

/paired#28#29parentheses paired()parentheses

/The_Key_of_F#23_Minor The_Key_of_F#_Minor

/A#42 AB

PDF 32000-1:2008

18 © Adobe Systems Incorporated 2008 – All rights reserved

As stated above, name objects shall be treated as atomic within a PDF file. Ordinarily, the bytes making up the
name are never treated as text to be presented to a human user or to an application external to a conforming
reader. However, occasionally the need arises to treat a name object as text, such as one that represents a font
name (see the BaseFont entry in Table 111), a colorant name in a separation or DeviceN colour space, or a
structure type (see 14.7.3, "Structure Types").

In such situations, the sequence of bytes (after expansion of NUMBER SIGN sequences, if any) should be
interpreted according to UTF-8, a variable-length byte-encoded representation of Unicode in which the
printable ASCII characters have the same representations as in ASCII. This enables a name object to
represent text virtually in any natural language, subject to the implementation limit on the length of a name.

NOTE 4 PDF does not prescribe what UTF-8 sequence to choose for representing any given piece of externally
specified text as a name object. In some cases, multiple UTF-8 sequences may represent the same logical
text. Name objects defined by different sequences of bytes constitute distinct name objects in PDF, even
though the UTF-8 sequences may have identical external interpretations.

7.3.6 Array Objects

An array object is a one-dimensional collection of objects arranged sequentially. Unlike arrays in many other
computer languages, PDF arrays may be heterogeneous; that is, an array’s elements may be any combination
of numbers, strings, dictionaries, or any other objects, including other arrays. An array may have zero
elements.

An array shall be written as a sequence of objects enclosed in SQUARE BRACKETS (using LEFT SQUARE
BRACKET (5Bh) and RIGHT SQUARE BRACKET (5Dh)).

EXAMPLE [549 3.14 false (Ralph) /SomeName]

PDF directly supports only one-dimensional arrays. Arrays of higher dimension can be constructed by using
arrays as elements of arrays, nested to any depth.

7.3.7 Dictionary Objects

A dictionary object is an associative table containing pairs of objects, known as the dictionary’s entries. The first
element of each entry is the key and the second element is the value. The key shall be a name (unlike
dictionary keys in PostScript, which may be objects of any type). The value may be any kind of object, including
another dictionary. A dictionary entry whose value is null (see 7.3.9, "Null Object") shall be treated the same as
if the entry does not exist. (This differs from PostScript, where null behaves like any other object as the value
of a dictionary entry.) The number of entries in a dictionary shall be subject to an implementation limit; see
Annex C. A dictionary may have zero entries.

The entries in a dictionary represent an associative table and as such shall be unordered even though an
arbitrary order may be imposed upon them when written in a file. That ordering shall be ignored.

Multiple entries in the same dictionary shall not have the same key.

A dictionary shall be written as a sequence of key-value pairs enclosed in double angle brackets (<< … >>)
(using LESS-THAN SIGNs (3Ch) and GREATER-THAN SIGNs (3Eh)).

EXAMPLE << /Type /Example
 /Subtype /DictionaryExample
 /Version 0 . 01

/IntegerItem 12
 /StringItem (a string)
 /Subdictionary << /Item1 0 . 4

 /Item2 true
 /LastItem (not !)
 /VeryLastItem (OK)

 >>
>>

© Adobe Systems Incorporated 2008 – All rights reserved 19

PDF 32000-1:2008

NOTE Do not confuse the double angle brackets with single angle brackets (< and >) (using LESS-THAN SIGN (3Ch)
and GREATER-THAN SIGN (3Eh)), which delimit a hexadecimal string (see 7.3.4.3, "Hexadecimal Strings").

Dictionary objects are the main building blocks of a PDF document. They are commonly used to collect and tie
together the attributes of a complex object, such as a font or a page of the document, with each entry in the
dictionary specifying the name and value of an attribute. By convention, the Type entry of such a dictionary, if
present, identifies the type of object the dictionary describes. In some cases, a Subtype entry (sometimes
abbreviated S) may be used to further identify a specialized subcategory of the general type. The value of the
Type or Subtype entry shall always be a name. For example, in a font dictionary, the value of the Type entry
shall always be Font, whereas that of the Subtype entry may be Type1, TrueType, or one of several other
values.

The value of the Type entry can almost always be inferred from context. The value of an entry in a page's font
resource dictionary, for example, shall be a font object; therefore, the Type entry in a font dictionary serves
primarily as documentation and as information for error checking. The Type entry shall not be required unless
so stated in its description; however, if the entry is present, it shall have the correct value. In addition, the value
of the Type entry in any dictionary, even in private data, shall be either a name defined in this standard or a
registered name; see Annex E for details.

7.3.8 Stream Objects

7.3.8.1 General

A stream object, like a string object, is a sequence of bytes. Furthermore, a stream may be of unlimited length,
whereas a string shall be subject to an implementation limit. For this reason, objects with potentially large
amounts of data, such as images and page descriptions, shall be represented as streams.

NOTE 1 This sub-clause describes only the syntax for writing a stream as a sequence of bytes. The context in which a
stream is referenced determines what the sequence of bytes represent.

A stream shall consist of a dictionary followed by zero or more bytes bracketed between the keywords stream
(followed by newline) and endstream:

EXAMPLE dictionary
stream
… Zero or more bytes …
endstream

All streams shall be indirect objects (see 7.3.10, "Indirect Objects") and the stream dictionary shall be a direct
object. The keyword stream that follows the stream dictionary shall be followed by an end-of-line marker
consisting of either a CARRIAGE RETURN and a LINE FEED or just a LINE FEED, and not by a CARRIAGE
RETURN alone. The sequence of bytes that make up a stream lie between the end-of-line marker following the
stream keyword and the endstream keyword; the stream dictionary specifies the exact number of bytes. There
should be an end-of-line marker after the data and before endstream; this marker shall not be included in the
stream length. There shall not be any extra bytes, other than white space, between endstream and endobj.

Alternatively, beginning with PDF 1.2, the bytes may be contained in an external file, in which case the stream
dictionary specifies the file, and any bytes between stream and endstream shall be ignored by a conforming
reader.

NOTE 2 Without the restriction against following the keyword stream by a CARRIAGE RETURN alone, it would be
impossible to differentiate a stream that uses CARRIAGE RETURN as its end-of-line marker and has a LINE
FEED as its first byte of data from one that uses a CARRIAGE RETURN–LINE FEED sequence to denote end-
of-line.

Table 5 lists the entries common to all stream dictionaries; certain types of streams may have additional
dictionary entries, as indicated where those streams are described. The optional entries regarding filters for the
stream indicate whether and how the data in the stream shall be transformed (decoded) before it is used.
Filters are described further in 7.4, "Filters."

PDF 32000-1:2008

20 © Adobe Systems Incorporated 2008 – All rights reserved

7.3.8.2 Stream Extent

Every stream dictionary shall have a Length entry that indicates how many bytes of the PDF file are used for
the stream’s data. (If the stream has a filter, Length shall be the number of bytes of encoded data.) In addition,
most filters are defined so that the data shall be self-limiting; that is, they use an encoding scheme in which an
explicit end-of-data (EOD) marker delimits the extent of the data. Finally, streams are used to represent many
objects from whose attributes a length can be inferred. All of these constraints shall be consistent.

EXAMPLE An image with 10 rows and 20 columns, using a single colour component and 8 bits per component,
requires exactly 200 bytes of image data. If the stream uses a filter, there shall be enough bytes of
encoded data in the PDF file to produce those 200 bytes. An error occurs if Length is too small, if an
explicit EOD marker occurs too soon, or if the decoded data does not contain 200 bytes.

It is also an error if the stream contains too much data, with the exception that there may be an extra end-of-line
marker in the PDF file before the keyword endstream.

Table 5 – Entries common to all stream dictionaries

Key Type Value

Length integer (Required) The number of bytes from the beginning of the line
following the keyword stream to the last byte just before the
keyword endstream. (There may be an additional EOL
marker, preceding endstream, that is not included in the count
and is not logically part of the stream data.) See 7.3.8.2,
"Stream Extent", for further discussion.

Filter name or array (Optional) The name of a filter that shall be applied in
processing the stream data found between the keywords
stream and endstream, or an array of zero, one or several
names. Multiple filters shall be specified in the order in which
they are to be applied.

DecodeParms dictionary or array (Optional) A parameter dictionary or an array of such
dictionaries, used by the filters specified by Filter. If there is
only one filter and that filter has parameters, DecodeParms
shall be set to the filter’s parameter dictionary unless all the
filter’s parameters have their default values, in which case the
DecodeParms entry may be omitted. If there are multiple
filters and any of the filters has parameters set to nondefault
values, DecodeParms shall be an array with one entry for
each filter: either the parameter dictionary for that filter, or the
null object if that filter has no parameters (or if all of its
parameters have their default values). If none of the filters
have parameters, or if all their parameters have default values,
the DecodeParms entry may be omitted.

F file specification (Optional; PDF 1.2) The file containing the stream data. If this
entry is present, the bytes between stream and endstream
shall be ignored. However, the Length entry should still specify
the number of those bytes (usually, there are no bytes and
Length is 0). The filters that are applied to the file data shall be
specified by FFilter and the filter parameters shall be specified
by FDecodeParms.

FFilter name or array (Optional; PDF 1.2) The name of a filter to be applied in
processing the data found in the stream’s external file, or an
array of zero, one or several such names. The same rules
apply as for Filter.

FDecodeParms dictionary or array (Optional; PDF 1.2) A parameter dictionary, or an array of such
dictionaries, used by the filters specified by FFilter. The same
rules apply as for DecodeParms.

© Adobe Systems Incorporated 2008 – All rights reserved 21

PDF 32000-1:2008

7.3.9 Null Object

The null object has a type and value that are unequal to those of any other object. There shall be only one
object of type null, denoted by the keyword null. An indirect object reference (see 7.3.10, "Indirect Objects") to
a nonexistent object shall be treated the same as a null object. Specifying the null object as the value of a
dictionary entry (7.3.7, "Dictionary Objects") shall be equivalent to omitting the entry entirely.

7.3.10 Indirect Objects

Any object in a PDF file may be labelled as an indirect object. This gives the object a unique object identifier by
which other objects can refer to it (for example, as an element of an array or as the value of a dictionary entry).
The object identifier shall consist of two parts:

• A positive integer object number. Indirect objects may be numbered sequentially within a PDF file, but this
is not required; object numbers may be assigned in any arbitrary order.

• A non-negative integer generation number. In a newly created file, all indirect objects shall have generation
numbers of 0. Nonzero generation numbers may be introduced when the file is later updated; see sub-
clauses 7.5.4, "Cross-Reference Table" and 7.5.6, "Incremental Updates."

Together, the combination of an object number and a generation number shall uniquely identify an indirect
object.

The definition of an indirect object in a PDF file shall consist of its object number and generation number
(separated by white space), followed by the value of the object bracketed between the keywords obj and
endobj.

EXAMPLE 1 Indirect object definition

12 0 obj

(Brillig)
endobj

Defines an indirect string object with an object number of 12, a generation number of 0, and the value
Brillig.

The object may be referred to from elsewhere in the file by an indirect reference. Such indirect references shall
consist of the object number, the generation number, and the keyword R (with white space separating each
part):

12 0 R

Beginning with PDF 1.5, indirect objects may reside in object streams (see 7.5.7, "Object Streams"). They are
referred to in the same way; however, their definition shall not include the keywords obj and endobj, and their
generation number shall be zero.

DL integer (Optional; PDF 1.5) A non-negative integer representing the
number of bytes in the decoded (defiltered) stream. It can be
used to determine, for example, whether enough disk space is
available to write a stream to a file.
This value shall be considered a hint only; for some stream
filters, it may not be possible to determine this value precisely.

Table 5 – Entries common to all stream dictionaries (continued)

Key Type Value

PDF 32000-1:2008

22 © Adobe Systems Incorporated 2008 – All rights reserved

An indirect reference to an undefined object shall not be considered an error by a conforming reader; it shall be
treated as a reference to the null object.

EXAMPLE 2 If a file contains the indirect reference 17 0 R but does not contain the corresponding definition then the
indirect reference is considered to refer to the null object.

Except were documented to the contrary any object value may be a direct or an indirect reference; the
semantics are equivalent.

EXAMPLE 3 The following shows the use of an indirect object to specify the length of a stream. The value of the
stream’s Length entry is an integer object that follows the stream in the file. This allows applications that
generate PDF in a single pass to defer specifying the stream’s length until after its contents have been
generated.

7 0 obj

<< /Length 8 0 R >> % An indirect reference to object 8
stream

BT
/F1 12 Tf
72 712 Td
(A stream with an indirect length) Tj

ET
endstream
endobj

8 0 obj

77 % The length of the preceding stream
endobj

7.4 Filters

7.4.1 General

Stream filters are introduced in 7.3.8, "Stream Objects." An option when reading stream data is to decode it
using a filter to produce the original non-encoded data. Whether to do so and which decoding filter or filters to
use may be specified in the stream dictionary.

EXAMPLE 1 If a stream dictionary specifies the use of an ASCIIHexDecode filter, an application reading the data in
that stream should transform the ASCII hexadecimal-encoded data in that stream in order to obtain the
original binary data.

A conforming writer may encode data in a stream (for example, data for sampled images) to compress it or to
convert it to a portable ASCII representation (or both). A conforming reader shall invoke the corresponding
decoding filter or filters to convert the information back to its original form.

The filter or filters for a stream shall be specified by the Filter entry in the stream’s dictionary (or the FFilter
entry if the stream is external). Filters may be cascaded to form a pipeline that passes the stream through two
or more decoding transformations in sequence. For example, data encoded using LZW and ASCII base-85
encoding (in that order) shall be decoded using the following entry in the stream dictionary:

EXAMPLE 2 /Filter [/ASCII85Decode /LZWDecode]

Some filters may take parameters to control how they operate. These optional parameters shall be specified by
the DecodeParms entry in the stream’s dictionary (or the FDecodeParms entry if the stream is external).

PDF supports a standard set of filters that fall into two main categories:

• ASCII filters enable decoding of arbitrary binary data that has been encoded as ASCII text (see 7.2,
"Lexical Conventions," for an explanation of why this type of encoding might be useful).

© Adobe Systems Incorporated 2008 – All rights reserved 23

PDF 32000-1:2008

• Decompression filters enable decoding of data that has been compressed. The compressed data shall be
in binary format, even if the original data is ASCII text.

NOTE 1 ASCII filters serve no useful purpose in a PDF file that is encrypted; see 7.6, “Encryption”.

NOTE 2 Compression is particularly valuable for large sampled images, since it reduces storage requirements and
transmission time. Some types of compression are lossy, meaning that some data is lost during the encoding,
resulting in a loss of quality when the data is decompressed. Compression in which no loss of data occurs is
called lossless. Though somehow obvious it might be worth pointing out that lossy compression can only be
applied to sampled image data (and only certain types of lossy compression for certain types of images).
Lossless compression on the other hand can be used for any kind of stream.

The standard filters are summarized in Table 6, which also indicates whether they accept any optional
parameters. The following sub-clauses describe these filters and their parameters (if any) in greater detail,
including specifications of encoding algorithms for some filters.

EXAMPLE 3 The following example shows a stream, containing the marking instructions for a page, that was
compressed using the LZW compression method and then encoded in ASCII base-85 representation.

1 0 obj

<< /Length 534
/Filter [/ASCII85Decode /LZWDecode]

>>

Table 6 – Standard filters

FILTER name Parameters Description

ASCIIHexDecode no Decodes data encoded in an ASCII hexadecimal
representation, reproducing the original binary data.

ASCII85Decode no Decodes data encoded in an ASCII base-85 representation,
reproducing the original binary data.

LZWDecode yes Decompresses data encoded using the LZW (Lempel-Ziv-
Welch) adaptive compression method, reproducing the original
text or binary data.

FlateDecode yes (PDF 1.2) Decompresses data encoded using the zlib/deflate
compression method, reproducing the original text or binary
data.

RunLengthDecode no Decompresses data encoded using a byte-oriented run-length
encoding algorithm, reproducing the original text or binary data
(typically monochrome image data, or any data that contains
frequent long runs of a single byte value).

CCITTFaxDecode yes Decompresses data encoded using the CCITT facsimile
standard, reproducing the original data (typically monochrome
image data at 1 bit per pixel).

JBIG2Decode yes (PDF 1.4) Decompresses data encoded using the JBIG2
standard, reproducing the original monochrome (1 bit per pixel)
image data (or an approximation of that data).

DCTDecode yes Decompresses data encoded using a DCT (discrete cosine
transform) technique based on the JPEG standard,
reproducing image sample data that approximates the original
data.

JPXDecode no (PDF 1.5) Decompresses data encoded using the wavelet-
based JPEG2000 standard, reproducing the original image
data.

Crypt yes (PDF 1.5) Decrypts data encrypted by a security handler,
reproducing the data as it was before encryption.

PDF 32000-1:2008

24 © Adobe Systems Incorporated 2008 – All rights reserved

stream
J..)6T`?p&<!J9%_[umg"B7/Z7KNXbN'S+,*Q/&"OLT'F
LIDK#!n`$"<Atdi`\Vn%b%)&'cA*VnK\CJY(sF>c!Jnl@
RM]WM;jjH6Gnc75idkL5]+cPZKEBPWdR>FF(kj1_R%W_d
&/jS!;iuad7h?[L-F$+]]0A3Ck*$I0KZ?;<)CJtqi65Xb
Vc3\n5ua:Q/=0$W<#N3U;H,MQKqfg1?:lUpR;6oN[C2E4
ZNr8Udn.'p+?#X+1>0Kuk$bCDF/(3fL5]Oq)^kJZ!C2H1
'TO]Rl?Q:&'<5&iP!$Rq;BXRecDN[IJB`,)o8XJOSJ9sD
S]hQ;Rj@!ND)bD_q&C\g:inYC%)&u#:u,M6Bm%IY!Kb1+
":aAa'S`ViJglLb8<W9k6Yl\\0McJQkDeLWdPN?9A'jX*
al>iG1p&i;eVoK&juJHs9%;Xomop"5KatWRT"JQ#qYuL,
JD?M$0QP)lKn06l1apKDC@\qJ4B!!(5m+j.7F790m(Vj8
8l8Q:_CZ(Gm1%X\N1&u!FKHMB~>
endstream
endobj

EXAMPLE 4 The following shows the same stream without any filters applied to it. (The stream’s contents are
explained in 7.8.2, "Content Streams," and the operators used there are further described in clause 9,
"Text".)

1 0 obj

<< /Length 568 >>
stream
2 J
BT
/F1 12 Tf
0 Tc
0 Tw
72.5 712 TD
[(Unfiltered streams can be read easily) 65 (,)] TJ
0 -14 TD
[(b) 20 (ut generally tak) 10 (e more space than \311)] TJ
T* (compressed streams .) Tj
0 -28 TD
[(Se) 25 (v) 15 (eral encoding methods are a) 20 (v) 25 (ailable in PDF) 80 (.)] TJ
0 -14 TD
(Some are used for compression and others simply) Tj
T* [(to represent binary data in an) 55 (ASCII format .)] TJ
T* (Some of the compression filters are \
suitable) Tj
T* (for both data and images , while others are \
suitable only) Tj
T* (for continuous-tone images .) Tj
ET
endstream
endobj

7.4.2 ASCIIHexDecode Filter

The ASCIIHexDecode filter decodes data that has been encoded in ASCII hexadecimal form. ASCII
hexadecimal encoding and ASCII base-85 encoding (7.4.3, "ASCII85Decode Filter") convert binary data, such
as image data or previously compressed data, to 7-bit ASCII characters.

NOTE ASCII base-85 encoding is preferred to ASCII hexadecimal encoding. Base-85 encoding is preferred because
it is more compact: it expands the data by a factor of 4 : 5, compared with 1 : 2 for ASCII hexadecimal encoding.

The ASCIIHexDecode filter shall produce one byte of binary data for each pair of ASCII hexadecimal digits
(0–9 and A–F or a–f). All white-space characters (see 7.2, "Lexical Conventions") shall be ignored. A
GREATER-THAN SIGN (3Eh) indicates EOD. Any other characters shall cause an error. If the filter encounters
the EOD marker after reading an odd number of hexadecimal digits, it shall behave as if a 0 (zero) followed the
last digit.

© Adobe Systems Incorporated 2008 – All rights reserved 25

PDF 32000-1:2008

7.4.3 ASCII85Decode Filter

The ASCII85Decode filter decodes data that has been encoded in ASCII base-85 encoding and produces
binary data. The following paragraphs describe the process for encoding binary data in ASCII base-85; the
ASCII85Decode filter reverses this process.

The ASCII base-85 encoding shall use the ASCII characters ! through u ((21h) - (75h)) and the character z
(7Ah), with the 2-character sequence ~> (7Eh)(3Eh) as its EOD marker. The ASCII85Decode filter shall ignore
all white-space characters (see 7.2, "Lexical Conventions"). Any other characters, and any character
sequences that represent impossible combinations in the ASCII base-85 encoding shall cause an error.

Specifically, ASCII base-85 encoding shall produce 5 ASCII characters for every 4 bytes of binary data. Each
group of 4 binary input bytes, (b1 b2 b3 b4), shall be converted to a group of 5 output bytes, (c1 c2 c3 c4 c5),
using the relation

In other words, 4 bytes of binary data shall be interpreted as a base-256 number and then shall be converted to
a base-85 number. The five bytes of the base-85 number shall then be converted to ASCII characters by
adding 33 (the ASCII code for the character !) to each. The resulting encoded data shall contain only printable
ASCII characters with codes in the range 33 (!) to 117 (u). As a special case, if all five bytes are 0, they shall be
represented by the character with code 122 (z) instead of by five exclamation points (! ! ! ! !).

If the length of the data to be encoded is not a multiple of 4 bytes, the last, partial group of 4 shall be used to
produce a last, partial group of 5 output characters. Given n (1, 2, or 3) bytes of binary data, the encoder shall
first append 4 - n zero bytes to make a complete group of 4. It shall encode this group in the usual way, but
shall not apply the special z case. Finally, it shall write only the first n + 1 characters of the resulting group of 5.
These characters shall be immediately followed by the ~> EOD marker.

The following conditions shall never occur in a correctly encoded byte sequence:

• The value represented by a group of 5 characters is greater than 232 - 1.

• A z character occurs in the middle of a group.

• A final partial group contains only one character.

7.4.4 LZWDecode and FlateDecode Filters

7.4.4.1 General

The LZWDecode and (PDF 1.2) FlateDecode filters have much in common and are discussed together in this
sub-clause. They decode data that has been encoded using the LZW or Flate data compression method,
respectively:

• LZW (Lempel-Ziv-Welch) is a variable-length, adaptive compression method that has been adopted as one
of the standard compression methods in the Tag Image File Format (TIFF) standard. For details on LZW
encoding see 7.4.4.2, "Details of LZW Encoding."

• The Flate method is based on the public-domain zlib/deflate compression method, which is a variable-
length Lempel-Ziv adaptive compression method cascaded with adaptive Huffman coding. It is fully
defined in Internet RFCs 1950, ZLIB Compressed Data Format Specification, and 1951, DEFLATE
Compressed Data Format Specification (see the Bibliography).

b1 2563×() b2 2562×() b3 2561×() b4+ + + =

c1 854×() c2 853×() c3 852×() c4 851×() c+ + + +

PDF 32000-1:2008

26 © Adobe Systems Incorporated 2008 – All rights reserved

Both of these methods compress either binary data or ASCII text but (like all compression methods) always
produce binary data, even if the original data was text.

The LZW and Flate compression methods can discover and exploit many patterns in the input data, whether
the data is text or images. As described later, both filters support optional transformation by a predictor
function, which improves the compression of sampled image data.

NOTE 1 Because of its cascaded adaptive Huffman coding, Flate-encoded output is usually much more compact than
LZW-encoded output for the same input. Flate and LZW decoding speeds are comparable, but Flate encoding
is considerably slower than LZW encoding.

NOTE 2 Usually, both Flate and LZW encodings compress their input substantially. However, in the worst case (in
which no pair of adjacent bytes appears twice), Flate encoding expands its input by no more than 11 bytes or a
factor of 1.003 (whichever is larger), plus the effects of algorithm tags added by PNG predictors. For LZW
encoding, the best case (all zeros) provides a compression approaching 1365 : 1 for long files, but the worst-
case expansion is at least a factor of 1.125, which can increase to nearly 1.5 in some implementations, plus
the effects of PNG tags as with Flate encoding.

7.4.4.2 Details of LZW Encoding

Data encoded using the LZW compression method shall consist of a sequence of codes that are 9 to 12 bits
long. Each code shall represent a single character of input data (0–255), a clear-table marker (256), an EOD
marker (257), or a table entry representing a multiple-character sequence that has been encountered
previously in the input (258 or greater).

Initially, the code length shall be 9 bits and the LZW table shall contain only entries for the 258 fixed codes. As
encoding proceeds, entries shall be appended to the table, associating new codes with longer and longer
sequences of input characters. The encoder and the decoder shall maintain identical copies of this table.

Whenever both the encoder and the decoder independently (but synchronously) realize that the current code
length is no longer sufficient to represent the number of entries in the table, they shall increase the number of
bits per code by 1. The first output code that is 10 bits long shall be the one following the creation of table entry
511, and similarly for 11 (1023) and 12 (2047) bits. Codes shall never be longer than 12 bits; therefore, entry
4095 is the last entry of the LZW table.

The encoder shall execute the following sequence of steps to generate each output code:

a) Accumulate a sequence of one or more input characters matching a sequence already present in the table.
For maximum compression, the encoder looks for the longest such sequence.

b) Emit the code corresponding to that sequence.

c) Create a new table entry for the first unused code. Its value is the sequence found in step (a) followed by
the next input character.

EXAMPLE 1 Suppose the input consists of the following sequence of ASCII character codes:
45 45 45 45 45 65 45 45 45 66

Starting with an empty table, the encoder proceeds as shown in Table 7.

Table 7 – Typical LZW encoding sequence

Input
sequence

Output
code

Code added
to table

Sequence
represented
by new code

– 256 (clear-table) – –

45 45 258 45 45

45 45 258 259 45 45 45

© Adobe Systems Incorporated 2008 – All rights reserved 27

PDF 32000-1:2008

Codes shall be packed into a continuous bit stream, high-order bit first. This stream shall then be divided into
bytes, high-order bit first. Thus, codes may straddle byte boundaries arbitrarily. After the EOD marker (code
value 257), any leftover bits in the final byte shall be set to 0.

In the example above, all the output codes are 9 bits long; they would pack into bytes as follows (represented in
hexadecimal):

EXAMPLE 2 80 0B 60 50 22 0C 0C 85 01

To adapt to changing input sequences, the encoder may at any point issue a clear-table code, which causes
both the encoder and the decoder to restart with initial tables and a 9-bit code length. The encoder shall begin
by issuing a clear-table code. It shall issue a clear-table code when the table becomes full; it may do so sooner.

7.4.4.3 LZWDecode and FlateDecode Parameters

The LZWDecode and FlateDecode filters shall accept optional parameters to control the decoding process.

NOTE Most of these parameters are related to techniques that reduce the size of compressed sampled images
(rectangular arrays of colour values, described in 8.9, "Images"). For example, image data typically changes
very little from sample to sample. Therefore, subtracting the values of adjacent samples (a process called
differencing), and encoding the differences rather than the raw sample values, can reduce the size of the
output data. Furthermore, when the image data contains several colour components (red-green-blue or cyan-
magenta-yellow-black) per sample, taking the difference between the values of corresponding components in
adjacent samples, rather than between different colour components in the same sample, often reduces the
output data size.

Table 8 shows the parameters that may optionally be specified for LZWDecode and FlateDecode filters.
Except where otherwise noted, all values supplied to the decoding filter for any optional parameters shall match
those used when the data was encoded.

45 45 258 260 45 45 65

65 65 261 65 45

45 45 45 259 262 45 45 45 66

66 66 – –

– 257 (EOD) – –

Table 8 – Optional parameters for LZWDecode and FlateDecode filters

Key Type Value

Predictor integer A code that selects the predictor algorithm, if any. If the value of this
entry is 1, the filter shall assume that the normal algorithm was used to
encode the data, without prediction. If the value is greater than 1, the
filter shall assume that the data was differenced before being encoded,
and Predictor selects the predictor algorithm. For more information
regarding Predictor values greater than 1, see 7.4.4.4, "LZW and
Flate Predictor Functions." Default value: 1.

Colors integer (May be used only if Predictor is greater than 1) The number of
interleaved colour components per sample. Valid values are 1 to 4
(PDF 1.0) and 1 or greater (PDF 1.3). Default value: 1.

Table 7 – Typical LZW encoding sequence (continued)

Input
sequence

Output
code

Code added
to table

Sequence
represented
by new code

PDF 32000-1:2008

28 © Adobe Systems Incorporated 2008 – All rights reserved

7.4.4.4 LZW and Flate Predictor Functions

LZW and Flate encoding compress more compactly if their input data is highly predictable. One way of
increasing the predictability of many continuous-tone sampled images is to replace each sample with the
difference between that sample and a predictor function applied to earlier neighboring samples. If the predictor
function works well, the postprediction data clusters toward 0.

PDF supports two groups of predictor functions. The first, the TIFF group, consists of the single function that is
Predictor 2 in the TIFF 6.0 specification.

NOTE 1 (In the TIFF 6.0 specification, Predictor 2 applies only to LZW compression, but here it applies to Flate
compression as well.) TIFF Predictor 2 predicts that each colour component of a sample is the same as the
corresponding colour component of the sample immediately to its left.

The second supported group of predictor functions, the PNG group, consists of the filters of the World Wide
Web Consortium’s Portable Network Graphics recommendation, documented in Internet RFC 2083, PNG
(Portable Network Graphics) Specification (see the Bibliography).

The term predictors is used here instead of filters to avoid confusion.

There are five basic PNG predictor algorithms (and a sixth that chooses the optimum predictor function
separately for each row).

The predictor algorithm to be used, if any, shall be indicated by the Predictor filter parameter (see Table 8),
whose value shall be one of those listed in Table 10.

BitsPerComponent integer (May be used only if Predictor is greater than 1) The number of bits
used to represent each colour component in a sample. Valid values
are 1, 2, 4, 8, and (PDF 1.5) 16. Default value: 8.

Columns integer (May be used only if Predictor is greater than 1) The number of
samples in each row. Default value: 1.

EarlyChange integer (LZWDecode only) An indication of when to increase the code length.
If the value of this entry is 0, code length increases shall be postponed
as long as possible. If the value is 1, code length increases shall occur
one code early. This parameter is included because LZW sample code
distributed by some vendors increases the code length one code
earlier than necessary. Default value: 1.

Table 9 – PNG predictor algorithms

PNG
Predictor
Algorithms

Description

None No prediction

Sub Predicts the same as the sample to the left

Up Predicts the same as the sample above

Average Predicts the average of the sample to the left and the
sample above

Paeth A nonlinear function of the sample above, the sample
to the left, and the sample to the upper left

Table 8 – Optional parameters for LZWDecode and FlateDecode filters (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 29

PDF 32000-1:2008

For LZWDecode and FlateDecode, a Predictor value greater than or equal to 10 shall indicate that a PNG
predictor is in use; the specific predictor function used shall be explicitly encoded in the incoming data. The
value of Predictor supplied by the decoding filter need not match the value used when the data was encoded if
they are both greater than or equal to 10.

The two groups of predictor functions have some commonalities. Both make the following assumptions:

• Data shall be presented in order, from the top row to the bottom row and, within a row, from left to right.

• A row shall occupy a whole number of bytes, rounded up if necessary.

• Samples and their components shall be packed into bytes from high-order to low-order bits.

• All colour components of samples outside the image (which are necessary for predictions near the
boundaries) shall be 0.

The predictor function groups also differ in significant ways:

• The postprediction data for each PNG-predicted row shall begin with an explicit algorithm tag; therefore,
different rows can be predicted with different algorithms to improve compression. TIFF Predictor 2 has no
such identifier; the same algorithm applies to all rows.

• The TIFF function group shall predict each colour component from the prior instance of that component,
taking into account the number of bits per component and components per sample. In contrast, the PNG
function group shall predict each byte of data as a function of the corresponding byte of one or more
previous image samples, regardless of whether there are multiple colour components in a byte or whether
a single colour component spans multiple bytes.

NOTE 2 This can yield significantly better speed at the cost of somewhat worse compression.

7.4.5 RunLengthDecode Filter

The RunLengthDecode filter decodes data that has been encoded in a simple byte-oriented format based on
run length. The encoded data shall be a sequence of runs, where each run shall consist of a length byte
followed by 1 to 128 bytes of data. If the length byte is in the range 0 to 127, the following length + 1 (1 to 128)
bytes shall be copied literally during decompression. If length is in the range 129 to 255, the following single
byte shall be copied 257 - length (2 to 128) times during decompression. A length value of 128 shall denote
EOD.

Table 10 – Predictor values

Value Meaning

1 No prediction (the default value)

2 TIFF Predictor 2

10 PNG prediction (on encoding, PNG None on all rows)

11 PNG prediction (on encoding, PNG Sub on all rows)

12 PNG prediction (on encoding, PNG Up on all rows)

13 PNG prediction (on encoding, PNG Average on all rows)

14 PNG prediction (on encoding, PNG Paeth on all rows)

15 PNG prediction (on encoding, PNG optimum)

PDF 32000-1:2008

30 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE The compression achieved by run-length encoding depends on the input data. In the best case (all zeros), a
compression of approximately 64 : 1 is achieved for long files. The worst case (the hexadecimal sequence 00
alternating with FF) results in an expansion of 127 : 128.

7.4.6 CCITTFaxDecode Filter

The CCITTFaxDecode filter decodes image data that has been encoded using either Group 3 or Group 4
CCITT facsimile (fax) encoding.

NOTE 1 CCITT encoding is designed to achieve efficient compression of monochrome (1 bit per pixel) image data at
relatively low resolutions, and so is useful only for bitmap image data, not for colour images, grayscale images,
or general data.

NOTE 2 The CCITT encoding standard is defined by the International Telecommunications Union (ITU), formerly known
as the Comité Consultatif International Téléphonique et Télégraphique (International Coordinating Committee
for Telephony and Telegraphy). The encoding algorithm is not described in detail in this standard but can be
found in ITU Recommendations T.4 and T.6 (see the Bibliography). For historical reasons, we refer to these
documents as the CCITT standard.

CCITT encoding is bit-oriented, not byte-oriented. Therefore, in principle, encoded or decoded data need not
end at a byte boundary. This problem shall be dealt with in the following ways:

• Unencoded data shall be treated as complete scan lines, with unused bits inserted at the end of each scan
line to fill out the last byte. This approach is compatible with the PDF convention for sampled image data.

• Encoded data shall ordinarily be treated as a continuous, unbroken bit stream. The EncodedByteAlign
parameter (described in Table 11) may be used to cause each encoded scan line to be filled to a byte
boundary.

NOTE 3 Although this is not prescribed by the CCITT standard and fax machines never do this, some software
packages find it convenient to encode data this way.

• When a filter reaches EOD, it shall always skip to the next byte boundary following the encoded data.

The filter shall not perform any error correction or resynchronization, except as noted for the
DamagedRowsBeforeError parameter in Table 11.

Table 11 lists the optional parameters that may be used to control the decoding. Except where noted otherwise,
all values supplied to the decoding filter by any of these parameters shall match those used when the data was
encoded.

Table 11 – Optional parameters for the CCITTFaxDecode filter

Key Type Value

K integer A code identifying the encoding scheme used:
< 0 Pure two-dimensional encoding (Group 4)
=0 Pure one-dimensional encoding (Group 3, 1-D)
> 0 Mixed one- and two-dimensional encoding (Group 3,

2-D), in which a line encoded one-dimensionally may
be followed by at most K − 1 lines encoded two-
dimensionally

The filter shall distinguish among negative, zero, and positive
values of K to determine how to interpret the encoded data;
however, it shall not distinguish between different positive K
values. Default value: 0.

© Adobe Systems Incorporated 2008 – All rights reserved 31

PDF 32000-1:2008

NOTE 4 The compression achieved using CCITT encoding depends on the data, as well as on the value of various
optional parameters. For Group 3 one-dimensional encoding, in the best case (all zeros), each scan line
compresses to 4 bytes, and the compression factor depends on the length of a scan line. If the scan line is 300
bytes long, a compression ratio of approximately 75 : 1 is achieved. The worst case, an image of alternating
ones and zeros, produces an expansion of 2 : 9.

7.4.7 JBIG2Decode Filter

The JBIG2Decode filter (PDF 1.4) decodes monochrome (1 bit per pixel) image data that has been encoded
using JBIG2 encoding.

NOTE 1 JBIG stands for the Joint Bi-Level Image Experts Group, a group within the International Organization for
Standardization (ISO) that developed the format. JBIG2 is the second version of a standard originally released
as JBIG1.

JBIG2 encoding, which provides for both lossy and lossless compression, is useful only for monochrome
images, not for colour images, grayscale images, or general data. The algorithms used by the encoder, and

EndOfLine boolean A flag indicating whether end-of-line bit patterns shall be
present in the encoding. The CCITTFaxDecode filter shall
always accept end-of-line bit patterns. If EndOfLine is true
end-of-line bit patterns shall be present.Default value: false.

EncodedByteAlign boolean A flag indicating whether the filter shall expect extra 0 bits
before each encoded line so that the line begins on a byte
boundary. If true, the filter shall skip over encoded bits to
begin decoding each line at a byte boundary. If false, the filter
shall not expect extra bits in the encoded representation.
Default value: false.

Columns integer The width of the image in pixels. If the value is not a multiple
of 8, the filter shall adjust the width of the unencoded image
to the next multiple of 8 so that each line starts on a byte
boundary. Default value: 1728.

Rows integer The height of the image in scan lines. If the value is 0 or
absent, the image’s height is not predetermined, and the
encoded data shall be terminated by an end-of-block bit
pattern or by the end of the filter’s data. Default value: 0.

EndOfBlock boolean A flag indicating whether the filter shall expect the encoded
data to be terminated by an end-of-block pattern, overriding
the Rows parameter. If false, the filter shall stop when it has
decoded the number of lines indicated by Rows or when its
data has been exhausted, whichever occurs first. The end-of-
block pattern shall be the CCITT end-of-facsimile-block
(EOFB) or return-to-control (RTC) appropriate for the K
parameter. Default value: true.

BlackIs1 boolean A flag indicating whether 1 bits shall be interpreted as black
pixels and 0 bits as white pixels, the reverse of the normal
PDF convention for image data. Default value: false.

DamagedRowsBeforeError integer The number of damaged rows of data that shall be tolerated
before an error occurs. This entry shall apply only if
EndOfLine is true and K is non-negative. Tolerating a
damaged row shall mean locating its end in the encoded data
by searching for an EndOfLine pattern and then substituting
decoded data from the previous row if the previous row was
not damaged, or a white scan line if the previous row was
also damaged. Default value: 0.

Table 11 – Optional parameters for the CCITTFaxDecode filter (continued)

Key Type Value

http://www.jpeg.org
http://www.jpeg.org
http://www.jpeg.org

PDF 32000-1:2008

32 © Adobe Systems Incorporated 2008 – All rights reserved

the details of the format, are not described here. See ISO/IEC 11544 published standard for the current JBIG2
specification. Additional information can be found through the Web site for the JBIG and JPEG (Joint
Photographic Experts Group) committees at < http://www.jpeg.org >.

In general, JBIG2 provides considerably better compression than the existing CCITT standard (discussed in
7.4.6, "CCITTFaxDecode Filter"). The compression it achieves depends strongly on the nature of the image.
Images of pages containing text in any language compress particularly well, with typical compression ratios of
20:1 to 50:1 for a page full of text.

The JBIG2 encoder shall build a table of unique symbol bitmaps found in the image, and other symbols found
later in the image shall be matched against the table. Matching symbols shall be replaced by an index into the
table, and symbols that fail to match shall be added to the table. The table itself shall be compressed using
other means.

NOTE 2 This method results in high compression ratios for documents in which the same symbol is repeated often, as
is typical for images created by scanning text pages. It also results in high compression of white space in the
image, which does not need to be encoded because it contains no symbols.

While best compression is achieved for images of text, the JBIG2 standard also includes algorithms for
compressing regions of an image that contain dithered halftone images (for example, photographs).

The JBIG2 compression method may also be used for encoding multiple images into a single JBIG2 bit stream.

NOTE 3 Typically, these images are scanned pages of a multiple-page document. Since a single table of symbol
bitmaps is used to match symbols across multiple pages, this type of encoding can result in higher
compression ratios than if each of the pages had been individually encoded using JBIG2.

In general, an image may be specified in PDF as either an image XObject or an inline image (as described in
8.9, "Images"); however, the JBIG2Decode filter shall not be used with inline images.

This filter addresses both single-page and multiple-page JBIG2 bit streams by representing each JBIG2 page
as a PDF image, as follows:

• The filter shall use the embedded file organization of JBIG2. (The details of this and the other types of file
organization are provided in an annex of the ISO specification.) The optional 2-byte combination (marker)
mentioned in the specification shall not be used in PDF. JBIG2 bit streams in random-access organization
should be converted to the embedded file organization. Bit streams in sequential organization need no
reorganization, except for the mappings described below.

• The JBIG2 file header, end-of-page segments, and end-of-file segment shall not be used in PDF. These
should be removed before the PDF objects described below are created.

• The image XObject to which the JBIG2Decode filter is applied shall contain all segments that are
associated with the JBIG2 page represented by that image; that is, all segments whose segment page
association field contains the page number of the JBIG2 page represented by the image. In the image
XObject, however, the segment’s page number should always be 1; that is, when each such segment is
written to the XObject, the value of its segment page association field should be set to 1.

• If the bit stream contains global segments (segments whose segment page association field contains 0),
these segments shall be placed in a separate PDF stream, and the filter parameter listed in Table 12
should refer to that stream. The stream can be shared by multiple image XObjects whose JBIG2
encodings use the same global segments.

Table 12 – Optional parameter for the JBIG2Decode filter

Key Type Value

JBIG2Globals stream A stream containing the JBIG2 global (page 0) segments. Global
segments shall be placed in this stream even if only a single JBIG2
image XObject refers to it.

http://www.jpeg.org

© Adobe Systems Incorporated 2008 – All rights reserved 33

PDF 32000-1:2008

EXAMPLE 1 The following shows an image that was compressed using the JBIG2 compression method and then
encoded in ASCII hexadecimal representation. Since the JBIG2 bit stream contains global segments,
these segments are placed in a separate PDF stream, as indicated by the JBIG2Globals filter parameter.

5 0 obj

<< /Type /XObject
/Subtype /Image
/Width 52
 /Height 66
/ColorSpace /DeviceGray
/BitsPerComponent 1
 /Length 224
 /Filter [/ASCIIHexDecode /JBIG2Decode]
 /DecodeParms [null << /JBIG2Globals 6 0 R >>]

>>
stream
000000013000010000001300000034000000420000000000
00000040000000000002062000010000001e000000340000
004200000000000000000200100000000231db51ce51ffac >
endstream
endobj

6 0 obj

<< /Length 126
 /Filter /ASCIIHexDecode

>>
stream
0000000000010000000032000003fffdff02fefefe000000
01000000012ae225aea9a5a538b4d9999c5c8e56ef0f872
7f2b53d4e37ef795cc5506dffac >
endstream
endobj

The JBIG2 bit stream for this example is as follows:

EXAMPLE 2 97 4A 42 32 0D 0A 1A 0A 01 00 00 00 01 00 00 00 00 00 01 00 00 00 00 32
00 00 03 FF FD FF 02 FE FE FE 00 00 00 01 00 00 00 01 2A E2 25 AE A9 A5
A5 38 B4 D9 99 9C 5C 8E 56 EF 0F 87 27 F2 B5 3D 4E 37 EF 79 5C C5 50 6D
FF AC 00 00 00 01 30 00 01 00 00 00 13 00 00 00 34 00 00 00 42 00 00 00
00 00 00 00 00 40 00 00 00 00 00 02 06 20 00 01 00 00 00 1E 00 00 00 34
00 00 00 42 00 00 00 00 00 00 00 00 02 00 10 00 00 00 02 31 DB 51 CE 51
FF AC 00 00 00 03 31 00 01 00 00 00 00 00 00 00 04 33 01 00 00 00 00

This bit stream is made up of the following parts (in the order listed):

a) The JBIG2 file header

97 4A 42 32 0D 0A 1A 0A 01 00 00 00 01

Since the JBIG2 file header shall not used in PDF, this header is not placed in the JBIG2 stream object and
is discarded.

b) The first JBIG2 segment (segment 0)—in this case, the symbol dictionary segment

00 00 00 00 00 01 00 00 00 00 32 00 00 03 FF FD FF 02 FE FE FE 00 00 00
01 00 00 00 01 2A E2 25 AE A9 A5 A5 38 B4 D9 99 9C 5C 8E 56 EF 0F 87
27 F2 B5 3D 4E 37 EF 79 5C C5 50 6D FF AC

This is a global segment (segment page association = 0) and so shall be placed in the JBIG2Globals
stream.

PDF 32000-1:2008

34 © Adobe Systems Incorporated 2008 – All rights reserved

c) The page information segment

00 00 00 01 30 00 01 00 00 00 13 00 00 00 34 00 00 00 42 00 00 00 00
00 00 00 00 40 00 00

and the immediate text region segment

00 00 00 02 06 20 00 01 00 00 00 1E 00 00 00 34 00 00 00 42 00 00 00
00 00 00 00 00 02 00 10 00 00 00 02 31 DB 51 CE 51 FF AC

These two segments constitute the contents of the JBIG2 page and shall be placed in the PDF XObject
representing this image.

d) The end-of-page segment

00 00 00 03 31 00 01 00 00 00 00

and the end-of-file segment

00 00 00 04 33 01 00 00 00 00

Since these segments shall not be used in PDF, they are discarded.

The resulting PDF image object, then, contains the page information segment and the immediate text region
segment and refers to a JBIG2Globals stream that contains the symbol dictionary segment.

7.4.8 DCTDecode Filter

The DCTDecode filter decodes grayscale or colour image data that has been encoded in the JPEG baseline
format. See Adobe Technical Note #5116 for additional information about the use of JPEG “markers.”

NOTE 1 JPEG stands for the Joint Photographic Experts Group, a group within the International Organization for
Standardization that developed the format; DCT stands for discrete cosine transform, the primary technique
used in the encoding.

JPEG encoding is a lossy compression method, designed specifically for compression of sampled continuous-
tone images and not for general data compression.

Data to be encoded using JPEG shall consist of a stream of image samples, each consisting of one, two, three,
or four colour components. The colour component values for a particular sample shall appear consecutively.
Each component value shall occupy a byte.

During encoding, several parameters shall control the algorithm and the information loss. The values of these
parameters, which include the dimensions of the image and the number of components per sample, are entirely
under the control of the encoder and shall be stored in the encoded data. DCTDecode may obtain the
parameter values it requires directly from the encoded data. However, in one instance, the parameter need not
be present in the encoded data but shall be specified in the filter parameter dictionary; see Table 13.

NOTE 2 The details of the encoding algorithm are not presented here but are in the ISO standard and in JPEG: Still
Image Data Compression Standard, by Pennebaker and Mitchell (see the Bibliography). Briefly, the JPEG
algorithm breaks an image up into blocks that are 8 samples wide by 8 samples high. Each colour component
in an image is treated separately. A two-dimensional DCT is performed on each block. This operation produces
64 coefficients, which are then quantized. Each coefficient may be quantized with a different step size. It is this
quantization that results in the loss of information in the JPEG algorithm. The quantized coefficients are then
compressed.

© Adobe Systems Incorporated 2008 – All rights reserved 35

PDF 32000-1:2008

NOTE 3 The encoding algorithm can reduce the information loss by making the step size in the quantization smaller at
the expense of reducing the amount of compression achieved by the algorithm. The compression achieved by
the JPEG algorithm depends on the image being compressed and the amount of loss that is acceptable. In
general, a compression of 15 : 1 can be achieved without perceptible loss of information, and 30 : 1
compression causes little impairment of the image.

NOTE 4 Better compression is often possible for colour spaces that treat luminance and chrominance separately than
for those that do not. The RGB-to-YUV conversion provided by the filters is one attempt to separate luminance
and chrominance; it conforms to CCIR recommendation 601-1. Other colour spaces, such as the CIE 1976
L*a*b* space, may also achieve this objective. The chrominance components can then be compressed more
than the luminance by using coarser sampling or quantization, with no degradation in quality.

In addition to the baseline JPEG format, beginning with PDF 1.3, the DCTDecode filter shall support the
progressive JPEG extension. This extension does not add any entries to the DCTDecode parameter
dictionary; the distinction between baseline and progressive JPEG shall be represented in the encoded data.

NOTE 5 There is no benefit to using progressive JPEG for stream data that is embedded in a PDF file. Decoding
progressive JPEG is slower and consumes more memory than baseline JPEG. The purpose of this feature is
to enable a stream to refer to an external file whose data happens to be already encoded in progressive JPEG.

7.4.9 JPXDecode Filter

The JPXDecode filter (PDF 1.5) decodes data that has been encoded using the JPEG2000 compression
method, an ISO standard for the compression and packaging of image data.

NOTE 1 JPEG2000 defines a wavelet-based method for image compression that gives somewhat better size reduction
than other methods such as regular JPEG or CCITT. Although the filter can reproduce samples that are
losslessly compressed.

Table 13 – Optional parameter for the DCTDecode filter

Key Type Value

ColorTransform integer (Optional) A code specifying the transformation that shall be
performed on the sample values:
0 No transformation.
1 If the image has three colour components, RGB values shall be

transformed to YUV before encoding and from YUV to RGB after
decoding. If the image has four components, CMYK values shall
be transformed to YUVK before encoding and from YUVK to
CMYK after decoding. This option shall be ignored if the image has
one or two colour components.

If the encoding algorithm has inserted the Adobe-defined markera
code in the encoded data indicating the ColorTransform value, then
the colours shall be transformed, or not, after the DCT decoding has
been performed according to the value provided in the encoded data
and the value of this dictionary entry shall be ignored. If the Adobe-
defined marker code in the encoded data indicating the
ColorTransform value is not present then the value specified in this
dictionary entry will be used. If the Adobe-defined marker code in the
encoded data indicating the ColorTransform value is not present and
this dictionary entry is not present in the filter dictionary then the
default value of ColorTransform shall be 1 if the image has three
components and 0 otherwise.

a Parameters that control the decoding process as well as other metadata is embedded within the encoded data
stream using a notation referred to as “markers”. When it defined the use of JPEG images within PostScript data
streams, Adobe System Incorporated defined a particular set of rules pertaining to which markers are to be
recognized, which are to be ignored and which are considered errors. A specific Adobe-defined marker was also
introduced. The exact rules for producing and consuming DCT encoded data within PostScript are provide in
Adobe Technical Note #5116 (reference). PDF DCT Encoding shall exactly follow those rules established by
Adobe for PostScript.

PDF 32000-1:2008

36 © Adobe Systems Incorporated 2008 – All rights reserved

This filter shall only be applied to image XObjects, and not to inline images (see 8.9, "Images"). It is suitable
both for images that have a single colour component and for those that have multiple colour components. The
colour components in an image may have different numbers of bits per sample. Any value from 1 to 38 shall be
allowed.

NOTE 2 From a single JPEG2000 data stream, multiple versions of an image may be decoded. These different
versions form progressions along four degrees of freedom: sampling resolution, colour depth, band, and
location. For example, with a resolution progression, a thumbnail version of the image may be decoded from
the data, followed by a sequence of other versions of the image, each with approximately four times as many
samples (twice the width times twice the height) as the previous one. The last version is the full-resolution
image.

NOTE 3 Viewing and printing applications may gain performance benefits by using the resolution progression. If the
full-resolution image is densely sampled, the application may be able to select and decode only the data
making up a lower-resolution version, thereby spending less time decoding. Fewer bytes need be processed, a
particular benefit when viewing files over the Web. The tiling structure of the image may also provide benefits if
only certain areas of an image need to be displayed or printed.

NOTE 4 Information on these progressions is encoded in the data; no decode parameters are needed to describe them.
The decoder deals with any progressions it encounters to deliver the correct image data. Progressions that are
of no interest may simply have performance consequences.

The JPEG2000 specifications define two widely used formats, JP2 and JPX, for packaging the compressed
image data. JP2 is a subset of JPX. These packagings contain all the information needed to properly interpret
the image data, including the colour space, bits per component, and image dimensions. In other words, they
are complete descriptions of images (as opposed to image data that require outside parameters for correct
interpretation). The JPXDecode filter shall expect to read a full JPX file structure—either internal to the PDF file
or as an external file.

NOTE 5 To promote interoperability, the specifications define a subset of JPX called JPX baseline (of which JP2 is also
a subset). The complete details of the baseline set of JPX features are contained in ISO/IEC 15444-2,
Information Technology—JPEG 2000 Image Coding System: Extensions (see the Bibliography). See also
<http://www.jpeg.org/jpeg2000/>.

Data used in PDF image XObjects shall be limited to the JPX baseline set of features, except for enumerated
colour space 19 (CIEJab). In addition, enumerated colour space 12 (CMYK), which is part of JPX but not JPX
baseline, shall be supported in a PDF.

A JPX file describes a collection of channels that are present in the image data. A channel may have one of
three types:

• An ordinary channel contains values that, when decoded, shall become samples for a specified colour
component.

• An opacity channel provides samples that shall be interpreted as raw opacity information.

• A premultiplied opacity channel shall provide samples that have been multiplied into the colour samples of
those channels with which it is associated.

Opacity and premultiplied opacity channels shall be associated with specific colour channels. There shall not
be more than one opacity channel (of either type) associated with a given colour channel.

EXAMPLE It is possible for one opacity channel to apply to the red samples and another to apply to the green and
blue colour channels of an RGB image.

NOTE 6 The method by which the opacity information is to be used is explicitly not specified, although one possible
method shows a normal blending mode.

In addition to using opacity channels for describing transparency, JPX files also have the ability to specify
chroma-key transparency. A single colour may be specified by giving an array of values, one value for each
colour channel. Any image location that matches this colour shall be considered to be completely transparent.

http://www.jpeg.org/jpeg2000/
http://www.jpeg.org/jpeg2000/

© Adobe Systems Incorporated 2008 – All rights reserved 37

PDF 32000-1:2008

Images in JPX files may have one of the following colour spaces:

• A predefined colour space, chosen from a list of enumerated colour spaces. (Two of these are actually
families of spaces and parameters are included.)

• A restricted ICC profile. These are the only sorts of ICC profiles that are allowed in JP2 files.

• An input ICC profile of any sort defined by ICC-1.

• A vendor-defined colour space.

More than one colour space may be specified for an image, with each space being tagged with a precedence
and an approximation value that indicates how well it represents the preferred colour space. In addition, the
image’s colour space may serve as the foundation for a palette of colours that are selected using samples
coming from the image’s data channels: the equivalent of an Indexed colour space in PDF.

There are other features in the JPX format beyond describing a simple image. These include provisions for
describing layering and giving instructions on composition, specifying simple animation, and including generic
XML metadata (along with JPEG2000-specific schemas for such data). Relevant metadata should be
replicated in the image dictionary’s Metadata stream in XMP format (see 14.3.2, "Metadata Streams").

When using the JPXDecode filter with image XObjects, the following changes to and constraints on some
entries in the image dictionary shall apply (see 8.9.5, "Image Dictionaries" for details on these entries):

• Width and Height shall match the corresponding width and height values in the JPEG2000 data.

• ColorSpace shall be optional since JPEG2000 data contain colour space specifications. If present, it shall
determine how the image samples are interpreted, and the colour space specifications in the JPEG2000
data shall be ignored. The number of colour channels in the JPEG2000 data shall match the number of
components in the colour space; a conforming writer shall ensure that the samples are consistent with the
colour space used.

• Any colour space other than Pattern may be specified. If an Indexed colour space is used, it shall be
subject to the PDF limit of 256 colours. If the colour space does not match one of JPX’s enumerated colour
spaces (for example, if it has two colour components or more than four), it should be specified as a vendor
colour space in the JPX data.

• If ColorSpace is not present in the image dictionary, the colour space information in the JPEG2000 data
shall be used. A JPEG2000 image within a PDF shall have one of: the baseline JPX colorspaces; or
enumerated colorspace 19 (CIEJab) or enumerated colorspace 12 (CMYK); or at least one ICC profile that
is valid within PDF. Conforming PDF readers shall support the JPX baseline set of enumerated colour
spaces; they shall also be responsible for dealing with the interaction between the colour spaces and the
bit depth of samples.

• If multiple colour space specifications are given in the JPEG2000 data, a conforming reader should
attempt to use the one with the highest precedence and best approximation value. If the colour space is
given by an unsupported ICC profile, the next lower colour space, in terms of precedence and
approximation value, shall be used. If no supported colour space is found, the colour space used shall be
DeviceGray, DeviceRGB, or DeviceCMYK, depending on the whether the number of channels in the
JPEG2000 data is 1,3, or 4.

• SMaskInData specifies whether soft-mask information packaged with the image samples shall be used
(see 11.6.5.3, "Soft-Mask Images"); if it is, the SMask entry shall not be present. If SMaskInData is
nonzero, there shall be only one opacity channel in the JPEG2000 data and it shall apply to all colour
channels.

• Decode shall be ignored, except in the case where the image is treated as a mask; that is, when
ImageMask is true. In this case, the JPEG2000 data shall provide a single colour channel with 1-bit
samples.

PDF 32000-1:2008

38 © Adobe Systems Incorporated 2008 – All rights reserved

7.4.10 Crypt Filter

The Crypt filter (PDF 1.5) allows the document-level security handler (see 7.6, "Encryption") to determine
which algorithms should be used to decrypt the input data. The Name parameter in the decode parameters
dictionary for this filter (see Table 14) shall specify which of the named crypt filters in the document (see 7.6.5,
"Crypt Filters") shall be used. The Crypt filter shall be the first filter in the Filter array entry.

In addition, the decode parameters dictionary may include entries that are private to the security handler.
Security handlers may use information from both the crypt filter decode parameters dictionary and the crypt
filter dictionaries (see Table 25) when decrypting data or providing a key to decrypt data.

NOTE When adding private data to the decode parameters dictionary, security handlers should name these entries in
conformance with the PDF name registry (see Annex E).

If a stream specifies a crypt filter, then the security handler does not apply "Algorithm 1: Encryption of data
using the RC4 or AES algorithms" in 7.6.2, "General Encryption Algorithm," to the key prior to decrypting the
stream. Instead, the security handler shall decrypt the stream using the key as is. Sub-clause 7.4, "Filters,"
explains how a stream specifies filters.

7.5 File Structure

7.5.1 General

This sub-clause describes how objects are organized in a PDF file for efficient random access and incremental
update. A basic conforming PDF file shall be constructed of following four elements (see Figure 2):

• A one-line header identifying the version of the PDF specification to which the file conforms

• A body containing the objects that make up the document contained in the file

• A cross-reference table containing information about the indirect objects in the file

• A trailer giving the location of the cross-reference table and of certain special objects within the body of the
file

This initial structure may be modified by later updates, which append additional elements to the end of the file;
see 7.5.6, "Incremental Updates," for details.

Table 14 – Optional parameters for Crypt filters

Key Type Value

Type name (Optional) If present, shall be CryptFilterDecodeParms for a Crypt
filter decode parameter dictionary.

Name name (Optional) The name of the crypt filter that shall be used to decrypt this
stream. The name shall correspond to an entry in the CF entry of the
encryption dictionary (see Table 20) or one of the standard crypt filters
(see Table 26).
Default value: Identity.

© Adobe Systems Incorporated 2008 – All rights reserved 39

PDF 32000-1:2008

Figure 2 – Initial structure of a PDF file

As a matter of convention, the tokens in a PDF file are arranged into lines; see 7.2, "Lexical Conventions."
Each line shall be terminated by an end-of-line (EOL) marker, which may be a CARRIAGE RETURN (0Dh), a
LINE FEED (0Ah), or both. PDF files with binary data may have arbitrarily long lines.

NOTE To increase compatibility with compliant programs that process PDF files, lines that are not part of stream
object data are limited to no more than 255 characters, with one exception. Beginning with PDF 1.3, the
Contents string of a signature dictionary (see 12.8, "Digital Signatures") is not subject to the restriction on line
length.

The rules described here are sufficient to produce a basic conforming PDF file. However, additional rules apply
to organizing a PDF file to enable efficient incremental access to a document’s components in a network
environment. This form of organization, called Linearized PDF, is described in Annex F.

7.5.2 File Header

The first line of a PDF file shall be a header consisting of the 5 characters %PDF– followed by a version
number of the form 1.N, where N is a digit between 0 and 7.

A conforming reader shall accept files with any of the following headers:

%PDF–1. 0
%PDF–1. 1
%PDF–1. 2
%PDF–1. 3
%PDF–1. 4
%PDF–1. 5
%PDF–1. 6
%PDF–1. 7

Beginning with PDF 1.4, the Version entry in the document’s catalog dictionary (located via the Root entry in
the file’s trailer, as described in 7.5.5, "File Trailer"), if present, shall be used instead of the version specified in
the Header.

Header

Body

Cross-reference
table

Trailer

PDF 32000-1:2008

40 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE This allows a conforming writer to update the version using an incremental update (see 7.5.6, "Incremental
Updates").

Under some conditions, a conforming reader may be able to process PDF files conforming to a later version
than it was designed to accept. New PDF features are often introduced in such a way that they can safely be
ignored by a conforming reader that does not understand them (see I.2, "PDF Version Numbers").

This part of ISO 32000 defines the Extensions entry in the document’s catalog dictionary. If present, it shall
identify any developer-defined extensions that are contained in this PDF file. See 7.12, “Extensions Dictionary”.

If a PDF file contains binary data, as most do (see 7.2, "Lexical Conventions"), the header line shall be
immediately followed by a comment line containing at least four binary characters—that is, characters whose
codes are 128 or greater. This ensures proper behaviour of file transfer applications that inspect data near the
beginning of a file to determine whether to treat the file’s contents as text or as binary.

7.5.3 File Body

The body of a PDF file shall consist of a sequence of indirect objects representing the contents of a document.
The objects, which are of the basic types described in 7.3, "Objects," represent components of the document
such as fonts, pages, and sampled images. Beginning with PDF 1.5, the body can also contain object streams,
each of which contains a sequence of indirect objects; see 7.5.7, "Object Streams."

7.5.4 Cross-Reference Table

The cross-reference table contains information that permits random access to indirect objects within the file so
that the entire file need not be read to locate any particular object. The table shall contain a one-line entry for
each indirect object, specifying the byte offset of that object within the body of the file. (Beginning with PDF 1.5,
some or all of the cross-reference information may alternatively be contained in cross-reference streams; see
7.5.8, "Cross-Reference Streams.")

NOTE 1 The cross-reference table is the only part of a PDF file with a fixed format, which permits entries in the table to
be accessed randomly.

The table comprises one or more cross-reference sections. Initially, the entire table consists of a single section
(or two sections if the file is linearized; see Annex F). One additional section shall be added each time the file is
incrementally updated (see 7.5.6, "Incremental Updates").

Each cross-reference section shall begin with a line containing the keyword xref. Following this line shall be
one or more cross-reference subsections, which may appear in any order. For a file that has never been
incrementally updated, the cross-reference section shall contain only one subsection, whose object numbering
begins at 0.

NOTE 2 The subsection structure is useful for incremental updates, since it allows a new cross-reference section to be
added to the PDF file, containing entries only for objects that have been added or deleted.

Each cross-reference subsection shall contain entries for a contiguous range of object numbers. The
subsection shall begin with a line containing two numbers separated by a SPACE (20h), denoting the object
number of the first object in this subsection and the number of entries in the subsection.

EXAMPLE 1 The following line introduces a subsection containing five objects numbered consecutively from 28 to 32.

28 5

A given object number shall not have an entry in more than one subsection within a single section.

Following this line are the cross-reference entries themselves, one per line. Each entry shall be exactly 20
bytes long, including the end-of-line marker. There are two kinds of cross-reference entries: one for objects that
are in use and another for objects that have been deleted and therefore are free. Both types of entries have

© Adobe Systems Incorporated 2008 – All rights reserved 41

PDF 32000-1:2008

similar basic formats, distinguished by the keyword n (for an in-use entry) or f (for a free entry). The format of
an in-use entry shall be:

nnnnnnnnnn ggggg n eol

where:

nnnnnnnnnn shall be a 10-digit byte offset in the decoded stream

ggggg shall be a 5-digit generation number

n shall be a keyword identifying this as an in-use entry

eol shall be a 2-character end-of-line sequence

The byte offset in the decoded stream shall be a 10-digit number, padded with leading zeros if necessary,
giving the number of bytes from the beginning of the file to the beginning of the object. It shall be separated
from the generation number by a single SPACE. The generation number shall be a 5-digit number, also padded
with leading zeros if necessary. Following the generation number shall be a single SPACE, the keyword n, and
a 2-character end-of-line sequence consisting of one of the following: SP CR, SP LF, or CR LF. Thus, the
overall length of the entry shall always be exactly 20 bytes.

The cross-reference entry for a free object has essentially the same format, except that the keyword shall be f
instead of n and the interpretation of the first item is different:

nnnnnnnnnn ggggg f eol

where:

nnnnnnnnnn shall be the 10-digit object number of the next free object

ggggg shall be a 5-digit generation number

f shall be a keyword identifying this as a free entry

eol shall be a 2-character end-of-line sequence

There are two ways an entry may be a member of the free entries list. Using the basic mechanism the free
entries in the cross-reference table may form a linked list, with each free entry containing the object number of
the next. The first entry in the table (object number 0) shall always be free and shall have a generation number
of 65,535; it is shall be the head of the linked list of free objects. The last free entry (the tail of the linked list)
links back to object number 0. Using the second mechanism, the table may contain other free entries that link
back to object number 0 and have a generation number of 65,535, even though these entries are not in the
linked list itself.

Except for object number 0, all objects in the cross-reference table shall initially have generation numbers of 0.
When an indirect object is deleted, its cross-reference entry shall be marked free and it shall be added to the
linked list of free entries. The entry’s generation number shall be incremented by 1 to indicate the generation
number to be used the next time an object with that object number is created. Thus, each time the entry is
reused, it is given a new generation number. The maximum generation number is 65,535; when a cross-
reference entry reaches this value, it shall never be reused.

The cross-reference table (comprising the original cross-reference section and all update sections) shall
contain one entry for each object number from 0 to the maximum object number defined in the file, even if one
or more of the object numbers in this range do not actually occur in the file.

EXAMPLE 2 The following shows a cross-reference section consisting of a single subsection with six entries: four that
are in use (objects number 1, 2, 4, and 5) and two that are free (objects number 0 and 3). Object number
3 has been deleted, and the next object created with that object number is given a generation number of 7.

PDF 32000-1:2008

42 © Adobe Systems Incorporated 2008 – All rights reserved

xref
0 6
0000000003 65535 f
0000000017 00000 n
0000000081 00000 n
0000000000 00007 f
0000000331 00000 n
0000000409 00000 n

EXAMPLE 3 The following shows a cross-reference section with four subsections, containing a total of five entries. The
first subsection contains one entry, for object number 0, which is free. The second subsection contains
one entry, for object number 3, which is in use. The third subsection contains two entries, for objects
number 23 and 24, both of which are in use. Object number 23 has been reused, as can be seen from the
fact that it has a generation number of 2. The fourth subsection contains one entry, for object number 30,
which is in use.

xref
0 1
0000000000 65535 f
3 1
0000025325 00000 n
23 2
0000025518 00002 n
0000025635 00000 n
30 1
0000025777 00000 n

See H.7, "Updating Example", for a more extensive example of the structure of a PDF file that has been
updated several times.

7.5.5 File Trailer

The trailer of a PDF file enables a conforming reader to quickly find the cross-reference table and certain
special objects. Conforming readers should read a PDF file from its end. The last line of the file shall contain
only the end-of-file marker, %%EOF. The two preceding lines shall contain, one per line and in order, the
keyword startxref and the byte offset in the decoded stream from the beginning of the file to the beginning of
the xref keyword in the last cross-reference section. The startxref line shall be preceded by the trailer
dictionary, consisting of the keyword trailer followed by a series of key-value pairs enclosed in double angle
brackets (<< … >>) (using LESS-THAN SIGNs (3Ch) and GREATER-THAN SIGNs (3Eh)). Thus, the trailer has
the following overall structure:

trailer
<< key1 value1

 key2 value2
 …
 keyn valuen

>>
startxref
Byte_offset_of_last_cross-reference_section
%%EOF

© Adobe Systems Incorporated 2008 – All rights reserved 43

PDF 32000-1:2008

Table 15 lists the contents of the trailer dictionary.

NOTE Table 19 defines an additional entry, XRefStm, that appears only in the trailer of hybrid-reference files,
described in 7.5.8.4, "Compatibility with Applications That Do Not Support Compressed Reference Streams."

EXAMPLE This example shows a trailer for a file that has never been updated (as indicated by the absence of a Prev
entry in the trailer dictionary).

trailer

<< /Size 22
/Root 2 0 R
/Info 1 0 R
 /ID [< 81b14aafa313db63dbd6f981e49f94f4 >

< 81b14aafa313db63dbd6f981e49f94f4 >
]

>>
startxref
18799
%%EOF

Table 15 – Entries in the file trailer dictionary

Key Type Value

Size integer (Required; shall not be an indirect reference) The total number of entries in
the file’s cross-reference table, as defined by the combination of the original
section and all update sections. Equivalently, this value shall be 1 greater
than the highest object number defined in the file.
Any object in a cross-reference section whose number is greater than this
value shall be ignored and defined to be missing by a conforming reader.

Prev integer (Present only if the file has more than one cross-reference section; shall be
an indirect reference) The byte offset in the decoded stream from the
beginning of the file to the beginning of the previous cross-reference section.

Root dictionary (Required; shall be an indirect reference) The catalog dictionary for the PDF
document contained in the file (see 7.7.2, "Document Catalog").

Encrypt dictionary (Required if document is encrypted; PDF 1.1) The document’s encryption
dictionary (see 7.6, "Encryption").

Info dictionary (Optional; shall be an indirect reference) The document’s information
dictionary (see 14.3.3, "Document Information Dictionary").

ID array (Required if an Encrypt entry is present; optional otherwise; PDF 1.1) An
array of two byte-strings constituting a file identifier (see 14.4, "File
Identifiers") for the file. If there is an Encrypt entry this array and the two
byte-strings shall be direct objects and shall be unencrypted.
NOTE 1 Because the ID entries are not encrypted it is possible to check

the ID key to assure that the correct file is being accessed
without decrypting the file. The restrictions that the string be a
direct object and not be encrypted assure that this is possible.

NOTE 2 Although this entry is optional, its absence might prevent the file
from functioning in some workflows that depend on files being
uniquely identified.

NOTE 3 The values of the ID strings are used as input to the encryption
algorithm. If these strings were indirect, or if the ID array were
indirect, these strings would be encrypted when written. This
would result in a circular condition for a reader: the ID strings
must be decrypted in order to use them to decrypt strings,
including the ID strings themselves. The preceding restriction
prevents this circular condition.

PDF 32000-1:2008

44 © Adobe Systems Incorporated 2008 – All rights reserved

7.5.6 Incremental Updates

The contents of a PDF file can be updated incrementally without rewriting the entire file. When updating a PDF
file incrementally, changes shall be appended to the end of the file, leaving its original contents intact.

NOTE 1 The main advantage to updating a file in this way is that small changes to a large document can be saved
quickly. There are additional advantages:

In certain contexts, such as when editing a document across an HTTP connection or using OLE embedding (a
Windows-specific technology), a conforming writer cannot overwrite the contents of the original file.
Incremental updates may be used to save changes to documents in these contexts.

NOTE 2 The resulting file has the structure shown in Figure 3. A complete example of an updated file is shown in H.7,
"Updating Example".

A cross-reference section for an incremental update shall contain entries only for objects that have been
changed, replaced, or deleted. Deleted objects shall be left unchanged in the file, but shall be marked as
deleted by means of their cross-reference entries. The added trailer shall contain all the entries except the Prev
entry (if present) from the previous trailer, whether modified or not. In addition, the added trailer dictionary shall
contain a Prev entry giving the location of the previous cross-reference section (see Table 15). Each trailer
shall be terminated by its own end-of-file (%%EOF) marker.

NOTE 3 As shown in Figure 3, a file that has been updated several times contains several trailers. Because updates
are appended to PDF files, a file may have several copies of an object with the same object identifier (object
number and generation number).

EXAMPLE Several copies of an object can occur if a text annotation (see 12.5, "Annotations") is changed several
times and the file is saved between changes. Because the text annotation object is not deleted, it retains
the same object number and generation number as before. The updated copy of the object is included in
the new update section added to the file.

The update’s cross-reference section shall include a byte offset to this new copy of the object, overriding the
old byte offset contained in the original cross-reference section. When a conforming reader reads the file, it
shall build its cross-reference information in such a way that the most recent copy of each object shall be the
one accessed from the file.

In versions of PDF 1.4 or later a conforming writer may use the Version entry in the document’s catalog
dictionary (see 7.7.2, "Document Catalog") to override the version specified in the header. A conforming writer
may also need to update the Extensions dictionary, see 7.12, “Extensions Dictionary”, if the update either
deleted or added developer-defined extensions.

NOTE 4 The version entry enables the version to be altered when performing an incremental update.

© Adobe Systems Incorporated 2008 – All rights reserved 45

PDF 32000-1:2008

Figure 3 – Structure of an updated PDF file

7.5.7 Object Streams

 An object stream, is a stream object in which a sequence of indirect objects may be stored, as an alternative to
their being stored at the outermost file level.

NOTE 1 Object streams are first introduced in PDF 1.5. The purpose of object streams is to allow indirect objects other
than streams to be stored more compactly by using the facilities provided by stream compression filters.

NOTE 2 The term “compressed object” is used regardless of whether the stream is actually encoded with a
compression filter.

The following objects shall not be stored in an object stream:

• Stream objects

• Objects with a generation number other than zero

• A document’s encryption dictionary (see 7.6, "Encryption")

• An object representing the value of the Length entry in an object stream dictionary

Header

Original
body

Original
cross-reference

section

Updated trailer n

Body update 1

Cross-reference
section 1

Body update n

Cross-reference
section n

Original trailer

Updated trailer 1

PDF 32000-1:2008

46 © Adobe Systems Incorporated 2008 – All rights reserved

• In linearized files (see Annex F), the document catalog, the linearization dictionary, and page objects shall
not appear in an object stream.

NOTE 3 Indirect references to objects inside object streams use the normal syntax: for example, 14 0 R. Access to
these objects requires a different way of storing cross-reference information; see 7.5.8, "Cross-Reference
Streams." Use of compressed objects requires a PDF 1.5 conforming reader. However, compressed objects
can be stored in a manner that a PDF 1.4 conforming reader can ignore.

In addition to the regular keys for streams shown in Table 5, the stream dictionary describing an object stream
contains the following entries:

 A conforming writer determines which objects, if any, to store in object streams.

EXAMPLE 1 It can be useful to store objects having common characteristics together, such as “fonts on page 1,” or
“Comments for draft #3.” These objects are known as a collection.

NOTE 4 To avoid a degradation of performance, such as would occur when downloading and decompressing a large
object stream to access a single compressed object, the number of objects in an individual object stream
should be limited. This may require a group of object streams to be linked as a collection, which can be done
by means of the Extends entry in the object stream dictionary.

NOTE 5 Extends may also be used when a collection is being updated to include new objects. Rather than modifying
the original object stream, which could entail duplicating much of the stream data, the new objects can be
stored in a separate object stream. This is particularly important when adding an update section to a
document.

The stream data in an object stream shall contain the following items:

• N pairs of integers separated by white space, where the first integer in each pair shall represent the object
number of a compressed object and the second integer shall represent the byte offset in the decoded
stream of that object, relative to the first object stored in the object stream, the value of the stream's first
entry. The offsets shall be in increasing order.

NOTE 6 There is no restriction on the order of objects in the object stream; in particular, the objects need not be stored
in object-number order.

• The value of the First entry in the stream dictionary shall be the byte offset in the decoded stream of the
first object.

• The N objects are stored consecutively. Only the object values are stored in the stream; the obj and
endobj keywords shall not be used.

NOTE 7 A compressed dictionary or array may contain indirect references.

An object in an object stream shall not consist solely of an object reference.

Table 16 – Additional entries specific to an object stream dictionary

key type description

Type name (Required) The type of PDF object that this dictionary describes; shall be
ObjStm for an object stream.

N integer (Required) The number of indirect objects stored in the stream.

First integer (Required) The byte offset in the decoded stream of the first compressed
object.

Extends stream (Optional) A reference to another object stream, of which the current object
stream shall be considered an extension. Both streams are considered part
of a collection of object streams (see below). A given collection consists of a
set of streams whose Extends links form a directed acyclic graph.

© Adobe Systems Incorporated 2008 – All rights reserved 47

PDF 32000-1:2008

EXAMPLE 2 3 0 R

In an encrypted file (i.e., entire object stream is encrypted), strings occurring anywhere in an object stream
shall not be separately encrypted.

A conforming writer shall store the first object immediately after the last byte offset. A conforming reader shall
rely on the First entry in the stream dictionary to locate the first object.

An object stream itself, like any stream, shall be an indirect object, and therefore, there shall be an entry for it in
a cross-reference table or cross-reference stream (see 7.5.8, "Cross-Reference Streams"), although there
might not be any references to it (of the form 243 0 R).

The generation number of an object stream and of any compressed object shall be zero. If either an object
stream or a compressed object is deleted and the object number is freed, that object number shall be reused
only for an ordinary (uncompressed) object other than an object stream. When new object streams and
compressed objects are created, they shall always be assigned new object numbers, not old ones taken from
the free list.

EXAMPLE 3 The following shows three objects (two fonts and a font descriptor) as they would be represented in a
PDF 1.4 or earlier file, along with a cross-reference table.

11 0 obj

<< /Type /Font
/Subtype /TrueType
...other entries...
/FontDescriptor 12 0 R

>>
endobj

12 0 obj

<< /Type /FontDescriptor
/Ascent 891
...other entries...
/FontFile2 22 0 R

>>
endobj

13 0 obj

<< /Type /Font
/Subtype /Type0
...other entries...
/ToUnicode 10 0 R

>>
endobj

...

xref
0 32
0000000000 65535 f
... cross-reference entries for objects 1 through 10 ...
0000001434 00000 n
0000001735 00000 n
0000002155 00000 n
... cross-reference entries for objects 14 and on ...
trailer

<< /Size 32
/Root ...

>>

NOTE 8 For readability, the object stream has been shown unencoded. In a real PDF 1.5 file, Flate encoding would
typically be used to gain the benefits of compression.

PDF 32000-1:2008

48 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE 4 The following shows the same objects from the previous example stored in an object stream in a PDF 1.5
file, along with a cross-reference stream.

The cross-reference stream (see 7.5.8, "Cross-Reference Streams") contains entries for the fonts (objects
11 and 13) and the descriptor (object 12), which are compressed objects in an object stream. The first
field of these entries is the entry type (2), the second field is the number of the object stream (15), and the
third field is the position within the sequence of objects in the object stream (0, 1, and 2). The cross-
reference stream also contains a type 1 entry for the object stream itself.

15 0 obj % The object stream

<< /Type /ObjStm
/Length 1856
/N 3 % The number of objects in the stream
/First 24 % The byte offset in the decoded stream of the first object

% The object numbers and offsets of the objects, relative to the first are shown on the first line of
% the stream (i.e., 11 0 12 547 13 665).

>>
stream

11 0 12 547 13 665
<< /Type /Font

/Subtype /TrueType
...other keys...
/FontDescriptor 12 0 R

>>

<< /Type /FontDescriptor
/Ascent 891
...other keys...
/FontFile2 22 0 R

>>
<< /Type /Font

/Subtype /Type0
...other keys...
/ToUnicode 10 0 R

>>
...
endstream
endobj

99 0 obj % The cross-reference stream

<< /Type /XRef
/Index [0 32] % This section has one subsection with 32 objects
/W [1 2 2] % Each entry has 3 fields: 1, 2 and 2 bytes in width,

% respectively
/Filter /ASCIIHexDecode % For readability in this example
/Size 32
...

>>
stream

00 0000 FFFF
... cross-references for objects 1 through 10 ...
02 000F 0000
02 000F 0001
02 000F 0002
... cross-reference for object 14 ...
01 BA5E 0000
...

endstream
endobj

startxref

54321
%%EOF

NOTE 9 The number 54321 in Example 4 is the offset for object 99 0.

© Adobe Systems Incorporated 2008 – All rights reserved 49

PDF 32000-1:2008

7.5.8 Cross-Reference Streams

7.5.8.1 General

Beginning with PDF 1.5, cross-reference information may be stored in a cross-reference stream instead of in a
cross-reference table. Cross-reference streams provide the following advantages:

• A more compact representation of cross-reference information

• The ability to access compressed objects that are stored in object streams (see 7.5.7, "Object Streams")
and to allow new cross-reference entry types to be added in the future

Cross-reference streams are stream objects (see 7.3.8, "Stream Objects"), and contain a dictionary and a data
stream. Each cross-reference stream contains the information equivalent to the cross-reference table (see
7.5.4, "Cross-Reference Table") and trailer (see 7.5.5, "File Trailer") for one cross-reference section.

EXAMPLE In this example, the trailer dictionary entries are stored in the stream dictionary, and the cross-reference
table entries are stored as the stream data.

... objects ...

12 0 obj % Cross-reference stream

<< /Type /XRef % Cross-reference stream dictionary
/Size ...
/Root ...

>>
stream

... Stream data containing cross-reference information ...
endstream
endobj

... more objects ...

startxref
byte_offset_of_cross-reference_stream (points to object 12)
%%EOF

The value following the startxref keyword shall be the offset of the cross-reference stream rather than the xref
keyword. For files that use cross-reference streams entirely (that is, files that are not hybrid-reference files; see
7.5.8.4, "Compatibility with Applications That Do Not Support Compressed Reference Streams"), the keywords
xref and trailer shall no longer be used. Therefore, with the exception of the startxref address %%EOF
segment and comments, a file may be entirely a sequence of objects.

In linearized files (see F.3, "Linearized PDF Document Structure"), the document catalog, the linearization
dictionary, and page objects shall not appear in an object stream.

7.5.8.2 Cross-Reference Stream Dictionary

Cross-reference streams may contain the entries shown in Table 17 in addition to the entries common to all
streams (Table 5) and trailer dictionaries (Table 15). Since some of the information in the cross-reference
stream is needed by the conforming reader to construct the index that allows indirect references to be resolved,
the entries in cross-reference streams shall be subject to the following restrictions:

• The values of all entries shown in Table 17 shall be direct objects; indirect references shall not be
permitted. For arrays (the Index and W entries), all of their elements shall be direct objects as well. If the
stream is encoded, the Filter and DecodeParms entries in Table 5 shall also be direct objects.

• Other cross-reference stream entries not listed in Table 17 may be indirect; in fact, some (such as Root in
Table 15) shall be indirect.

PDF 32000-1:2008

50 © Adobe Systems Incorporated 2008 – All rights reserved

• The cross-reference stream shall not be encrypted and strings appearing in the cross-reference stream
dictionary shall not be encrypted. It shall not have a Filter entry that specifies a Crypt filter (see 7.4.10,
"Crypt Filter").

7.5.8.3 Cross-Reference Stream Data

Each entry in a cross-reference stream shall have one or more fields, the first of which designates the entry’s
type (see Table 18). In PDF 1.5 through PDF 1.7, only types 0, 1, and 2 are allowed. Any other value shall be
interpreted as a reference to the null object, thus permitting new entry types to be defined in the future.

Table 17 – Additional entries specific to a cross-reference stream dictionary

key type description

Type name (Required) The type of PDF object that this dictionary describes; shall be
XRef for a cross-reference stream.

Size integer (Required) The number one greater than the highest object number used in
this section or in any section for which this shall be an update. It shall be
equivalent to the Size entry in a trailer dictionary.

Index array (Optional) An array containing a pair of integers for each subsection in this
section. The first integer shall be the first object number in the subsection;
the second integer shall be the number of entries in the subsection
The array shall be sorted in ascending order by object number. Subsections
cannot overlap; an object number may have at most one entry in a section.
Default value: [0 Size].

Prev integer (Present only if the file has more than one cross-reference stream; not
meaningful in hybrid-reference files; see 7.5.8.4, "Compatibility with
Applications That Do Not Support Compressed Reference Streams") The
byte offset in the decoded stream from the beginning of the file to the
beginning of the previous cross-reference stream. This entry has the same
function as the Prev entry in the trailer dictionary (Table 15).

W array (Required) An array of integers representing the size of the fields in a single
cross-reference entry. Table 18 describes the types of entries and their
fields. For PDF 1.5, W always contains three integers; the value of each
integer shall be the number of bytes (in the decoded stream) of the
corresponding field.
EXAMPLE [1 2 1] means that the fields are one byte, two bytes, and

one byte, respectively.

A value of zero for an element in the W array indicates that the
corresponding field shall not be present in the stream, and the default value
shall be used, if there is one. If the first element is zero, the type field shall
not be present, and shall default to type 1.
The sum of the items shall be the total length of each entry; it can be used
with the Index array to determine the starting position of each subsection.
Different cross-reference streams in a PDF file may use different values for
W.

© Adobe Systems Incorporated 2008 – All rights reserved 51

PDF 32000-1:2008

The fields are written in increasing order of field number; the length of each field shall be determined by the
corresponding value in the W entry (see Table 17). Fields requiring more than one byte are stored with the
high-order byte first.

Like any stream, a cross-reference stream shall be an indirect object. Therefore, an entry for it shall exist in
either a cross-reference stream (usually itself) or in a cross-reference table (in hybrid-reference files; see
7.5.8.4, "Compatibility with Applications That Do Not Support Compressed Reference Streams").

7.5.8.4 Compatibility with Applications That Do Not Support Compressed Reference Streams

Readers designed only to support versions of PDF before PDF 1.5, and hence do not support cross-reference
streams, cannot access objects that are referenced by cross-reference streams. If a file uses cross-reference
streams exclusively, it cannot be opened by such readers.

However, it is possible to construct a file called a hybrid-reference file that is readable by readers designed only
to support versions of PDF before PDF 1.5. Such a file contains objects referenced by standard cross-
reference tables in addition to objects in object streams that are referenced by cross-reference streams.

In these files, the trailer dictionary may contain, in addition to the entry for trailers shown in Table 15, an entry,
as shown in Table 19. This entry may be ignored by readers designed only to support versions of PDF before
PDF 1.5, which therefore have no access to entries in the cross-reference stream the entry refers to.

Table 18 – Entries in a cross-reference stream

Type Field Description

0 1 The type of this entry, which shall be 0. Type 0 entries define
the linked list of free objects (corresponding to f entries in a
cross-reference table).

2 The object number of the next free object.

3 The generation number to use if this object number is used
again.

1 1 The type of this entry, which shall be 1. Type 1 entries define
objects that are in use but are not compressed (corresponding
to n entries in a cross-reference table).

2 The byte offset of the object, starting from the beginning of the
file.

3 The generation number of the object. Default value: 0.

2 1 The type of this entry, which shall be 2. Type 2 entries define
compressed objects.

2 The object number of the object stream in which this object is
stored. (The generation number of the object stream shall be
implicitly 0.)

3 The index of this object within the object stream.

Table 19 – Additional entries in a hybrid-reference file’s trailer dictionary

Key Type Value

XRefStm integer (Optional) The byte offset in the decoded stream from the beginning of the file
of a cross-reference stream.

PDF 32000-1:2008

52 © Adobe Systems Incorporated 2008 – All rights reserved

The Size entry of the trailer shall be large enough to include all objects, including those defined in the cross-
reference stream referenced by the XRefStm entry. However, to allow random access, a main cross-reference
section shall contain entries for all objects numbered 0 through Size - 1 (see 7.5.4, "Cross-Reference Table").
Therefore, the XRefStm entry shall not be used in the trailer dictionary of the main cross-reference section but
only in an update cross-reference section.

When a conforming reader opens a hybrid-reference file, objects with entries in cross-reference streams are
not hidden. When the conforming reader searches for an object, if an entry is not found in any given standard
cross-reference section, the search shall proceed to a cross-reference stream specified by the XRefStm entry
before looking in the previous cross-reference section (the Prev entry in the trailer).

Hidden objects, therefore, have two cross-reference entries. One is in the cross-reference stream. The other is
a free entry in some previous section, typically the section referenced by the Prev entry. A conforming reader
shall look in the cross-reference stream first, shall find the object there, and shall ignore the free entry in the
previous section. A reader designed only to support versions of PDF before PDF 1.5 ignores the cross-
reference stream and looks in the previous section, where it finds the free entry. The free entry shall have a
next-generation number of 65535 so that the object number shall not be reused.

There are limitations on which objects in a hybrid-reference file can be hidden without making the file appear
invalid to readers designed only to support versions of PDF before PDF 1.5. In particular, the root of the PDF
file and the document catalog (see 7.7.2, "Document Catalog") shall not be hidden, nor any object that is visible
from the root. Such objects can be determined by starting from the root and working recursively:

• In any dictionary that is visible, direct objects shall be visible. The value of any required key-value pair shall
be visible.

• In any array that is visible, every element shall be visible.

• Resource dictionaries in content streams shall be visible. Although a resource dictionary is not required,
strictly speaking, the content stream to which it is attached is assumed to contain references to the
resources.

In general, the objects that may be hidden are optional objects specified by indirect references. A conforming
reader can resolve those references by processing the cross-reference streams. In a reader designed only to
support versions of PDF before PDF 1.5, the objects appear to be free, and the references shall be treated as
references to the null object.

EXAMPLE 1 The Outlines entry in the catalog dictionary is optional. Therefore, its value may be an indirect reference
to a hidden object. A reader designed only to support versions of PDF before PDF 1.5 treats it as a
reference to the null object, which is equivalent to having omitted the entry entirely; a conforming reader
recognizes it.

If the value of the Outlines entry is an indirect reference to a visible object, the entire outline tree shall be
visible because nodes in the outline tree contain required pointers to other nodes.

Items that shall be visible include the entire page tree, fonts, font descriptors, and width tables. Objects that
may be hidden in a hybrid-reference file include the structure tree, the outline tree, article threads, annotations,
destinations, Web Capture information, and page labels,.

EXAMPLE 2 In this example, an ASCIIHexDecode filter is specified to make the format and contents of the cross-
reference stream readable.

This example shows a hybrid-reference file containing a main cross-reference section and an update
cross-reference section with an XRefStm entry that points to a cross-reference stream (object 11), which
in turn has references to an object stream (object 2).

In this example, the catalog (object 1) contains an indirect reference (3 0 R) to the root of the structure
tree. The search for the object starts at the update cross-reference table, which has no objects in it. The
search proceeds depending on the version of the conforming reader.

© Adobe Systems Incorporated 2008 – All rights reserved 53

PDF 32000-1:2008

One choice for a reader designed only to support versions of PDF before PDF 1.5 is to continue the
search by following the Prev pointer to the main cross-reference table. That table defines object 3 as a
free object, which is treated as the null object. Therefore, the entry is considered missing, and the
document has no structure tree.

Another choice for a conforming reader, is to continue the search by following the XRefStm pointer to the
cross-reference stream (object 11). It defines object 3 as a compressed object, stored at index 0 in the
object stream (2 0 obj). Therefore, the document has a structure tree.

1 0 obj % The document root, at offset 23.

<< /Type /Catalog
/StructTreeRoot 3 0 R
…

>>
endobj

12 0 obj
…
endobj
…
99 0 obj
…
endobj

% The main xref section, at offset 2664 is next with entries for objects 0-99.
% Objects 2 through 11 are marked free and objects 12, 13 and 99 are marked in use.
xref
0 100
0000000002 65535 f
0000000023 00000 n
0000000003 65535 f
0000000004 65535 f
0000000005 65535 f
0000000006 65535 f
0000000007 65535 f
0000000008 65535 f
0000000009 65535 f
0000000010 65535 f
0000000011 65535 f
0000000000 65535 f
0000000045 00000 n
0000000179 00000 n
… cross-reference entries for objects 14 through 98 ...
0000002201 00000 n
trailer

<< /Size 100
/Root 1 0 R
/ID …

>>
% The main xref section starts at offset 2664.
startxref

2664
%%EOF

2 0 obj % The object stream, at offset 3722

<< /Length ...
/N 8 % This stream contains 8 objects.
/First 47 % The stream-offset of the first object

>>
stream

3 0 4 50 5 72 … the numbers and stream-offsets of the remaining 5 objects followed by dictionary
objects 3-5 ...

<< /Type /StructTreeRoot
/K 4 0 R
/RoleMap 5 0 R

PDF 32000-1:2008

54 © Adobe Systems Incorporated 2008 – All rights reserved

/ClassMap 6 0 R
/ParentTree 7 0 R
/ParentTreeNextKey 8

>>
<< /S /Workbook

/P 8 0 R
/K 9 0 R

>>
<< /Workbook /Div

/Worksheet /Sect
/TextBox /Figure
/Shape /Figure

>>
… definitions for objects 6 through 10 ...

endstream
endobj

11 0 obj % The cross-reference stream, at offset 4899

<< /Type /XRef
/Index [2 10] % This stream contains entries for objects 2 through 11
/Size 100
/W [1 2 1] % The byte-widths of each field
/Filter /ASCIIHexDecode % For readability only
…

>>
stream

01 0E8A 0
02 0002 00
02 0002 01
02 0002 02
02 0002 03
02 0002 04
02 0002 05
02 0002 06
02 0002 07
01 1323 0

endstream
endobj
% The entries above are for: object 2 (0x0E8A = 3722), object 3 (in object stream 2, index 0),
% object 4 (in object stream 2, index 1) ... object 10 (in object stream 2, index 7),
% object 11 (0x1323 = 4899).

% The update xref section starting at offset 5640. There are no entries in this section.
xref
0 0
trailer

<< /Size 100
/Prev 2664 % Offset of previous xref section
/XRefStm 4899
/Root 1 0 R
/ID …

>>
startxref
5640
%%EOF

The previous example illustrates several other points:

• The object stream is unencoded and the cross-reference stream uses an ASCII hexadecimal encoding for
clarity. In practice, both streams should be Flate-encoded. PDF comments shall not be included in a cross-
reference table or in cross-reference streams.

• The hidden objects, 2 through 11, are numbered consecutively. In practice, hidden objects and other free
items in a cross-reference table need not be linked in ascending order until the end.

© Adobe Systems Incorporated 2008 – All rights reserved 55

PDF 32000-1:2008

• The update cross-reference table need not contain any entries. A conforming writer that uses the hybrid-
reference format creates the main cross-reference table, the update cross-reference table, and the cross-
reference stream at the same time. Objects 12 and 13, for example, are not compressed. They might have
entries in the update table. Since objects 2 and 11, the object stream and the cross-reference stream, are
not compressed, they might also be defined in the update table. Since they are part of the hidden section,
however, it makes sense to define them in the cross-reference stream.

• The update cross-reference section shall appear at the end of the file, but otherwise, there are no ordering
restrictions on any of the objects or on the main cross-reference section. However, a file that uses both the
hybrid-reference format and the linearized format has ordering requirements (see Annex F).

7.6 Encryption

7.6.1 General

A PDF document can be encrypted (PDF 1.1) to protect its contents from unauthorized access. Encryption
applies to all strings and streams in the document's PDF file, with the following exceptions:

• The values for the ID entry in the trailer

• Any strings in an Encrypt dictionary

• Any strings that are inside streams such as content streams and compressed object streams, which
themselves are encrypted

Encryption is not applied to other object types such as integers and boolean values, which are used primarily to
convey information about the document's structure rather than its contents. Leaving these values unencrypted
allows random access to the objects within a document, whereas encrypting the strings and streams protects
the document's contents.

When a PDF stream object (see 7.3.8, "Stream Objects") refers to an external file, the stream’s contents shall
not be encrypted, since they are not part of the PDF file itself. However, if the contents of the stream are
embedded within the PDF file (see 7.11.4, "Embedded File Streams"), they shall be encrypted like any other
stream in the file. Beginning with PDF 1.5, embedded files can be encrypted in an otherwise unencrypted
document (see 7.6.5, "Crypt Filters").

Encryption-related information shall be stored in a document’s encryption dictionary, which shall be the value of
the Encrypt entry in the document’s trailer dictionary (see Table 15). The absence of this entry from the trailer
dictionary means that a conforming reader shall consider the document to be not encrypted. The entries shown
in Table 20 are common to all encryption dictionaries.

The encryption dictionary’s Filter entry identifies the file’s security handler, a software module that implements
various aspects of the encryption process and controls access to the contents of the encrypted document. PDF
specifies a standard password-based security handler that all conforming readers shall support, but conforming
readers can optionally provide additional security handlers of their own.

The SubFilter entry specifies the syntax of the encryption dictionary contents. It allows interoperability between
handlers; that is, a document can be decrypted by a handler other than the preferred one (the Filter entry) if
they both support the format specified by SubFilter.

The V entry, in specifying which algorithm to use, determines the length of the encryption key, on which the
encryption (and decryption) of data in a PDF file shall be based. For V values 2 and 3, the Length entry
specifies the exact length of the encryption key. In PDF 1.5, a value of 4 for V permits the security handler to
use its own encryption and decryption algorithms and to specify crypt filters to use on specific streams (see
7.6.5, "Crypt Filters").

The remaining contents of the encryption dictionary shall be determined by the security handler and may vary
from one handler to another. Entries for the standard security handler are described in 7.6.3, "Standard

PDF 32000-1:2008

56 © Adobe Systems Incorporated 2008 – All rights reserved

Security Handler." Entries for public-key security handlers are described in 7.6.4, "Public-Key Security
Handlers."

Table 20 – Entries common to all encryption dictionaries

Key Type Value

Filter name (Required) The name of the preferred security handler for this document. It shall
be the name of the security handler that was used to encrypt the document. If
SubFilter is not present, only this security handler shall be used when opening
the document. If it is present, a conforming reader can use any security handler
that implements the format specified by SubFilter.
Standard shall be the name of the built-in password-based security handler.
Names for other security handlers may be registered by using the procedure
described in Annex E.

SubFilter name (Optional; PDF 1.3) A name that completely specifies the format and
interpretation of the contents of the encryption dictionary. It allows security
handlers other than the one specified by Filter to decrypt the document. If this
entry is absent, other security handlers shall not decrypt the document.
NOTE This entry was introduced in PDF 1.3 to support the use of public-

key cryptography in PDF files (see 7.6.4, "Public-Key Security
Handlers"); however, it was not incorporated into the PDF
Reference until the fourth edition (PDF 1.5).

V number (Optional) A code specifying the algorithm to be used in encrypting and
decrypting the document:
0 An algorithm that is undocumented. This value shall not be used.
1 "Algorithm 1: Encryption of data using the RC4 or AES algorithms" in 7.6.2,

"General Encryption Algorithm," with an encryption key length of 40 bits; see
below.

2 (PDF 1.4) "Algorithm 1: Encryption of data using the RC4 or AES algorithms"
in 7.6.2, "General Encryption Algorithm," but permitting encryption key lengths
greater than 40 bits.

3 (PDF 1.4) An unpublished algorithm that permits encryption key lengths
ranging from 40 to 128 bits. This value shall not appear in a conforming PDF
file.

4 (PDF 1.5) The security handler defines the use of encryption and decryption
in the document, using the rules specified by the CF, StmF, and StrF entries.

The default value if this entry is omitted shall be 0, but when present should be a
value of 1 or greater.

Length integer (Optional; PDF 1.4; only if V is 2 or 3) The length of the encryption key, in bits.
The value shall be a multiple of 8, in the range 40 to 128. Default value: 40.

CF dictionary (Optional; meaningful only when the value of V is 4; PDF 1.5) A dictionary whose
keys shall be crypt filter names and whose values shall be the corresponding
crypt filter dictionaries (see Table 25). Every crypt filter used in the document
shall have an entry in this dictionary, except for the standard crypt filter names
(see Table 26).
The conforming reader shall ignore entries in CF dictionary with the keys equal to
those listed in Table 26 and use properties of the respective standard crypt filters.

StmF name (Optional; meaningful only when the value of V is 4; PDF 1.5) The name of the
crypt filter that shall be used by default when decrypting streams. The name shall
be a key in the CF dictionary or a standard crypt filter name specified in Table 26.
All streams in the document, except for cross-reference streams (see 7.5.8,
"Cross-Reference Streams") or streams that have a Crypt entry in their Filter
array (see Table 6), shall be decrypted by the security handler, using this crypt
filter.
Default value: Identity.

© Adobe Systems Incorporated 2008 – All rights reserved 57

PDF 32000-1:2008

Unlike strings within the body of the document, those in the encryption dictionary shall be direct objects. The
contents of the encryption dictionary shall not be encrypted (the algorithm specified by the V entry). Security
handlers shall be responsible for encrypting any data in the encryption dictionary that they need to protect.

NOTE Conforming writers have two choices if the encryption methods and syntax provided by PDF are not sufficient
for their needs: they can provide an alternate security handler or they can encrypt whole PDF documents
themselves, not making use of PDF security.

7.6.2 General Encryption Algorithm

One of the following algorithms shall be used when encrypting data in a PDF file:

• A proprietary encryption algorithm known as RC4. RC4 is a symmetric stream cipher: the same algorithm
shall be used for both encryption and decryption, and the algorithm does not change the length of the data.
RC4 is a copyrighted, proprietary algorithm of RSA Security, Inc. Independent software vendors may be
required to license RC4 to develop software that encrypts or decrypts PDF documents. For further
information, visit the RSA Web site at < http://www.rsasecurity.com > or send e-mail to
< products@rsasecurity.com >.

• The AES (Advanced Encryption Standard) algorithm (beginning with PDF 1.6). AES is a symmetric block
cipher: the same algorithm shall be used for both encryption and decryption, and the length of the data
when encrypted is rounded up to a multiple of the block size, which is fixed to always be 16 bytes, as
specified in FIPS 197, Advanced Encryption Standard (AES); see the Bibliography).

Strings and streams encrypted with AES shall use a padding scheme that is described in Internet RFC
2898, PKCS #5: Password-Based Cryptography Specification Version 2.0; see the Bibliography. For an
original message length of M, the pad shall consist of 16 - (M mod 16) bytes whose value shall also be 16
- (M mod 16).

EXAMPLE A 9-byte message has a pad of 7 bytes, each with the value 0x07. The pad can be unambiguously
removed to determine the original message length when decrypting. Note that the pad is present when M
is evenly divisible by 16; it contains 16 bytes of 0x10.

PDF’s standard encryption methods also make use of the MD5 message-digest algorithm for key generation
purposes (described in Internet RFC 1321, The MD5 Message-Digest Algorithm; see the Bibliography).

The encryption of data in a PDF file shall be based on the use of an encryption key computed by the security
handler. Different security handlers compute the encryption key using their own mechanisms. Regardless of
how the key is computed, its use in the encryption of data shall always be the same (see "Algorithm 1:

StrF name (Optional; meaningful only when the value of V is 4; PDF 1.5) The name of the
crypt filter that shall be used when decrypting all strings in the document. The
name shall be a key in the CF dictionary or a standard crypt filter name specified
in Table 26.
Default value: Identity.

EFF name (Optional; meaningful only when the value of V is 4; PDF 1.6) The name of the
crypt filter that shall be used when encrypting embedded file streams that do not
have their own crypt filter specifier; it shall correspond to a key in the CF
dictionary or a standard crypt filter name specified in Table 26.
This entry shall be provided by the security handler. Conforming writers shall
respect this value when encrypting embedded files, except for embedded file
streams that have their own crypt filter specifier. If this entry is not present, and
the embedded file stream does not contain a crypt filter specifier, the stream shall
be encrypted using the default stream crypt filter specified by StmF.

Table 20 – Entries common to all encryption dictionaries (continued)

Key Type Value

http://www.rsasecurity.com
http://www.rsasecurity.com
http://www.rsasecurity.com
mailto:products@rsasecurity.com

PDF 32000-1:2008

58 © Adobe Systems Incorporated 2008 – All rights reserved

Encryption of data using the RC4 or AES algorithms"). Because the RC4 algorithm and AES algorithms are
symmetric, this same sequence of steps shall be used both to encrypt and to decrypt data.

Algorithms in 7.6, “Encryption” are uniquely numbered within that clause in a manner that maintains
compatibility with previous documentation.

Algorithm 1: Encryption of data using the RC4 or AES algorithms

a) Obtain the object number and generation number from the object identifier of the string or stream to be
encrypted (see 7.3.10, "Indirect Objects"). If the string is a direct object, use the identifier of the indirect
object containing it.

b) For all strings and streams without crypt filter specifier; treating the object number and generation number
as binary integers, extend the original n-byte encryption key to n + 5 bytes by appending the low-order 3
bytes of the object number and the low-order 2 bytes of the generation number in that order, low-order byte
first. (n is 5 unless the value of V in the encryption dictionary is greater than 1, in which case n is the value
of Length divided by 8.)

If using the AES algorithm, extend the encryption key an additional 4 bytes by adding the value “sAlT”,
which corresponds to the hexadecimal values 0x73, 0x41, 0x6C, 0x54. (This addition is done for backward
compatibility and is not intended to provide additional security.)

c) Initialize the MD5 hash function and pass the result of step (b) as input to this function.

d) Use the first (n + 5) bytes, up to a maximum of 16, of the output from the MD5 hash as the key for the RC4
or AES symmetric key algorithms, along with the string or stream data to be encrypted.

If using the AES algorithm, the Cipher Block Chaining (CBC) mode, which requires an initialization vector,
is used. The block size parameter is set to 16 bytes, and the initialization vector is a 16-byte random
number that is stored as the first 16 bytes of the encrypted stream or string.

The output is the encrypted data to be stored in the PDF file.

Stream data shall be encrypted after applying all stream encoding filters and shall be decrypted before applying
any stream decoding filters. The number of bytes to be encrypted or decrypted shall be given by the Length
entry in the stream dictionary. Decryption of strings (other than those in the encryption dictionary) shall be done
after escape-sequence processing and hexadecimal decoding as appropriate to the string representation
described in 7.3.4, "String Objects."

7.6.3 Standard Security Handler

7.6.3.1 General

PDF’s standard security handler shall allow access permissions and up to two passwords to be specified for a
document: an owner password and a user password. An application’s decision to encrypt a document shall be
based on whether the user creating the document specifies any passwords or access restrictions.

EXAMPLE A conforming writer may have a security settings dialog box that the user can invoke before saving the
PDF file.

If passwords or access restrictions are specified, the document shall be encrypted, and the permissions and
information required to validate the passwords shall be stored in the encryption dictionary. Documents in which
only file attachments are encrypted shall use the same password as the user and owner password.

NOTE 1 A conforming writer may also create an encrypted document without any user interaction if it has some other
source of information about what passwords and permissions to use.

© Adobe Systems Incorporated 2008 – All rights reserved 59

PDF 32000-1:2008

If a user attempts to open an encrypted document that has a user password, the conforming reader shall first
try to authenticate the encrypted document using the padding string defined in 7.6.3.3, "Encryption Key
Algorithm" (default user password):

• If this authentication attempt is successful, the conforming reader may open, decrypt and display the
document on the screen.

• If this authentication attempt fails, the application should prompt for a password. Correctly supplying either
password (owner or user password) should enable the user to open the document, decrypt it, and display it
on the screen.

Whether additional operations shall be allowed on a decrypted document depends on which password (if any)
was supplied when the document was opened and on any access restrictions that were specified when the
document was created:

• Opening the document with the correct owner password should allow full (owner) access to the document.
This unlimited access includes the ability to change the document’s passwords and access permissions.

• Opening the document with the correct user password (or opening a document with the default password)
should allow additional operations to be performed according to the user access permissions specified in
the document’s encryption dictionary.

Access permissions shall be specified in the form of flags corresponding to the various operations, and the set
of operations to which they correspond shall depend on the security handler’s revision number (also stored in
the encryption dictionary). If the security handler’s revision number is 2 or greater, the operations to which user
access can be controlled shall be as follows:

• Modifying the document’s contents

• Copying or otherwise extracting text and graphics from the document, including extraction for accessibility
purposes (that is, to make the contents of the document accessible through assistive technologies such as
screen readers or Braille output devices; see 14.9, "Accessibility Support".

• Adding or modifying text annotations (see 12.5.6.4, "Text Annotations") and interactive form fields (see
12.7, "Interactive Forms")

• Printing the document

If the security handler’s revision number is 3 or greater, user access to the following operations shall be
controlled more selectively:

• Filling in forms (that is, filling in existing interactive form fields) and signing the document (which amounts
to filling in existing signature fields, a type of interactive form field).

• Assembling the document: inserting, rotating, or deleting pages and creating navigation elements such as
bookmarks or thumbnail images (see 12.3, "Document-Level Navigation").

• Printing to a representation from which a faithful digital copy of the PDF content could be generated.
Disallowing such printing may result in degradation of output quality.

In addition, security handlers of revisions 3 and greater shall enable the extraction of text and graphics (in
support of accessibility to users with disabilities or for other purposes) to be controlled separately.

If a security handler of revision 4 is specified, the standard security handler shall support crypt filters (see 7.6.5,
"Crypt Filters"). The support shall be limited to the Identity crypt filter (see Table 26) and crypt filters named
StdCF whose dictionaries contain a CFM value of V2 or AESV2 and an AuthEvent value of DocOpen. Public-
Key security handlers in this case shall use crypt filters named DefaultCryptFilter when all document content
is encrypted, and shall use crypt filters named DefEmbeddedFile when file attachments only are encrypted in

PDF 32000-1:2008

60 © Adobe Systems Incorporated 2008 – All rights reserved

place of StdCF name. This nomenclature shall not be used as indicator of the type of the security handler or
encryption.

Once the document has been opened and decrypted successfully, a conforming reader technically has access
to the entire contents of the document. There is nothing inherent in PDF encryption that enforces the document
permissions specified in the encryption dictionary. Conforming readers shall respect the intent of the document
creator by restricting user access to an encrypted PDF file according to the permissions contained in the file.

NOTE 2 PDF 1.5 introduces a set of access permissions that do not require the document to be encrypted (see 12.8.4,
"Permissions"). This enables limited access to a document when a user is not be able to respond to a prompt
for a password. For example, there may be conforming readers that do not have a person running them such
as printing off-line or on a server.

7.6.3.2 Standard Encryption Dictionary

Table 21 shows the encryption dictionary entries for the standard security handler (in addition to those in
Table 20).

The values of the O and U entries in this dictionary shall be used to determine whether a password entered
when the document is opened is the correct owner password, user password, or neither.

The value of the P entry shall be interpreted as an unsigned 32-bit quantity containing a set of flags specifying
which access permissions shall be granted when the document is opened with user access. Table 22 shows
the meanings of these flags. Bit positions within the flag word shall be numbered from 1 (low-order) to 32 (high-
order). A 1 bit in any position shall enable the corresponding access permission. Which bits shall be
meaningful, and in some cases how they shall be interpreted, shall depend on the security handler’s revision
number (specified in the encryption dictionary’s R entry).

Table 21 – Additional encryption dictionary entries for the standard security handler

Key Type Value

R number (Required) A number specifying which revision of the standard security
handler shall be used to interpret this dictionary:
2 if the document is encrypted with a V value less than 2 (see Table 20)

and does not have any of the access permissions set to 0 (by means of
the P entry, below) that are designated “Security handlers of revision 3
or greater” in Table 22

3 if the document is encrypted with a V value of 2 or 3, or has any
“Security handlers of revision 3 or greater” access permissions set to 0

4 if the document is encrypted with a V value of 4

O string (Required) A 32-byte string, based on both the owner and user passwords,
that shall be used in computing the encryption key and in determining
whether a valid owner password was entered. For more information, see
7.6.3.3, "Encryption Key Algorithm," and 7.6.3.4, "Password Algorithms."

U string (Required) A 32-byte string, based on the user password, that shall be
used in determining whether to prompt the user for a password and, if so,
whether a valid user or owner password was entered. For more
information, see 7.6.3.4, "Password Algorithms."

P integer (Required) A set of flags specifying which operations shall be permitted
when the document is opened with user access (see Table 22).

EncryptMetadata boolean (Optional; meaningful only when the value of V is 4; PDF 1.5) Indicates
whether the document-level metadata stream (see 14.3.2, "Metadata
Streams") shall be encrypted. Conforming products should respect this
value.
Default value: true.

© Adobe Systems Incorporated 2008 – All rights reserved 61

PDF 32000-1:2008

Conforming readers shall ignore all flags other than those at bit positions 3, 4, 5, 6, 9, 10, 11, and 12.

NOTE PDF integer objects can be interpreted as binary values in a signed twos-complement form. Since all the
reserved high-order flag bits in the encryption dictionary’s P value are required to be 1, the integer value P
shall be specified as a negative integer. For example, assuming revision 2 of the security handler, the value -
44 permits printing and copying but disallows modifying the contents and annotations.

7.6.3.3 Encryption Key Algorithm

As noted earlier, one function of a security handler is to generate an encryption key for use in encrypting and
decrypting the contents of a document. Given a password string, the standard security handler computes an
encryption key as shown in "Algorithm 2: Computing an encryption key".

Algorithm 2: Computing an encryption key

a) Pad or truncate the password string to exactly 32 bytes. If the password string is more than 32 bytes long,
use only its first 32 bytes; if it is less than 32 bytes long, pad it by appending the required number of
additional bytes from the beginning of the following padding string:

Table 22 – User access permissions

Bit position Meaning

3 (Security handlers of revision 2) Print the document.
(Security handlers of revision 3 or greater) Print the
document (possibly not at the highest quality level,
depending on whether bit 12 is also set).

4 Modify the contents of the document by operations other than
those controlled by bits 6, 9, and 11.

5 (Security handlers of revision 2) Copy or otherwise extract
text and graphics from the document, including extracting text
and graphics (in support of accessibility to users with
disabilities or for other purposes).
(Security handlers of revision 3 or greater) Copy or otherwise
extract text and graphics from the document by operations
other than that controlled by bit 10.

6 Add or modify text annotations, fill in interactive form fields,
and, if bit 4 is also set, create or modify interactive form fields
(including signature fields).

9 (Security handlers of revision 3 or greater) Fill in existing
interactive form fields (including signature fields), even if bit 6
is clear.

10 (Security handlers of revision 3 or greater) Extract text and
graphics (in support of accessibility to users with disabilities
or for other purposes).

11 (Security handlers of revision 3 or greater) Assemble the
document (insert, rotate, or delete pages and create
bookmarks or thumbnail images), even if bit 4 is clear.

12 (Security handlers of revision 3 or greater) Print the
document to a representation from which a faithful digital
copy of the PDF content could be generated. When this bit is
clear (and bit 3 is set), printing is limited to a low-level
representation of the appearance, possibly of degraded
quality.

PDF 32000-1:2008

62 © Adobe Systems Incorporated 2008 – All rights reserved

< 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
 2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A >

That is, if the password string is n bytes long, append the first 32 - n bytes of the padding string to the end
of the password string. If the password string is empty (zero-length), meaning there is no user password,
substitute the entire padding string in its place.

b) Initialize the MD5 hash function and pass the result of step (a) as input to this function.

c) Pass the value of the encryption dictionary’s O entry to the MD5 hash function. ("Algorithm 3: Computing
the encryption dictionary’s O (owner password) value" shows how the O value is computed.)

d) Convert the integer value of the P entry to a 32-bit unsigned binary number and pass these bytes to the
MD5 hash function, low-order byte first.

e) Pass the first element of the file’s file identifier array (the value of the ID entry in the document’s trailer
dictionary; see Table 15) to the MD5 hash function.

NOTE The first element of the ID array generally remains the same for a given document. However, in some
situations, conforming writers may regenerate the ID array if a new generation of a document is created.
Security handlers are encouraged not to rely on the ID in the encryption key computation.

f) (Security handlers of revision 4 or greater) If document metadata is not being encrypted, pass 4 bytes with
the value 0xFFFFFFFF to the MD5 hash function.

g) Finish the hash.

h) (Security handlers of revision 3 or greater) Do the following 50 times: Take the output from the previous
MD5 hash and pass the first n bytes of the output as input into a new MD5 hash, where n is the number of
bytes of the encryption key as defined by the value of the encryption dictionary’s Length entry.

i) Set the encryption key to the first n bytes of the output from the final MD5 hash, where n shall always be 5
for security handlers of revision 2 but, for security handlers of revision 3 or greater, shall depend on the
value of the encryption dictionary’s Length entry.

This algorithm, when applied to the user password string, produces the encryption key used to encrypt or
decrypt string and stream data according to "Algorithm 1: Encryption of data using the RC4 or AES algorithms"
in 7.6.2, "General Encryption Algorithm." Parts of this algorithm are also used in the algorithms described
below.

7.6.3.4 Password Algorithms

In addition to the encryption key, the standard security handler shall provide the contents of the encryption
dictionary (Table 20 and Table 21). The values of the Filter, V, Length, R, and P entries are straightforward, but
the computation of the O (owner password) and U (user password) entries requires further explanation. The
algorithms 3 through 7 that follow show how the values of the owner password and user password entries shall
be computed (with separate versions of the latter depending on the revision of the security handler).

Algorithm 3: Computing the encryption dictionary’s O (owner password) value

a) Pad or truncate the owner password string as described in step (a) of "Algorithm 2: Computing an
encryption key". If there is no owner password, use the user password instead.

b) Initialize the MD5 hash function and pass the result of step (a) as input to this function.

c) (Security handlers of revision 3 or greater) Do the following 50 times: Take the output from the previous
MD5 hash and pass it as input into a new MD5 hash.

© Adobe Systems Incorporated 2008 – All rights reserved 63

PDF 32000-1:2008

d) Create an RC4 encryption key using the first n bytes of the output from the final MD5 hash, where n shall
always be 5 for security handlers of revision 2 but, for security handlers of revision 3 or greater, shall
depend on the value of the encryption dictionary’s Length entry.

e) Pad or truncate the user password string as described in step (a) of "Algorithm 2: Computing an encryption
key".

f) Encrypt the result of step (e), using an RC4 encryption function with the encryption key obtained in step
(d).

g) (Security handlers of revision 3 or greater) Do the following 19 times: Take the output from the previous
invocation of the RC4 function and pass it as input to a new invocation of the function; use an encryption
key generated by taking each byte of the encryption key obtained in step (d) and performing an XOR
(exclusive or) operation between that byte and the single-byte value of the iteration counter (from 1 to 19).

h) Store the output from the final invocation of the RC4 function as the value of the O entry in the encryption
dictionary.

Algorithm 4: Computing the encryption dictionary’s U (user password) value (Security handlers of
revision 2)

a) Create an encryption key based on the user password string, as described in "Algorithm 2: Computing an
encryption key".

b) Encrypt the 32-byte padding string shown in step (a) of "Algorithm 2: Computing an encryption key", using
an RC4 encryption function with the encryption key from the preceding step.

c) Store the result of step (b) as the value of the U entry in the encryption dictionary.

Algorithm 5: Computing the encryption dictionary’s U (user password) value (Security handlers of
revision 3 or greater)

a) Create an encryption key based on the user password string, as described in "Algorithm 2: Computing an
encryption key".

b) Initialize the MD5 hash function and pass the 32-byte padding string shown in step (a) of "Algorithm 2:
Computing an encryption key" as input to this function.

c) Pass the first element of the file’s file identifier array (the value of the ID entry in the document’s trailer
dictionary; see Table 15) to the hash function and finish the hash.

d) Encrypt the 16-byte result of the hash, using an RC4 encryption function with the encryption key from step
(a).

e) Do the following 19 times: Take the output from the previous invocation of the RC4 function and pass it as
input to a new invocation of the function; use an encryption key generated by taking each byte of the
original encryption key obtained in step (a) and performing an XOR (exclusive or) operation between that
byte and the single-byte value of the iteration counter (from 1 to 19).

f) Append 16 bytes of arbitrary padding to the output from the final invocation of the RC4 function and store
the 32-byte result as the value of the U entry in the encryption dictionary.

NOTE The standard security handler uses the algorithms 6 and 7 that follow, to determine whether a supplied
password string is the correct user or owner password. Note too that algorithm 6 can be used to determine
whether a document’s user password is the empty string, and therefore whether to suppress prompting for a
password when the document is opened.

PDF 32000-1:2008

64 © Adobe Systems Incorporated 2008 – All rights reserved

Algorithm 6: Authenticating the user password

a) Perform all but the last step of "Algorithm 4: Computing the encryption dictionary’s U (user password)
value (Security handlers of revision 2)" or "Algorithm 5: Computing the encryption dictionary’s U (user
password) value (Security handlers of revision 3 or greater)" using the supplied password string.

b) If the result of step (a) is equal to the value of the encryption dictionary’s U entry (comparing on the first 16
bytes in the case of security handlers of revision 3 or greater), the password supplied is the correct user
password. The key obtained in step (a) (that is, in the first step of "Algorithm 4: Computing the encryption
dictionary’s U (user password) value (Security handlers of revision 2)" or "Algorithm 5: Computing the
encryption dictionary’s U (user password) value (Security handlers of revision 3 or greater)") shall be used
to decrypt the document.

Algorithm 7: Authenticating the owner password

a) Compute an encryption key from the supplied password string, as described in steps (a) to (d) of
"Algorithm 3: Computing the encryption dictionary’s O (owner password) value".

b) (Security handlers of revision 2 only) Decrypt the value of the encryption dictionary’s O entry, using an RC4
encryption function with the encryption key computed in step (a).

(Security handlers of revision 3 or greater) Do the following 20 times: Decrypt the value of the encryption
dictionary’s O entry (first iteration) or the output from the previous iteration (all subsequent iterations),
using an RC4 encryption function with a different encryption key at each iteration. The key shall be
generated by taking the original key (obtained in step (a)) and performing an XOR (exclusive or) operation
between each byte of the key and the single-byte value of the iteration counter (from 19 to 0).

c) The result of step (b) purports to be the user password. Authenticate this user password using "Algorithm
6: Authenticating the user password". If it is correct, the password supplied is the correct owner password.

7.6.4 Public-Key Security Handlers

7.6.4.1 General

Security handlers may use public-key encryption technology to encrypt a document (or strings and streams
within a document). When doing so, specifying one or more lists of recipients, where each list has its own
unique access permissions may be done. Only specified recipients shall open the encrypted document or
content, unlike the standard security handler, where a password determines access. The permissions defined
for public-key security handlers are shown in Table 24 in 7.6.4.2, "Public-Key Encryption Dictionary".

Public-key security handlers use the industry standard Public Key Cryptographic Standard Number 7
(PKCS#7) binary encoding syntax to encode recipient list, decryption key, and access permission information.
The PKCS#7 specification is in Internet RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5 (see
the Bibliography).

When encrypting the data, each recipient’s X.509 public key certificate (as described in ITU-T
Recommendation X.509; see the Bibliography) shall be available. When decrypting the data, the conforming
reader shall scan the recipient list for which the content is encrypted and shall attempt to find a match with a
certificate that belongs to the user. If a match is found, the user requires access to the corresponding private
key, which may require authentication, possibly using a password. Once access is obtained, the private key
shall be used to decrypt the encrypted data.

7.6.4.2 Public-Key Encryption Dictionary

Encryption dictionaries for public-key security handlers contain the common entries shown in Table 20, whose
values are described above. In addition, they may contain the entry shown in Table 23 as described below.

The Filter entry shall be the name of a public-key security handler.

© Adobe Systems Incorporated 2008 – All rights reserved 65

PDF 32000-1:2008

NOTE Examples of existing security handlers that support public-key encryption are Entrust.PPKEF,
Adobe.PPKLite, and Adobe.PubSec. This handler will be the preferred handler when encrypting the
document.

Permitted values of the SubFilter entry for use with conforming public-key security handlers are
adbe.pkcs7.s3, adbe.pkcs7.s4, which shall be used when not using crypt filters (see 7.6.5, "Crypt Filters")
and adbe.pkcs7.s5, which shall be used when using crypt filters.

The CF, StmF, and StrF entries may be present when SubFilter is adbe.pkcs7.s5.

The value of the P entry shall be interpreted as an unsigned 32-bit quantity containing a set of flags specifying
which access permissions shall be granted when the document is opened with user access. Table 24 shows
the meanings of these flags. Bit positions within the flag word shall be numbered from 1 (low-order) to 32 (high-
order). A 1 bit in any position shall enable the corresponding access permission.

Conforming readers shall ignore all flags other than those at bit positions 2, 3, 4, 5, 6, 9, 10, 11, and 12.

Table 23 – Additional encryption dictionary entries for public-key security handlers

Key Type Value

Recipients array (Required when SubFilter is adbe.pkcs7.s3 or adbe.pkcs7.s4; PDF 1.3)
An array of byte-strings, where each string is a PKCS#7 object listing
recipients who have been granted equal access rights to the document. The
data contained in the PKCS#7 object shall include both a cryptographic key
that shall be used to decrypt the encrypted data and the access permissions
(see Table 24) that apply to the recipient list. There shall be only one
PKCS#7 object per unique set of access permissions; if a recipient appears
in more than one list, the permissions used shall be those in the first
matching list.
When SubFilter is adbe.pkcs7.s5, recipient lists shall be specified in the
crypt filter dictionary; see Table 27.

P integer (Required) A set of flags specifying which operations shall be permitted
when the document is opened with user access. If bit 2 is set to 1, all other
bits are ignored and all operations are permitted. If bit 2 is set to 0,
permission for operations are based on the values of the remaining flags
defined in Table 24.

Table 24 – Public-Key security handler user access permissions

Bit position Meaning

2 When set permits change of encryption and enables all other
permissions.

3 Print the document (possibly not at the highest quality level,
depending on whether bit 12 is also set).

4 Modify the contents of the document by operations other than
those controlled by bits 6, 9, and 11.

5 Copy or otherwise extract text and graphics from the
document by operations other than that controlled by bit 10.

6 Add or modify text annotations, fill in interactive form fields,
and, if bit 4 is also set, create or modify interactive form fields
(including signature fields).

9 Fill in existing interactive form fields (including signature
fields), even if bit 6 is clear.

10 Extract text and graphics (in support of accessibility to users
with disabilities or for other purposes).

PDF 32000-1:2008

66 © Adobe Systems Incorporated 2008 – All rights reserved

7.6.4.3 Public-Key Encryption Algorithms

Figure 4 illustrates how PKCS#7 objects shall be used when encrypting PDF files. A PKCS#7 object is
designed to encapsulate and encrypt what is referred to as the enveloped data.

Figure 4 – Public-key encryption algorithm

The enveloped data in the PKCS#7 object contains keying material that shall be used to decrypt the document
(or individual strings or streams in the document, when crypt filters are used; see 7.6.5, "Crypt Filters"). A key
shall be used to encrypt (and decrypt) the enveloped data. This key (the plaintext key in Figure 4) shall be
encrypted for each recipient, using that recipient’s public key, and shall be stored in the PKCS#7 object (as the
encrypted key for each recipient). To decrypt the document, that key shall be decrypted using the recipient’s
private key, which yields a decrypted (plaintext) key. That key, in turn, shall be used to decrypt the enveloped
data in the PKCS#7 object, resulting in a byte array that includes the following information:

• A 20-byte seed that shall be used to create the encryption key that is used by "Algorithm 1: Encryption of
data using the RC4 or AES algorithms". The seed shall be a unique random number generated by the
security handler that encrypted the document.

• A 4-byte value defining the permissions, least significant byte first. See Table 24 for the possible
permission values.

• When SubFilter is adbe.pkcs7.s3, the relevant permissions shall be only those specified for revision 2 of
the standard security handler.

• For adbe.pkcs7.s4, security handlers of revision 3 permissions shall apply.

• For adbe.pkcs7.s5, which supports the use of crypt filters, the permissions shall be the same as
adbe.pkcs7.s4 when the crypt filter is referenced from the StmF or StrF entries of the encryption

11 Assemble the document (insert, rotate, or delete pages and
create bookmarks or thumbnail images), even if bit 4 is clear.

12 Print the document to a representation from which a faithful
digital copy of the PDF content could be generated. When
this bit is clear (and bit 3 is set), printing is limited to a low-
level representation of the appearance, possibly of degraded
quality.

Table 24 – Public-Key security handler user access permissions (continued)

Bit position Meaning

20-byte seed Permissions*PKCS#7 Object

Enveloped data

Encrypted key
John Doe Decrypt

John Doe’s private key

Plaintext key

Decrypt

Plaintext byte array

Used to generate
encryption key

Encrypted key
Jeff Smith

* Permissions not pres-
ent when PKCS#7 object
is referenced from Crypt
filter decode parameter
dictionary

© Adobe Systems Incorporated 2008 – All rights reserved 67

PDF 32000-1:2008

dictionary. When referenced from the Crypt filter decode parameter dictionary of a stream object (see
Table 14), the 4 bytes of permissions shall be absent from the enveloped data.

The algorithms that shall be used to encrypt the enveloped data in the PKCS#7 object are: RC4 with key
lengths up to 256-bits, DES, Triple DES, RC2 with key lengths up to 128 bits, 128-bit AES in Cipher Block
Chaining (CBC) mode, 192-bit AES in CBC mode, 256-bit AES in CBC mode. The PKCS#7 specification is in
Internet RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5 (see the Bibliography).

The encryption key used by "Algorithm 1: Encryption of data using the RC4 or AES algorithms" shall be
calculated by means of an SHA-1 message digest operation that digests the following data, in order:

a) The 20 bytes of seed

b) The bytes of each item in the Recipients array of PKCS#7 objects in the order in which they appear in the
array

c) 4 bytes with the value 0xFF if the key being generated is intended for use in document-level encryption
and the document metadata is being left as plaintext

The first n/8 bytes of the resulting digest shall be used as the encryption key, where n is the bit length of the
encryption key.

7.6.5 Crypt Filters

PDF 1.5 introduces crypt filters, which provide finer granularity control of encryption within a PDF file. The use
of crypt filters involves the following structures:

• The encryption dictionary (see Table 20) contains entries that enumerate the crypt filters in the document
(CF) and specify which ones are used by default to decrypt all the streams (StmF) and strings (StrF) in the
document. In addition, the value of the V entry shall be 4 to use crypt filters.

• Each crypt filter specified in the CF entry of the encryption dictionary shall be represented by a crypt filter
dictionary, whose entries are shown in Table 25.

• A stream filter type, the Crypt filter (see 7.4.10, "Crypt Filter") can be specified for any stream in the
document to override the default filter for streams. A conforming reader shall provide a standard Identity
filter which shall pass the data unchanged (see Table 26) to allow specific streams, such as document
metadata, to be unencrypted in an otherwise encrypted document. The stream’s DecodeParms entry shall
contain a Crypt filter decode parameters dictionary (see Table 14) whose Name entry specifies the
particular crypt filter to be used (if missing, Identity is used). Different streams may specify different crypt
filters.

Authorization to decrypt a stream shall always be obtained before the stream can be accessed. This typically
occurs when the document is opened, as specified by a value of DocOpen for the AuthEvent entry in the crypt
filter dictionary. Conforming readers and security handlers shall treat any attempt to access a stream for which
authorization has failed as an error. AuthEvent can also be EFOpen, which indicates the presence of an
embedded file that is encrypted with a crypt filter that may be different from the crypt filters used by default to
encrypt strings and streams in the document.

In the file specification dictionary (see 7.11.3, "File Specification Dictionaries"), related files (RF) shall use the
same crypt filter as the embedded file (EF).

PDF 32000-1:2008

68 © Adobe Systems Incorporated 2008 – All rights reserved

A value of None for the CFM entry in the crypt filter dictionary allows the security handler to do its own
decryption. This allows the handler to tightly control key management and use any preferred symmetric-key
cryptographic algorithm.

Table 25 – Entries common to all crypt filter dictionaries

Key Type Value

Type name (Optional) If present, shall be CryptFilter for a crypt filter dictionary.

CFM name (Optional) The method used, if any, by the conforming reader to
decrypt data. The following values shall be supported:
None The application shall not decrypt data but shall direct the

input stream to the security handler for decryption.
V2 The application shall ask the security handler for the

encryption key and shall implicitly decrypt data with
"Algorithm 1: Encryption of data using the RC4 or AES
algorithms", using the RC4 algorithm.

AESV2 (PDF 1.6) The application shall ask the security handler for
the encryption key and shall implicitly decrypt data with
"Algorithm 1: Encryption of data using the RC4 or AES
algorithms", using the AES algorithm in Cipher Block
Chaining (CBC) mode with a 16-byte block size and an
initialization vector that shall be randomly generated and
placed as the first 16 bytes in the stream or string.

When the value is V2 or AESV2, the application may ask once for this
encryption key and cache the key for subsequent use for streams that
use the same crypt filter. Therefore, there shall be a one-to-one
relationship between a crypt filter name and the corresponding
encryption key.
Only the values listed here shall be supported. Applications that
encounter other values shall report that the file is encrypted with an
unsupported algorithm.
Default value: None.

AuthEvent name (Optional) The event to be used to trigger the authorization that is
required to access encryption keys used by this filter. If authorization
fails, the event shall fail. Valid values shall be:
DocOpen: Authorization shall be required when a document is

opened.
EFOpen: Authorization shall be required when accessing

embedded files.
Default value: DocOpen.
If this filter is used as the value of StrF or StmF in the encryption
dictionary (see Table 20), the conforming reader shall ignore this key
and behave as if the value is DocOpen.

Length integer (Optional) The bit length of the encryption key. It shall be a multiple of
8 in the range of 40 to 128.
Security handlers may define their own use of the Length entry and
should use it to define the bit length of the encryption key. Standard
security handler expresses the length in multiples of 8 (16 means 128)
and public-key security handler expresses it as is (128 means 128).

© Adobe Systems Incorporated 2008 – All rights reserved 69

PDF 32000-1:2008

Security handlers may add their own private data to crypt filter dictionaries. Names for private data entries shall
conform to the PDF name registry (see Annex E).

Table 27 lists the additional crypt filter dictionary entries used by public-key security handlers (see 7.6.4,
"Public-Key Security Handlers"). When these entries are present, the value of CFM shall be V2 or AESV2.

EXAMPLE The following shows the use of crypt filters in an encrypted document containing a plaintext document-
level metadata stream. The metadata stream is left as is by applying the Identity crypt filter. The
remaining streams and strings are decrypted using the default filters.

%PDF–1.5
1 0 obj % Document catalog

<< /Type /Catalog
/Pages 2 0 R
/Metadata 6 0 R

>>
endobj
2 0 obj % Page tree

<< /Type /Pages
/Kids [3 0 R]
/Count 1

>>
endobj
3 0 obj % 1s t page

<< /Type /Page

Table 26 – Standard crypt filter names

Name Description

Identity Input data shall be passed through without any processing.

Table 27 – Additional crypt filter dictionary entries for public-key security handlers

Key Type Value

Recipients array or
string

(Required) If the crypt filter is referenced from StmF or StrF in the
encryption dictionary, this entry shall be an array of byte strings, where
each string shall be a binary-encoded PKCS#7 object that shall list
recipients that have been granted equal access rights to the
document. The enveloped data contained in the PKCS#7 object shall
include both a 20-byte seed value that shall be used to compute the
encryption key (see 7.6.4.3, "Public-Key Encryption Algorithms")
followed by 4 bytes of permissions settings (see Table 22) that shall
apply to the recipient list. There shall be only one object per unique set
of access permissions. If a recipient appears in more than one list, the
permissions used shall be those in the first matching list.
If the crypt filter is referenced from a Crypt filter decode parameter
dictionary (see Table 14), this entry shall be a string that shall be a
binary-encoded PKCS#7 object shall contain a list of all recipients who
are permitted to access the corresponding encrypted stream. The
enveloped data contained in the PKCS#7 object shall be a 20-byte
seed value that shall be used to create the encryption key that shall be
used by the algorithm in "Algorithm 1: Encryption of data using the
RC4 or AES algorithms".

EncryptMetadata boolean (Optional; used only by crypt filters that are referenced from StmF in
an encryption dictionary) Indicates whether the document-level
metadata stream (see 14.3.2, "Metadata Streams") shall be encrypted.
Conforming readers shall respect this value when determining whether
metadata shall be encrypted. The value of the EncryptMetadata entry
is set by the security handler rather than the conforming reader.
Default value: true.

PDF 32000-1:2008

70 © Adobe Systems Incorporated 2008 – All rights reserved

/Parent 2 0 R
/MediaBox [0 0 612 792]
/Contents 4 0 R

>>
endobj
4 0 obj % Page contents

<< /Length 35 >>
stream

*** Encrypted Page-marking operators ***
endstream

endobj
5 0 obj

<< /Title ($#*#%*$#^&##) >> % Info dictionary: encrypted text string
endobj
6 0 obj

<< /Type /Metadata
/Subtype /XML
/Length 15
/Filter [/Crypt] % Uses a crypt filter
/DecodeParms % with these parameters
<< /Type /CryptFilterDecodeParms

/Name /Identity % Indicates no encryption
>>

>>
stream

XML metadata % Unencrypted metadata
endstream

endobj
8 0 obj % Encryption dictionary

<< /Filter /MySecurityHandlerName
/V 4 % Version 4: allow crypt filters
/CF % List of crypt filters
<< /MyFilter0

<< /Type /CryptFilter
/CFM V2 >> % Uses the standard algorithm

>>
/StrF /MyFilter0 % Strings are decrypted using /MyFilter0
/StmF /MyFilter0 % Streams are decrypted using /MyFilter0

... % Private data for /MySecurityHandlerName
/MyUnsecureKey (12345678)
/EncryptMetadata false

>>
endobj
xref

....
trailer

<< /Size 8
/Root 1 0 R
/Info 5 0 R
/Encrypt 8 0 R

>>
startxref
495
%%EOF

7.7 Document Structure

7.7.1 General

A PDF document can be regarded as a hierarchy of objects contained in the body section of a PDF file. At the
root of the hierarchy is the document’s catalog dictionary (see 7.7.2, "Document Catalog").

NOTE Most of the objects in the hierarchy are dictionaries. Figure 5 illustrates the structure of the object hierarchy.

© Adobe Systems Incorporated 2008 – All rights reserved 71

PDF 32000-1:2008

EXAMPLE Each page of the document is represented by a page object—a dictionary that includes references to the
page’s contents and other attributes, such as its thumbnail image (12.3.4, "Thumbnail Images") and any
annotations (12.5, "Annotations") associated with it. The individual page objects are tied together in a
structure called the page tree (described in 7.7.3, "Page Tree"), which in turn is specified by an indirect
reference in the document catalog. Parent, child, and sibling relationships within the hierarchy are defined
by dictionary entries whose values are indirect references to other dictionaries.

The data structures described in this sub-clause, particularly the Catalog and Page dictionaries, combine
entries describing document structure with ones dealing with the detailed semantics of documents and pages.
All entries are listed here, but many of their descriptions are deferred to subsequent sub-clauses.

7.7.2 Document Catalog

The root of a document’s object hierarchy is the catalog dictionary, located by means of the Root entry in the
trailer of the PDF file (see 7.5.5, "File Trailer"). The catalog contains references to other objects defining the
document’s contents, outline, article threads, named destinations, and other attributes. In addition, it contains
information about how the document shall be displayed on the screen, such as whether its outline and
thumbnail page images shall be displayed automatically and whether some location other than the first page
shall be shown when the document is opened. Table 28 shows the entries in the catalog dictionary.

PDF 32000-1:2008

72 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 5 – Structure of a PDF document

Outline
entry

Page

Thumbnail
image

Annotations

Bead

Bead

Thread

Outline
entry

Content
stream

Thread

Named
destinations

Article
threads

Interactive
form

Outline
hierarchy

Document catalog

Page

•
•
•

•
•
•

•
•
•

•
•
•

Page
tree

• • •

• • •

• • •

• • •

© Adobe Systems Incorporated 2008 – All rights reserved 73

PDF 32000-1:2008

Table 28 – Entries in the catalog dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes;
shall be Catalog for the catalog dictionary.

Version name (Optional; PDF 1.4) The version of the PDF specification to which
the document conforms (for example, 1.4) if later than the version
specified in the file’s header (see 7.5.2, "File Header"). If the
header specifies a later version, or if this entry is absent, the
document shall conform to the version specified in the header.
This entry enables a conforming writer to update the version using
an incremental update; see 7.5.6, "Incremental Updates."
The value of this entry shall be a name object, not a number, and
therefore shall be preceded by a SOLIDUS (2Fh) character (/)
when written in the PDF file (for example, /1.4).

Extensions dictionary (Optional; ISO 32000) An extensions dictionary containing
developer prefix identification and version numbers for developer
extensions that occur in this document. 7.12, “Extensions
Dictionary”, describes this dictionary and how it shall be used.

Pages dictionary (Required; shall be an indirect reference) The page tree node that
shall be the root of the document’s page tree (see 7.7.3, "Page
Tree").

PageLabels number tree (Optional; PDF 1.3) A number tree (see 7.9.7, "Number Trees")
defining the page labelling for the document. The keys in this tree
shall be page indices; the corresponding values shall be page
label dictionaries (see 12.4.2, "Page Labels"). Each page index
shall denote the first page in a labelling range to which the
specified page label dictionary applies. The tree shall include a
value for page index 0.

Names dictionary (Optional; PDF 1.2) The document’s name dictionary (see 7.7.4,
"Name Dictionary").

Dests dictionary (Optional; PDF 1.1; shall be an indirect reference) A dictionary of
names and corresponding destinations (see 12.3.2.3, "Named
Destinations").

ViewerPreferences dictionary (Optional; PDF 1.2) A viewer preferences dictionary (see 12.2,
"Viewer Preferences") specifying the way the document shall be
displayed on the screen. If this entry is absent, conforming
readers shall use their own current user preference settings.

PageLayout name (Optional) A name object specifying the page layout shall be used
when the document is opened:
SinglePage Display one page at a time
OneColumn Display the pages in one column
TwoColumnLeft Display the pages in two columns, with odd-

numbered pages on the left
TwoColumnRight Display the pages in two columns, with odd-

numbered pages on the right
TwoPageLeft (PDF 1.5) Display the pages two at a time,

with odd-numbered pages on the left
TwoPageRight (PDF 1.5) Display the pages two at a time,

with odd-numbered pages on the right
Default value: SinglePage.

PDF 32000-1:2008

74 © Adobe Systems Incorporated 2008 – All rights reserved

PageMode name (Optional) A name object specifying how the document shall be
displayed when opened:
UseNone Neither document outline nor thumbnail

images visible
UseOutlines Document outline visible
UseThumbs Thumbnail images visible
FullScreen Full-screen mode, with no menu bar, window

controls, or any other window visible
UseOC (PDF 1.5) Optional content group panel visible
UseAttachments (PDF 1.6) Attachments panel visible
Default value: UseNone.

Outlines dictionary (Optional; shall be an indirect reference) The outline dictionary
that shall be the root of the document’s outline hierarchy (see
12.3.3, "Document Outline").

Threads array (Optional; PDF 1.1; shall be an indirect reference) An array of
thread dictionaries that shall represent the document’s article
threads (see 12.4.3, "Articles").

OpenAction array or
dictionary

(Optional; PDF 1.1) A value specifying a destination that shall be
displayed or an action that shall be performed when the document
is opened. The value shall be either an array defining a
destination (see 12.3.2, "Destinations") or an action dictionary
representing an action (12.6, "Actions"). If this entry is absent, the
document shall be opened to the top of the first page at the default
magnification factor.

AA dictionary (Optional; PDF 1.4) An additional-actions dictionary defining the
actions that shall be taken in response to various trigger events
affecting the document as a whole (see 12.6.3, "Trigger Events").

URI dictionary (Optional; PDF 1.1) A URI dictionary containing document-level
information for URI (uniform resource identifier) actions (see
12.6.4.7, "URI Actions").

AcroForm dictionary (Optional; PDF 1.2) The document’s interactive form (AcroForm)
dictionary (see 12.7.2, "Interactive Form Dictionary").

Metadata stream (Optional; PDF 1.4; shall be an indirect reference) A metadata
stream that shall contain metadata for the document (see 14.3.2,
"Metadata Streams").

StructTreeRoot dictionary (Optional; PDF 1.3) The document’s structure tree root dictionary
(see 14.7.2, "Structure Hierarchy").

MarkInfo dictionary (Optional; PDF 1.4) A mark information dictionary that shall
contain information about the document’s usage of Tagged PDF
conventions (see 14.7, "Logical Structure").

Lang text string (Optional; PDF 1.4) A language identifier that shall specify the
natural language for all text in the document except where
overridden by language specifications for structure elements or
marked content (see 14.9.2, "Natural Language Specification"). If
this entry is absent, the language shall be considered unknown.

SpiderInfo dictionary (Optional; PDF 1.3) A Web Capture information dictionary that
shall contain state information used by any Web Capture
extension (see 14.10.2, "Web Capture Information Dictionary").

Table 28 – Entries in the catalog dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 75

PDF 32000-1:2008

EXAMPLE The following shows a sample catalog object.

1 0 obj

<< /Type /Catalog
 /Pages 2 0 R
 /PageMode /UseOutlines
 /Outlines 3 0 R

>>
endobj

7.7.3 Page Tree

7.7.3.1 General

The pages of a document are accessed through a structure known as the page tree, which defines the ordering
of pages in the document. Using the tree structure, conforming readers using only limited memory, can quickly
open a document containing thousands of pages. The tree contains nodes of two types—intermediate nodes,
called page tree nodes, and leaf nodes, called page objects—whose form is described in the subsequent sub-
clauses. Conforming products shall be prepared to handle any form of tree structure built of such nodes.

NOTE The simplest structure can consist of a single page tree node that references all of the document’s page
objects directly. However, to optimize application performance, a conforming writer can construct trees of a
particular form, known as balanced trees. Further information on this form of tree can be found in Data
Structures and Algorithms, by Aho, Hopcroft, and Ullman (see the Bibliography).

OutputIntents array (Optional; PDF 1.4) An array of output intent dictionaries that shall
specify the colour characteristics of output devices on which the
document might be rendered (see 14.11.5, "Output Intents").

PieceInfo dictionary (Optional; PDF 1.4) A page-piece dictionary associated with the
document (see 14.5, "Page-Piece Dictionaries").

OCProperties dictionary (Optional; PDF 1.5; required if a document contains optional
content) The document’s optional content properties dictionary
(see 8.11.4, "Configuring Optional Content").

Perms dictionary (Optional; PDF 1.5) A permissions dictionary that shall specify
user access permissions for the document. 12.8.4, "Permissions",
describes this dictionary and how it shall be used.

Legal dictionary (Optional; PDF 1.5) A dictionary that shall contain attestations
regarding the content of a PDF document, as it relates to the
legality of digital signatures (see 12.8.5, "Legal Content
Attestations").

Requirements array (Optional; PDF 1.7) An array of requirement dictionaries that shall
represent requirements for the document. 12.10, "Document
Requirements", describes this dictionary and how it shall be used.

Collection dictionary (Optional; PDF 1.7) A collection dictionary that a conforming
reader shall use to enhance the presentation of file attachments
stored in the PDF document. (see 12.3.5, "Collections").

NeedsRendering boolean (Optional; PDF 1.7) A flag used to expedite the display of PDF
documents containing XFA forms. It specifies whether the
document shall be regenerated when the document is first
opened.
See the XML Forms Architecture (XFA) Specification
(Bibliography).
Default value: false.

Table 28 – Entries in the catalog dictionary (continued)

Key Type Value

PDF 32000-1:2008

76 © Adobe Systems Incorporated 2008 – All rights reserved

7.7.3.2 Page Tree Nodes

Table 29 shows the entries in a page tree node that shall always be present (Required).

NOTE The structure of the page tree is not necessarily related to the logical structure of the document; that is, page
tree nodes do not represent chapters, sections, and so forth. Other data structures are defined for this
purpose; see 14.7, "Logical Structure".

Conforming products shall not be required to preserve the existing structure of the page tree.

EXAMPLE The following illustrates the page tree for a document with three pages. See 7.7.3.3, "Page Objects," for
the contents of the individual page objects, and H.5, "Page Tree Example", for a more extended example
showing the page tree for a longer document.

2 0 obj

<< /Type /Pages
 /Kids [4 0 R

 10 0 R
 24 0 R
]

 /Count 3
>>

endobj

4 0 obj

<< /Type /Page
 … Additional entries describing the attributes of this page …

>>
endobj

10 0 obj

<< /Type /Page
 … Additional entries describing the attributes of this page …

>>
endobj

24 0 obj

<< /Type /Page
 … Additional entries describing the attributes of this page …

>>
endobj

In addition to the entries shown in Table 29, a page tree node may contain further entries defining inherited
attributes for the page objects that are its descendants (see 7.7.3.4, "Inheritance of Page Attributes").

Table 29 – Required entries in a page tree node

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall be
Pages for a page tree node.

Parent dictionary (Required except in root node; prohibited in the root node; shall be an
indirect reference) The page tree node that is the immediate parent of this
one.

Kids array (Required) An array of indirect references to the immediate children of this
node. The children shall only be page objects or other page tree nodes.

Count integer (Required) The number of leaf nodes (page objects) that are descendants of
this node within the page tree.

© Adobe Systems Incorporated 2008 – All rights reserved 77

PDF 32000-1:2008

7.7.3.3 Page Objects

The leaves of the page tree are page objects, each of which is a dictionary specifying the attributes of a single
page of the document. Table 30 shows the contents of this dictionary. The table also identifies which attributes
a page may inherit from its ancestor nodes in the page tree, as described under 7.7.3.4, "Inheritance of Page
Attributes." Attributes that are not explicitly identified in the table as inheritable shall not be inherited.

Table 30 – Entries in a page object

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes;
shall be Page for a page object.

Parent dictionary (Required; shall be an indirect reference) The page tree node that
is the immediate parent of this page object.

LastModified date (Required if PieceInfo is present; optional otherwise; PDF 1.3) The
date and time (see 7.9.4, "Dates") when the page’s contents were
most recently modified. If a page-piece dictionary (PieceInfo) is
present, the modification date shall be used to ascertain which of
the application data dictionaries that it contains correspond to the
current content of the page (see 14.5, "Page-Piece Dictionaries").

Resources dictionary (Required; inheritable) A dictionary containing any resources
required by the page (see 7.8.3, "Resource Dictionaries"). If the
page requires no resources, the value of this entry shall be an
empty dictionary. Omitting the entry entirely indicates that the
resources shall be inherited from an ancestor node in the page tree.

MediaBox rectangle (Required; inheritable) A rectangle (see 7.9.5, "Rectangles"),
expressed in default user space units, that shall define the
boundaries of the physical medium on which the page shall be
displayed or printed (see 14.11.2, "Page Boundaries").

CropBox rectangle (Optional; inheritable) A rectangle, expressed in default user space
units, that shall define the visible region of default user space.
When the page is displayed or printed, its contents shall be clipped
(cropped) to this rectangle and then shall be imposed on the output
medium in some implementation-defined manner (see 14.11.2,
"Page Boundaries"). Default value: the value of MediaBox.

BleedBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space
units, that shall define the region to which the contents of the page
shall be clipped when output in a production environment (see
14.11.2, "Page Boundaries"). Default value: the value of CropBox.

TrimBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space
units, that shall define the intended dimensions of the finished page
after trimming (see 14.11.2, "Page Boundaries"). Default value: the
value of CropBox.

ArtBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space
units, that shall define the extent of the page’s meaningful content
(including potential white space) as intended by the page’s creator
(see 14.11.2, "Page Boundaries"). Default value: the value of
CropBox.

BoxColorInfo dictionary (Optional; PDF 1.4) A box colour information dictionary that shall
specify the colours and other visual characteristics that should be
used in displaying guidelines on the screen for the various page
boundaries (see 14.11.2.2, "Display of Page Boundaries"). If this
entry is absent, the application shall use its own current default
settings.

PDF 32000-1:2008

78 © Adobe Systems Incorporated 2008 – All rights reserved

Contents stream or array (Optional) A content stream (see 7.8.2, "Content Streams") that
shall describe the contents of this page. If this entry is absent, the
page shall be empty.
The value shall be either a single stream or an array of streams. If
the value is an array, the effect shall be as if all of the streams in the
array were concatenated, in order, to form a single stream.
Conforming writers can create image objects and other resources
as they occur, even though they interrupt the content stream. The
division between streams may occur only at the boundaries
between lexical tokens (see 7.2, "Lexical Conventions") but shall be
unrelated to the page’s logical content or organization. Applications
that consume or produce PDF files need not preserve the existing
structure of the Contents array. Conforming writers shall not create
a Contents array containing no elements.

Rotate integer (Optional; inheritable) The number of degrees by which the page
shall be rotated clockwise when displayed or printed. The value
shall be a multiple of 90. Default value: 0.

Group dictionary (Optional; PDF 1.4) A group attributes dictionary that shall specify
the attributes of the page’s page group for use in the transparent
imaging model (see 11.4.7, "Page Group" and 11.6.6,
"Transparency Group XObjects").

Thumb stream (Optional) A stream object that shall define the page’s thumbnail
image (see 12.3.4, "Thumbnail Images").

B array (Optional; PDF 1.1; recommended if the page contains article
beads) An array that shall contain indirect references to all article
beads appearing on the page (see 12.4.3, "Articles"). The beads
shall be listed in the array in natural reading order.
NOTE The information in this entry can be created or

recreated from the information obtained from the
Threads key in the Catalog.

Dur number (Optional; PDF 1.1) The page’s display duration (also called its
advance timing): the maximum length of time, in seconds, that the
page shall be displayed during presentations before the viewer
application shall automatically advance to the next page (see
12.4.4, "Presentations"). By default, the viewer shall not advance
automatically.

Trans dictionary (Optional; PDF 1.1) A transition dictionary describing the transition
effect that shall be used when displaying the page during
presentations (see 12.4.4, "Presentations").

Annots array (Optional) An array of annotation dictionaries that shall contain
indirect references to all annotations associated with the page (see
12.5, "Annotations").

AA dictionary (Optional; PDF 1.2) An additional-actions dictionary that shall
define actions to be performed when the page is opened or closed
(see 12.6.3, "Trigger Events").
(PDF 1.3) additional-actions dictionaries are not inheritable.

Metadata stream (Optional; PDF 1.4) A metadata stream that shall contain metadata
for the page (see 14.3.2, "Metadata Streams").

PieceInfo dictionary (Optional; PDF 1.3) A page-piece dictionary associated with the
page (see 14.5, "Page-Piece Dictionaries").

Table 30 – Entries in a page object (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 79

PDF 32000-1:2008

EXAMPLE The following shows the definition of a page object with a thumbnail image and two annotations. The
media box specifies that the page is to be printed on letter-size paper. In addition, the resource dictionary
is specified as a direct object and shows that the page makes use of three fonts named F3, F5, and F7.

3 0 obj

<< /Type /Page
 /Parent 4 0 R
 /MediaBox [0 0 612 792]
 /Resources << /Font << /F3 7 0 R

/F5 9 0 R
/F7 11 0 R

 >>
 /ProcSet [/PDF]

 >>
 /Contents 12 0 R
 /Thumb 14 0 R
 /Annots [23 0 R

 24 0 R
]

>>
endobj

StructParents integer (Required if the page contains structural content items; PDF 1.3)
The integer key of the page’s entry in the structural parent tree (see
14.7.4.4, "Finding Structure Elements from Content Items").

ID byte string (Optional; PDF 1.3; indirect reference preferred) The digital
identifier of the page’s parent Web Capture content set (see
14.10.6, "Object Attributes Related to Web Capture").

PZ number (Optional; PDF 1.3) The page’s preferred zoom (magnification)
factor: the factor by which it shall be scaled to achieve the natural
display magnification (see 14.10.6, "Object Attributes Related to
Web Capture").

SeparationInfo dictionary (Optional; PDF 1.3) A separation dictionary that shall contain
information needed to generate colour separations for the page
(see 14.11.4, "Separation Dictionaries").

Tabs name (Optional; PDF 1.5) A name specifying the tab order that shall be
used for annotations on the page. The possible values shall be R
(row order), C (column order), and S (structure order). See 12.5,
"Annotations" for details.

TemplateInstantiated name (Required if this page was created from a named page object; PDF
1.5) The name of the originating page object (see 12.7.6, "Named
Pages").

PresSteps dictionary (Optional; PDF 1.5) A navigation node dictionary that shall
represent the first node on the page (see 12.4.4.2, "Sub-page
Navigation").

UserUnit number (Optional; PDF 1.6) A positive number that shall give the size of
default user space units, in multiples of 1 ⁄ 72 inch. The range of
supported values shall be implementation-dependent.
Default value: 1.0 (user space unit is 1 ⁄ 72 inch).

VP dictionary (Optional; PDF 1.6) An array of viewport dictionaries (see
Table 260) that shall specify rectangular regions of the page.

Table 30 – Entries in a page object (continued)

Key Type Value

PDF 32000-1:2008

80 © Adobe Systems Incorporated 2008 – All rights reserved

7.7.3.4 Inheritance of Page Attributes

Some of the page attributes shown in Table 30 are designated as inheritable. If such an attribute is omitted from
a page object, its value shall be inherited from an ancestor node in the page tree. If the attribute is a required
one, a value shall be supplied in an ancestor node. If the attribute is optional and no inherited value is specified,
the default value shall be used.

An attribute can thus be defined once for a whole set of pages by specifying it in an intermediate page tree
node and arranging the pages that share the attribute as descendants of that node.

EXAMPLE A document may specify the same media box for all of its pages by including a MediaBox entry in the root
node of the page tree. If necessary, an individual page object may override this inherited value with a
MediaBox entry of its own.

In a document conforming to the Linearized PDF organization (see Annex F), all page attributes shall be
specified explicitly as entries in the page dictionaries to which they apply; they shall not be inherited from an
ancestor node.

Figure 6 illustrates the inheritance of attributes. In the page tree shown, pages 1, 2, and 4 are rotated clockwise
by 90 degrees, page 3 by 270 degrees, page 6 by 180 degrees, and pages 5 and 7 not at all (0 degrees).

Figure 6 – Inheritance of attributes

7.7.4 Name Dictionary

Some categories of objects in a PDF file can be referred to by name rather than by object reference. The
correspondence between names and objects is established by the document’s name dictionary (PDF 1.2),
located by means of the Names entry in the document’s catalog (see 7.7.2, "Document Catalog"). Each entry in
this dictionary designates the root of a name tree (see 7.9.6, "Name Trees") defining names for a particular
category of objects. Table 31 shows the contents of the name dictionary.

Table 31 – Entries in the name dictionary

Key Type Value

Dests name tree (Optional; PDF 1.2) A name tree mapping name strings to
destinations (see 12.3.2.3, "Named Destinations").

AP name tree (Optional; PDF 1.3) A name tree mapping name strings to
annotation appearance streams (see 12.5.5, "Appearance
Streams").

Pages

PagesPages
/Rotate 90

Pages
/Rotate 180

PagePage Page
/Rotate 0

PagePagePages

Page
/Rotate 90

Page
/Rotate 270

Page 1 Page 2 Page 5 Page 6 Page 7

Page 4 Page 3

© Adobe Systems Incorporated 2008 – All rights reserved 81

PDF 32000-1:2008

7.8 Content Streams and Resources

7.8.1 General

Content streams are the primary means for describing the appearance of pages and other graphical elements.
A content stream depends on information contained in an associated resource dictionary; in combination, these
two objects form a self-contained entity. This sub-clause describes these objects.

7.8.2 Content Streams

A content stream is a PDF stream object whose data consists of a sequence of instructions describing the
graphical elements to be painted on a page. The instructions shall be represented in the form of PDF objects,
using the same object syntax as in the rest of the PDF document. However, whereas the document as a whole
is a static, random-access data structure, the objects in the content stream shall be interpreted and acted upon
sequentially.

Each page of a document shall be represented by one or more content streams. Content streams shall also be
used to package sequences of instructions as self-contained graphical elements, such as forms (see 8.10,
"Form XObjects"), patterns (8.7, "Patterns"), certain fonts (9.6.5, "Type 3 Fonts"), and annotation appearances
(12.5.5, "Appearance Streams").

A content stream, after decoding with any specified filters, shall be interpreted according to the PDF syntax
rules described in 7.2, "Lexical Conventions." It consists of PDF objects denoting operands and operators. The
operands needed by an operator shall precede it in the stream. See EXAMPLE 4 in 7.4, "Filters," for an
example of a content stream.

An operand is a direct object belonging to any of the basic PDF data types except a stream. Dictionaries shall
be permitted as operands only by certain specific operators. Indirect objects and object references shall not be
permitted at all.

JavaScript name tree (Optional; PDF 1.3) A name tree mapping name strings to
document-level JavaScript actions (see 12.6.4.16, "JavaScript
Actions").

Pages name tree (Optional; PDF 1.3) A name tree mapping name strings to visible
pages for use in interactive forms (see 12.7.6, "Named Pages").

Templates name tree (Optional; PDF 1.3) A name tree mapping name strings to invisible
(template) pages for use in interactive forms (see 12.7.6, "Named
Pages").

IDS name tree (Optional; PDF 1.3) A name tree mapping digital identifiers to Web
Capture content sets (see 14.10.4, "Content Sets").

URLS name tree (Optional; PDF 1.3) A name tree mapping uniform resource locators
(URLs) to Web Capture content sets (see 14.10.4, "Content Sets").

EmbeddedFiles name tree (Optional; PDF 1.4) A name tree mapping name strings to file
specifications for embedded file streams (see 7.11.4, "Embedded
File Streams").

AlternatePresentations name tree (Optional; PDF 1.4) A name tree mapping name strings to alternate
presentations (see 13.5, "Alternate Presentations").

Renditions name tree (Optional; PDF 1.5) A name tree mapping name strings (which shall
have Unicode encoding) to rendition objects (see 13.2.3,
"Renditions").

Table 31 – Entries in the name dictionary (continued)

Key Type Value

PDF 32000-1:2008

82 © Adobe Systems Incorporated 2008 – All rights reserved

An operator is a PDF keyword specifying some action that shall be performed, such as painting a graphical
shape on the page. An operator keyword shall be distinguished from a name object by the absence of an initial
SOLIDUS character (2Fh) (/). Operators shall be meaningful only inside a content stream.

NOTE 1 This postfix notation, in which an operator is preceded by its operands, is superficially the same as in the
PostScript language. However, PDF has no concept of an operand stack as PostScript has.

In PDF, all of the operands needed by an operator shall immediately precede that operator. Operators do not
return results, and operands shall not be left over when an operator finishes execution.

NOTE 2 Most operators have to do with painting graphical elements on the page or with specifying parameters that
affect subsequent painting operations. The individual operators are described in the clauses devoted to their
functions:

Clause 8, "Graphics" describes operators that paint general graphics, such as filled areas, strokes, and
sampled images, and that specify device-independent graphical parameters, such as colour.

Clause 9, "Text" describes operators that paint text using character glyphs defined in fonts.

Clause 10, "Rendering" describes operators that specify device-dependent rendering parameters.

Clause 14, "Document Interchange" describes the marked-content operators that associate higher-level logical
information with objects in the content stream. These operators do not affect the rendered appearance of the
content; they specify information useful to applications that use PDF for document interchange.

Ordinarily, when a conforming reader encounters an operator in a content stream that it does not recognize, an
error shall occur. A pair of compatibility operators, BX and EX (PDF 1.1), shall modify this behaviour (see
Table 32). These operators shall occur in pairs and may be nested. They bracket a compatibility section, a
portion of a content stream within which unrecognized operators shall be ignored without error. This
mechanism enables a conforming writer to use operators defined in later versions of PDF without sacrificing
compatibility with older applications. It should be used only in cases where ignoring such newer operators is the
appropriate thing to do. The BX and EX operators are not themselves part of any graphics object (see 8.2,
"Graphics Objects") or of the graphics state (8.4, "Graphics State").

7.8.3 Resource Dictionaries

As stated above, the operands supplied to operators in a content stream shall only be direct objects; indirect
objects and object references shall not be permitted. In some cases, an operator shall refer to a PDF object
that is defined outside the content stream, such as a font dictionary or a stream containing image data. This
shall be accomplished by defining such objects as named resources and referring to them by name from within
the content stream.

Named resources shall be meaningful only in the context of a content stream. The scope of a resource name
shall be local to a particular content stream and shall be unrelated to externally known identifiers for objects
such as fonts. References from one object outside of content streams to another outside of content streams
shall be made by means of indirect object references rather than named resources.

Table 32 – Compatibility operators

Operands Operator Description

— BX (PDF 1.1) Begin a compatibility section. Unrecognized operators (along with
their operands) shall be ignored without error until the balancing EX operator
is encountered.

— EX (PDF 1.1) End a compatibility section begun by a balancing BX operator.
Ignore any unrecognized operands and operators from previous matching
BX onward.

© Adobe Systems Incorporated 2008 – All rights reserved 83

PDF 32000-1:2008

A content stream’s named resources shall be defined by a resource dictionary, which shall enumerate the
named resources needed by the operators in the content stream and the names by which they can be referred
to.

EXAMPLE 1 If a text operator appearing within the content stream needs a certain font, the content stream’s resource
dictionary can associate the name F42 with the corresponding font dictionary. The text operator can use
this name to refer to the font.

A resource dictionary shall be associated with a content stream in one of the following ways:

• For a content stream that is the value of a page’s Contents entry (or is an element of an array that is the
value of that entry), the resource dictionary shall be designated by the page dictionary’s Resources or is
inherited, as described under 7.7.3.4, "Inheritance of Page Attributes," from some ancestor node of the
page object.

• For other content streams, a conforming writer shall include a Resources entry in the stream's dictionary
specifying the resource dictionary which contains all the resources used by that content stream. This shall
apply to content streams that define form XObjects, patterns, Type 3 fonts, and annotation.

• PDF files written obeying earlier versions of PDF may have omitted the Resources entry in all form
XObjects and Type 3 fonts used on a page. All resources that are referenced from those forms and fonts
shall be inherited from the resource dictionary of the page on which they are used. This construct is
obsolete and should not be used by conforming writers.

In the context of a given content stream, the term current resource dictionary refers to the resource dictionary
associated with the stream in one of the ways described above.

Each key in a resource dictionary shall be the name of a resource type, as shown in Table 33. The
corresponding values shall be as follows:

• For resource type ProcSet, the value shall be an array of procedure set names

• For all other resource types, the value shall be a subdictionary. Each key in the subdictionary shall be the
name of a specific resource, and the corresponding value shall be a PDF object associated with the name.

Table 33 – Entries in a resource dictionary

Key Type Value

ExtGState dictionary (Optional) A dictionary that maps resource names to graphics state
parameter dictionaries (see 8.4.5, "Graphics State Parameter
Dictionaries").

ColorSpace dictionary (Optional) A dictionary that maps each resource name to either the
name of a device-dependent colour space or an array describing a
colour space (see 8.6, "Colour Spaces").

Pattern dictionary (Optional) A dictionary that maps resource names to pattern objects
(see 8.7, "Patterns").

Shading dictionary (Optional; PDF 1.3) A dictionary that maps resource names to shading
dictionaries (see 8.7.4.3, "Shading Dictionaries").

XObject dictionary (Optional) A dictionary that maps resource names to external objects
(see 8.8, "External Objects").

Font dictionary (Optional) A dictionary that maps resource names to font dictionaries
(see clause 9, "Text").

ProcSet array (Optional) An array of predefined procedure set names (see 14.2,
"Procedure Sets").

PDF 32000-1:2008

84 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE 2 The following shows a resource dictionary containing procedure sets, fonts, and external objects. The
procedure sets are specified by an array, as described in 14.2, "Procedure Sets". The fonts are specified
with a subdictionary associating the names F5, F6, F7, and F8 with objects 6, 8, 10, and 12, respectively.
Likewise, the XObject subdictionary associates the names Im1 and Im2 with objects 13 and 15,
respectively.

<</ProcSet [/PDF /ImageB]

/Font << /F5 6 0 R
 /F6 8 0 R
/F7 10 0 R
/F8 12 0 R

 >>
 /XObject << /Im1 13 0 R

/Im2 15 0 R
>>

>>

7.9 Common Data Structures

7.9.1 General

As mentioned at the beginning of this clause, there are some general-purpose data structures that are built
from the basic object types described in 7.3, "Objects," and are used in many places throughout PDF. This sub-
clause describes data structures for text strings, dates, rectangles, name trees, and number trees. More
complex data structures are described in 7.10, "Functions," and 7.11, "File Specifications."

All of these data structures are meaningful only as part of the document hierarchy; they may not appear within
content streams. In particular, the special conventions for interpreting the values of string objects apply only to
strings outside content streams. An entirely different convention is used within content streams for using strings
to select sequences of glyphs to be painted on the page (see clause 9, "Text"). Table 34 summarizes the basic
and higher-level data types that are used throughout this standard to describe the values of dictionary entries
and other PDF data values.

Properties dictionary (Optional; PDF 1.2) A dictionary that maps resource names to property
list dictionaries for marked content (see 14.6.2, "Property Lists").

Table 34 – PDF data types

Type Description Sub-Clause

ASCII string Bytes containing ASCII characters 7.9.2
7.9.2.4

array Array object 7.3.6

boolean Boolean value 7.3.2

byte string A series of bytes that shall represent
characters or other binary data. If such
a type represents characters, the
encoding shall be determined by the
context.

7.9.2

date Date (ASCII string) 7.9.4

dictionary Dictionary object 7.3.7

file specification File specification (string or dictionary) 7.11

Table 33 – Entries in a resource dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 85

PDF 32000-1:2008

7.9.2 String Object Types

7.9.2.1 General

PDF supports one fundamental string object (see 7.3.4, "String Objects"). The string object shall be further
qualified as a text string, a PDFDocEncoded string, ASCII string, or byte string. The further qualification reflects
the encoding used to represent the characters or glyphs described by the string.

Table 35 summarizes the string object types that represent data encoded using specific conventions.

function Function (dictionary or stream) 7.10

integer Integer number

name Name object 7.3.5

name tree Name tree (dictionary) 7.9.6

null Null object 7.3.9

number Number (integer or real)

number tree Number tree (dictionary) 7.9.7

PDFDocEncoded string Bytes containing a string that shall be
encoded using PDFDocEncoding

7.9.2

rectangle Rectangle (array) 7.9.5

stream Stream object 7.3.8

string Any string that is not a text string.
Beginning with PDF 1.7, this type is
further qualified as the types:
PDFDocEncoded string, ASCII string,
and byte string.

7.9.2

text string Bytes that represent characters that
shall be encoded using either
PDFDocEncoding or UTF-16BE with a
leading byte-order marker (as defined
in “Text String Type” on page 86.)

7.9.2.2
7.9.2

text stream Text stream 7.9.3

Table 35 – String Object Types

Type Description

text string Shall be used for human-readable text, such as text
annotations, bookmark names, article names, and
document information. These strings shall be encoded
using either PDFDocEncoding or UTF-16BE with a
leading byte-order marker.
This type is described in 7.9.2.2, "Text String Type."

PDFDocEncoded string Shall be used for characters and glyphs that are
represented in a single byte, using PDFDocEncoding.
This type is described in 7.9.2.3, "PDFDocEncoded String
Type."

Table 34 – PDF data types (continued)

Type Description Sub-Clause

PDF 32000-1:2008

86 © Adobe Systems Incorporated 2008 – All rights reserved

The string types described in Table 35 specify increasingly specific encoding schemes, as shown in Figure 7.

Figure 7 – Relationship between string types

7.9.2.2 Text String Type

The text string type shall be used for character strings that contain information intended to be human-readable,
such as text annotations, bookmark names, article names, document information, and so forth.

NOTE 1 Text string type is a subtype of string type and represents data encoded using specific conventions.

The text string type shall be used for character strings that shall be encoded in either PDFDocEncoding or the
UTF-16BE Unicode character encoding scheme. PDFDocEncoding can encode all of the ISO Latin 1
character set and is documented in Annex D. UTF-16BE can encode all Unicode characters. UTF-16BE and
Unicode character encoding are described in the Unicode Standard by the Unicode Consortium (see the
Bibliography).

NOTE 2 PDFDocEncoding does not support all Unicode characters whereas UTF-16BE does.

For text strings encoded in Unicode, the first two bytes shall be 254 followed by 255. These two bytes represent
the Unicode byte order marker, U+FEFF, indicating that the string is encoded in the UTF-16BE (big-endian)
encoding scheme specified in the Unicode standard.

NOTE 3 This mechanism precludes beginning a string using PDFDocEncoding with the two characters thorn
ydieresis, which is unlikely to be a meaningful beginning of a word or phrase.

Conforming readers that process PDF files containing Unicode text strings shall be prepared to handle
supplementary characters; that is, characters requiring more than two bytes to represent.

An escape sequence may appear anywhere in a Unicode text string to indicate the language in which
subsequent text shall be written.

ASCII string Shall be used for characters that are represented in a
single byte using ASCII encoding.

byte string Shall be used for binary data represented as a series of
bytes, where each byte can be any value representable in
8 bits. The string may represent characters but the
encoding is not known. The bytes of the string need not
represent characters. This type shall be used for data
such as MD5 hash values, signature certificates, and Web
Capture identification values.
This type is described in 7.9.2.4, "Byte String Type."

Table 35 – String Object Types (continued)

Type Description

PDFDocEncoded
string

string types

text string

UTF-16BE encoded string with
a leading byte order marker

ASCII string byte string

© Adobe Systems Incorporated 2008 – All rights reserved 87

PDF 32000-1:2008

NOTE 4 This is useful when the language cannot be determined from the character codes used in the text.

The escape sequence shall consist of the following elements, in order:

a) The Unicode value U+001B (that is, the byte sequence 0 followed by 27).

b) A 2- byte ISO 639 language code.

EXAMPLE en for English or ja for Japanese encoded as ASCII characters.

c) (Optional) A 2-byte ISO 3166 country code.

EXAMPLE US for the United States or JP for Japan.

d) The Unicode value U+001B.

NOTE 5 The complete list of codes defined by ISO 639 and ISO 3166 can be obtained from the International
Organization for Standardization (see the Bibliography).

7.9.2.3 PDFDocEncoded String Type

A PDFDocEncoded string is a character string in which the characters shall be represented in a single byte
using PDFDocEncoding.

NOTE PDFDocEncoding does not support all Unicode characters whereas UTF-16BE does.

7.9.2.4 Byte String Type

The byte string type shall be used for binary data that shall be represented as a series of bytes, where each
byte may be any value representable in 8 bits. Byte string type is a subtype of string type.

NOTE The string may represent characters but the encoding is not known. The bytes of the string may not represent
characters.

7.9.3 Text Streams

A text stream (PDF 1.5) shall be a PDF stream object (7.3.8, "Stream Objects") whose unencoded bytes shall
meet the same requirements as a text string (7.9.2.2, "Text String Type") with respect to encoding, byte order,
and lead bytes.

7.9.4 Dates

Date values used in a PDF shall conform to a standard date format, which closely follows that of the
international standard ASN.1 (Abstract Syntax Notation One), defined in ISO/IEC 8824. A date shall be a text
string of the form

(D : YYYYMMDDHHmmSSOHH ' mm)

where:

YYYY shall be the year

MM shall be the month (01–12)

DD shall be the day (01–31)

HH shall be the hour (00–23)

PDF 32000-1:2008

88 © Adobe Systems Incorporated 2008 – All rights reserved

mm shall be the minute (00–59)

SS shall be the second (00–59)

O shall be the relationship of local time to Universal Time (UT), and shall be denoted by one of the
characters PLUS SIGN (U+002B) (+), HYPHEN-MINUS (U+002D) (-), or LATIN CAPITAL LETTER Z
(U+005A) (Z) (see below)

HH followed by APOSTROPHE (U+0027) (') shall be the absolute value of the offset from UT in hours
(00–23)

mm shall be the absolute value of the offset from UT in minutes (00–59)

The prefix D: shall be present, the year field (YYYY) shall be present and all other fields may be present but
only if all of their preceding fields are also present. The APOSTROPHE following the hour offset field (HH) shall
only be present if the HH field is present. The minute offset field (mm) shall only be present if the
APOSTROPHE following the hour offset field (HH) is present. The default values for MM and DD shall be both
01; all other numerical fields shall default to zero values. A PLUS SIGN as the value of the O field signifies that
local time is later than UT, a HYPHEN-MINUS signifies that local time is earlier than UT, and the LATIN
CAPITAL LETTER Z signifies that local time is equal to UT. If no UT information is specified, the relationship of
the specified time to UT shall be considered to be GMT. Regardless of whether the time zone is specified, the
rest of the date shall be specified in local time.

EXAMPLE For example, December 23, 1998, at 7:52 PM, U.S. Pacific Standard Time, is represented by the string
D : 199812231952 - 08 ' 00

7.9.5 Rectangles

Rectangles are used to describe locations on a page and bounding boxes for a variety of objects. A rectangle
shall be written as an array of four numbers giving the coordinates of a pair of diagonally opposite corners.

NOTE Although rectangles are conventionally specified by their lower-left and upper-right corners, it is acceptable to
specify any two diagonally opposite corners. Applications that process PDF should be prepared to normalize
such rectangles in situations where specific corners are required.

Typically, the array takes the form

[llx lly urx ury]

specifying the lower-left x, lower-left y, upper-right x, and upper-right y coordinates of the rectangle, in that
order. The other two corners of the rectangle are then assumed to have coordinates (llx, ury) and (urx, lly).

7.9.6 Name Trees

A name tree serves a similar purpose to a dictionary—associating keys and values—but by different means. A
name tree differs from a dictionary in the following important ways:

• Unlike the keys in a dictionary, which are name objects, those in a name tree are strings.

• The keys are ordered.

• The values associated with the keys may be objects of any type. Stream objects shall be specified by
indirect object references (7.3.8, "Stream Objects"). The dictionary, array, and string objects should be
specified by indirect object references, and other PDF objects (nulls, numbers, booleans, and names)
should be specified as direct objects.

• The data structure can represent an arbitrarily large collection of key-value pairs, which can be looked up
efficiently without requiring the entire data structure to be read from the PDF file. (In contrast, a dictionary
can be subject to an implementation limit on the number of entries it can contain.)

© Adobe Systems Incorporated 2008 – All rights reserved 89

PDF 32000-1:2008

A name tree shall be constructed of nodes, each of which shall be a dictionary object. Table 36 shows the
entries in a node dictionary. The nodes shall be of three kinds, depending on the specific entries they contain.
The tree shall always have exactly one root node, which shall contain a single entry: either Kids or Names but
not both. If the root node has a Names entry, it shall be the only node in the tree. If it has a Kids entry, each of
the remaining nodes shall be either an intermediate node, that shall contain a Limits entry and a Kids entry, or
a leaf node, that shall contain a Limits entry and a Names entry.

The Kids entries in the root and intermediate nodes define the tree’s structure by identifying the immediate
children of each node. The Names entries in the leaf (or root) nodes shall contain the tree’s keys and their
associated values, arranged in key-value pairs and shall be sorted lexically in ascending order by key. Shorter
keys shall appear before longer ones beginning with the same byte sequence. Any encoding of the keys may
be used as long as it is self-consistent; keys shall be compared for equality on a simple byte-by-byte basis.

The keys contained within the various nodes’ Names entries shall not overlap; each Names entry shall contain
a single contiguous range of all the keys in the tree. In a leaf node, the Limits entry shall specify the least and
greatest keys contained within the node’s Names entry. In an intermediate node, it shall specify the least and
greatest keys contained within the Names entries of any of that node’s descendants. The value associated with
a given key can thus be found by walking the tree in order, searching for the leaf node whose Names entry
contains that key.

EXAMPLE 1 The following is an abbreviated outline, showing object numbers and nodes, of a name tree that maps the
names of all the chemical elements, from actinium to zirconium, to their atomic numbers.

Example of a name tree
1: Root node

2: Intermediate node: Actinium to Gold
5: Leaf node: Actinium = 25, … , Astatine = 31

25: Integer: 89
…
31: Integer: 85

…
11: Leaf node: Gadolinium = 56, … , Gold = 59

56: Integer: 64
…
59: Integer: 79

3: Intermediate node: Hafnium to Protactinium
12: Leaf node: Hafnium = 60, … , Hydrogen = 65

60: Integer: 72
…
65: Integer: 1

…

Table 36 – Entries in a name tree node dictionary

Key Type Value

Kids array (Root and intermediate nodes only; required in intermediate nodes; present in the
root node if and only if Names is not present) Shall be an array of indirect
references to the immediate children of this node. The children may be
intermediate or leaf nodes.

Names array (Root and leaf nodes only; required in leaf nodes; present in the root node if and
only if Kids is not present) Shall be an array of the form
[key1 value1 key2 value2 … keyn valuen]

where each keyi shall be a string and the corresponding valuei shall be the object
associated with that key. The keys shall be sorted in lexical order, as described
below.

Limits array (Intermediate and leaf nodes only; required) Shall be an array of two strings, that
shall specify the (lexically) least and greatest keys included in the Names array of
a leaf node or in the Names arrays of any leaf nodes that are descendants of an
intermediate node.

PDF 32000-1:2008

90 © Adobe Systems Incorporated 2008 – All rights reserved

19: Leaf node: Palladium = 92, … , Protactinium = 100
92: Integer: 46
…
100:Integer: 91

4: Intermediate node: Radium to Zirconium
20: Leaf node: Radium = 101, … , Ruthenium = 107

101:Integer: 89
…
107:Integer: 85

…
24: Leaf node: Xenon = 129, … , Zirconium = 133

129:Integer: 54
…
133:Integer: 40

EXAMPLE 2 The following shows the representation of this tree in a PDF file

1 0 obj

<< /Kids [2 0 R % Root node
3 0 R
4 0 R

]
>>

endobj

2 0 obj

<< /Limits [(Actinium) (Gold)] % Intermediate node
 /Kids [5 0 R

 6 0 R
 7 0 R
 8 0 R
 9 0 R
 10 0 R
 11 0 R
]

>>
endobj

3 0 obj

<< /Limits [(Hafnium) (Protactinium)] % Intermediate node
 /Kids [12 0 R

 13 0 R
 14 0 R
 15 0 R
 16 0 R
 17 0 R
 18 0 R
 19 0 R
]

>>
endobj
4 0 obj

<< /Limits [(Radium) (Zirconium)] % Intermediate node
 /Kids [20 0 R

 21 0 R
 22 0 R
 23 0 R
 24 0 R
]

>>
endobj

5 0 obj

<< /Limits [(Actinium) (Astatine)] % Leaf node
 /Names [(Actinium) 25 0 R

© Adobe Systems Incorporated 2008 – All rights reserved 91

PDF 32000-1:2008

 (Aluminum) 26 0 R
 (Americium) 27 0 R
 (Antimony) 28 0 R
 (Argon) 29 0 R
 (Arsenic) 30 0 R
 (Astatine) 31 0 R

]
>>

endobj

…

24 0 obj

<< /Limits [(Xenon) (Zirconium)] % Leaf node
 /Names [(Xenon) 129 0 R

 (Ytterbium) 130 0 R
 (Yttrium) 131 0 R
 (Zinc) 132 0 R
 (Zirconium) 133 0 R

]
>>

endobj

25 0 obj

89 % Atomic number (Actinium)
endobj

…

133 0 obj

40 % Atomic number (Zirconium)
endobj

7.9.7 Number Trees

A number tree is similar to a name tree (see 7.9.6, "Name Trees"), except that its keys shall be integers instead
of strings and shall be sorted in ascending numerical order. The entries in the leaf (or root) nodes containing
the key-value pairs shall be named Nums instead of Names as in a name tree. Table 37 shows the entries in a
number tree’s node dictionaries.

Table 37 – Entries in a number tree node dictionary

Key Type Value

Kids array (Root and intermediate nodes only; required in intermediate nodes; present in the
root node if and only if Nums is not present) Shall be an array of indirect
references to the immediate children of this node. The children may be
intermediate or leaf nodes.

Nums array (Root and leaf nodes only; shall be required in leaf nodes; present in the root
node if and only if Kids is not present) Shall be an array of the form
[key1 value1 key2 value2 … keyn valuen]

where each keyi is an integer and the corresponding valuei shall be the object
associated with that key. The keys shall be sorted in numerical order,
analogously to the arrangement of keys in a name tree as described in 7.9.6,
"Name Trees."

Limits array (Shall be present in Intermediate and leaf nodes only) Shall be an array of two
integers, that shall specify the (numerically) least and greatest keys included in
the Nums array of a leaf node or in the Nums arrays of any leaf nodes that are
descendants of an intermediate node.

PDF 32000-1:2008

92 © Adobe Systems Incorporated 2008 – All rights reserved

7.10 Functions

7.10.1 General

PDF is not a programming language, and a PDF file is not a program. However, PDF provides several types of
function objects (PDF 1.2) that represent parameterized classes of functions, including mathematical formulas
and sampled representations with arbitrary resolution.

NOTE 1 Functions may be used in various ways in PDF, including device-dependent rasterization information for high-
quality printing (halftone spot functions and transfer functions), colour transform functions for certain colour
spaces, and specification of colours as a function of position for smooth shadings.

Functions in PDF represent static, self-contained numerical transformations.

NOTE 2 A function to add two numbers has two input values and one output value:

Similarly, a function that computes the arithmetic and geometric mean of two numbers can be viewed as a
function of two input values and two output values:

In general, a function can take any number (m) of input values and produce any number (n) of output values:

In PDF functions, all the input values and all the output values shall be numbers, and functions shall have no
side effects.

Each function definition includes a domain, the set of legal values for the input. Some types of functions also
define a range, the set of legal values for the output. Input values passed to the function shall be clipped to the
domain, and output values produced by the function shall be clipped to the range.

EXAMPLE Suppose the following function is defined with a domain of [-1 1]. If the function is called with the input
value 6, that value is replaced with the nearest value in the defined domain, 1, before the function is
evaluated; the resulting output value is therefore 3.

Similarly, if the following function is defined with a range of [0 100], and if the input values -6 and 4 are
passed to the function (and are within its domain), then the output value produced by the function, -14, is
replaced with 0, the nearest value in the defined range.

A function object may be a dictionary or a stream, depending on the type of function. The term function
dictionary is used generically in this sub-clause to refer to either a dictionary object or the dictionary portion of a
stream object. A function dictionary specifies the function’s representation, the set of attributes that
parameterize that representation, and the additional data needed by that representation. Four types of
functions are available, as indicated by the dictionary’s FunctionType entry:

• (PDF 1.2) A sampled function (type 0) uses a table of sample values to define the function. Various
techniques are used to interpolate values between the sample values; see 7.10.2, "Type 0 (Sampled)
Functions."

f x0 x1,() x0 x1+=

f x0 x1,()
x0 x1+

2
----------------- x0 x1×,=

f x0 … xm 1–, ,() y0 … yn 1–, ,=

f x() x 2+=

f x0 x1,() 3 x0× x1+=

© Adobe Systems Incorporated 2008 – All rights reserved 93

PDF 32000-1:2008

• (PDF 1.3) An exponential interpolation function (type 2) defines a set of coefficients for an exponential
function; see 7.10.3, "Type 2 (Exponential Interpolation) Functions."

• (PDF 1.3) A stitching function (type 3) is a combination of other functions, partitioned across a domain; see
7.10.4, "Type 3 (Stitching) Functions."

• (PDF 1.3) A PostScript calculator function (type 4) uses operators from the PostScript language to
describe an arithmetic expression; see 7.10.5, "Type 4 (PostScript Calculator) Functions."

All function dictionaries shall share the entries listed in Table 38.

In addition, each type of function dictionary shall include entries appropriate to the particular function type. The
number of output values can usually be inferred from other attributes of the function; if not (as is always the
case for type 0 and type 4 functions), the Range entry is required. The dimensionality of the function implied by
the Domain and Range entries shall be consistent with that implied by other attributes of the function.

7.10.2 Type 0 (Sampled) Functions

Type 0 functions use a sequence of sample values (contained in a stream) to provide an approximation for
functions whose domains and ranges are bounded. The samples are organized as an m-dimensional table in
which each entry has n components.

NOTE 1 Sampled functions are highly general and offer reasonably accurate representations of arbitrary analytic
functions at low expense. For example, a 1-input sinusoidal function can be represented over the range
[0 180] with an average error of only 1 percent, using just ten samples and linear interpolation. Two-input
functions require significantly more samples but usually not a prohibitive number if the function does not have
high frequency variations.

 There shall be no dimensionality limit of a sampled function except for possible implementation limits.

NOTE 2 The number of samples required to represent functions with high dimensionality multiplies rapidly unless the
sampling resolution is very low. Also, the process of multilinear interpolation becomes computationally
intensive if the number of inputs m is greater than 2. The multidimensional spline interpolation is even more
computationally intensive.

In addition to the entries in Table 38, a type 0 function dictionary includes those shown in Table 39.

Table 38 – Entries common to all function dictionaries

Key Type Value

FunctionType integer (Required) The function type:
0 Sampled function
2 Exponential interpolation function
3 Stitching function
4 PostScript calculator function

Domain array (Required) An array of 2 × m numbers, where m shall be the number
of input values. For each i from 0 to m − 1, Domain2i shall be less than
or equal to Domain2i+1 , and the ith input value, xi , shall lie in the
interval Domain2i ≤ xi ≤ Domain2i+1 . Input values outside the declared
domain shall be clipped to the nearest boundary value.

Range array (Required for type 0 and type 4 functions, optional otherwise; see
below) An array of 2 × n numbers, where n shall be the number of
output values. For each j from 0 to n − 1, Range2j shall be less than or
equal to Range2j+1 , and the jth output value, yj , shall lie in the interval
Range2j ≤ yj ≤ Range2j+1. Output values outside the declared range
shall be clipped to the nearest boundary value. If this entry is absent,
no clipping shall be done.

PDF 32000-1:2008

94 © Adobe Systems Incorporated 2008 – All rights reserved

The Domain, Encode, and Size entries determine how the function’s input variable values are mapped into the
sample table. For example, if Size is [21 31], the default Encode array shall be [0 20 0 30], which maps the
entire domain into the full set of sample table entries. Other values of Encode may be used.

To explain the relationship between Domain, Encode, Size, Decode, and Range, we use the following
notation:

For a given value of x, Interpolate calculates the y value on the line defined by the two points (xmin , ymin) and
(xmax , ymax).

When a sampled function is called, each input value xi , for 0 £ i < m, shall be clipped to the domain:

That value shall be encoded:

That value shall be clipped to the size of the sample table in that dimension:

The encoded input values shall be real numbers, not restricted to integers. Interpolation shall be used to
determine output values from the nearest surrounding values in the sample table. Each output value rj , for
0 £ j < n, shall then be decoded:

Table 39 – Additional entries specific to a type 0 function dictionary

Key Type Value

Size array (Required) An array of m positive integers that shall specify the
number of samples in each input dimension of the sample table.

BitsPerSample integer (Required) The number of bits that shall represent each sample. (If the
function has multiple output values, each one shall occupy
BitsPerSample bits.) Valid values shall be 1, 2, 4, 8, 12, 16, 24, and
32.

Order integer (Optional) The order of interpolation between samples. Valid values
shall be 1 and 3, specifying linear and cubic spline interpolation,
respectively. Default value: 1.

Encode array (Optional) An array of 2 × m numbers specifying the linear mapping of
input values into the domain of the function’s sample table. Default
value: [0 (Size0 − 1) 0 (Size1 − 1) …].

Decode array (Optional) An array of 2 × n numbers specifying the linear mapping of
sample values into the range appropriate for the function’s output
values. Default value: same as the value of Range.

other stream
attributes

(various) (Optional) Other attributes of the stream that shall provide the sample
values, as appropriate (see Table 5).

y Interpolate x xmin xmax ymin ymax, , , ,)(=

ymin x xmin–)(
ymax ymin–

xmax xmin–
----------------------------×

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

xi′ min max xi Domain2i,)(Domain2i 1+,)(=

ei Interpolate xi′ Domain2i Domain2i 1+ Encode2i Encode2i 1+, , , ,)(=

ei′ min max ei 0,)(Sizei 1–,)(=

© Adobe Systems Incorporated 2008 – All rights reserved 95

PDF 32000-1:2008

Finally, each decoded value shall be clipped to the range:

Sample data shall be represented as a stream of bytes. The bytes shall constitute a continuous bit stream, with
the high-order bit of each byte first. Each sample value shall be represented as a sequence of BitsPerSample
bits. Successive values shall be adjacent in the bit stream; there shall be no padding at byte boundaries.

For a function with multidimensional input (more than one input variable), the sample values in the first
dimension vary fastest, and the values in the last dimension vary slowest.

EXAMPLE 1 For a function f (a, b, c), where a, b, and c vary from 0 to 9 in steps of 1, the sample values would appear
in this order: f (0, 0, 0), f (1, 0, 0), … , f (9, 0, 0), f (0, 1, 0), f (1, 1, 0), … , f (9, 1, 0), f (0, 2, 0), f (1, 2, 0), … ,
f (9, 9, 0), f (0, 0, 1), f (1, 0, 1), and so on.

For a function with multidimensional output (more than one output value), the values shall be stored in the
same order as Range.

The stream data shall be long enough to contain the entire sample array, as indicated by Size, Range, and
BitsPerSample; see 7.3.8.2, "Stream Extent."

Example 2 illustrates a sampled function with 4-bit samples in an array containing 21 columns and 31 rows
(651 values). The function takes two arguments, x and y, in the domain [-1.0 1.0], and returns one value, z, in
that same range. The x argument shall be linearly transformed by the encoding to the domain [0 20] and the y
argument to the domain [0 30]. Using bilinear interpolation between sample points, the function computes a
value for z, which (because BitsPerSample is 4) will be in the range [0 15], and the decoding transforms z to
a number in the range [-1.0 1.0] for the result. The sample array shall be stored in a string of 326 bytes,
calculated as follows (rounded up):

326 bytes = 31 rows ¥ 21 samples / row ¥ 4 bits / sample ³ 8 bits / byte

The first byte contains the sample for the point (-1.0, -1.0) in the high-order 4 bits and the sample for the point
(-0.9, -1.0) in the low-order 4 bits.

EXAMPLE 2 14 0 obj
<< /FunctionType 0

 /Domain [-1.0 1.0 -1.0 1.0]
 /Size [21 31]
 /Encode [0 20 0 30]
 /BitsPerSample 4
 /Range [-1.0 1.0]
 /Decode [-1.0 1.0]
 /Length …
 /Filter …

>>
stream
… 651 sample values …
endstream
endobj

NOTE 3 The Decode entry can be used creatively to increase the accuracy of encoded samples corresponding to
certain values in the range.

EXAMPLE 3 If the range of the function is [-1.0 1.0] and BitsPerSample is 4, the usual value of Decode would be
[-1.0 1.0] and the sample values would be integers in the interval [0 15] (as shown in Figure 8). But if
these values are used, the midpoint of the range, 0.0, is not represented exactly by any sample value,
since it falls halfway between 7 and 8. However, if the Decode array is [-1.0 +1.1429] (1.1429 being

rj′ Interpolate rj 0 2BitsPerSample 1– Decode2j Decode2j 1+, , , ,)(=

yj min max rj′ Range2j,)(Range2j 1+,)(=

PDF 32000-1:2008

96 © Adobe Systems Incorporated 2008 – All rights reserved

approximately equal to 16 ³ 14) and the sample values supplied are in the interval [0 14], the effective
range of [-1.0 1.0] is achieved, and the range value 0.0 is represented by the sample value 7.

The Size value for an input dimension can be 1, in which case all input values in that dimension shall be
mapped to the single allowed value. If Size is less than 4, cubic spline interpolation is not possible and Order 3
shall be ignored if specified.

Figure 8 – Mapping with the Decode array

7.10.3 Type 2 (Exponential Interpolation) Functions

Type 2 functions (PDF 1.3) include a set of parameters that define an exponential interpolation of one input
value and n output values:

In addition to the entries in Table 38, a type 2 function dictionary shall include those listed in Table 40.

Values of Domain shall constrain x in such a way that if N is not an integer, all values of x shall be non-
negative, and if N is negative, no value of x shall be zero. Typically, Domain is declared as [0.0 1.0], and N is
a positive number. To clip the output to a specified range The Range attribute shall be used.

NOTE When N is 1, the function performs a linear interpolation between C0 and C1; therefore, the function can also
be expressed as a sampled function (type 0).

7.10.4 Type 3 (Stitching) Functions

Type 3 functions (PDF 1.3) define a stitching of the subdomains of several 1-input functions to produce a single
new 1-input function. Since the resulting stitching function is a 1-input function, the domain is given by a two-
element array, [Domain0 Domain1].

Table 40 – Additional entries specific to a type 2 function dictionary

Key Type Value

C0 array (Optional) An array of n numbers that shall define the function result when x = 0.0.
Default value: [0.0].

C1 array (Optional) An array of n numbers that shall define the function result when x = 1.0.
Default value: [1.0].

N number (Required) The interpolation exponent. Each input value x shall return n values,
given by yj = C0j + xN × (C1j − C0j), for 0 ≤ j < n.

1

+1

-1

0
2 3 4 5 7 8 9 10 11 12 13 14 15

Samples

Ra
ng

e

/Decode [-1 1]

1

+1

-1

0
2 3 4 6 7 8 9 10 11 12 13 14 15

Samples

Ra
ng

e

/Decode [-1 1.1429]

f x() y0 … yn 1–, ,=

© Adobe Systems Incorporated 2008 – All rights reserved 97

PDF 32000-1:2008

In addition to the entries in Table 38, a type 3 function dictionary shall include those listed in Table 41.

Domain shall be of size 2 (that is, m = 1), and Domain0 shall be strictly less than Domain1 unless k = 1. The
domain shall be partitioned into k subdomains, as indicated by the dictionary’s Bounds entry, which shall be an
array of k - 1 numbers that obey the following relationships (with exceptions as noted below):

The Bounds array shall describe a series of half-open intervals, closed on the left and open on the right
(except the last, which is closed on the right as well). The value of the Functions entry shall be an array of k
functions. The first function shall apply to x values in the first subdomain, Domain0 £ x < Bounds0 ; the second
function shall apply to x values in the second subdomain, Bounds0 £ x < Bounds1 ; and so on. The last
function shall apply to x values in the last subdomain, which includes the upper bound:
Boundsk-2 £ x £ Domain1 . The value of k may be 1, in which case the Bounds array shall be empty and the
single item in the Functions array shall apply to all x values, Domain0 £ x £ Domain1 .

The Encode array contains 2 ¥ k numbers. A value x from the ith subdomain shall be encoded as follows:

for 0 £ i < k. In this equation, Bounds-1 means Domain0 , and Boundsk-1 means Domain1 . If the last bound,
Boundsk-2, is equal to Domain1 , then x ¢ shall be defined to be Encode2i .

NOTE The stitching function is designed to make it easy to combine several functions to be used within one shading
pattern over different parts of the shading’s domain. Shading patterns are discussed in 8.7.4, "Shading
Patterns". The same effect could be achieved by creating a separate shading dictionary for each of the
functions, with adjacent domains. However, since each shading would have similar parameters, and because
the overall effect is one shading, it is more convenient to have a single shading with multiple function
definitions. Also, type 3 functions provide a general mechanism for inverting the domains of 1-input functions.

EXAMPLE Consider a function f with a Domain of [0.0 1.0] and a stitching function g with a Domain of [0.0 1.0], a
Functions array containing f, and an Encode array of [1.0 0.0]. In effect, g (x) = f (1 - x).

7.10.5 Type 4 (PostScript Calculator) Functions

7.10.5.1 General

A type 4 function (PDF 1.3), also called a PostScript calculator function, shall be represented as a stream
containing code written in a small subset of the PostScript language.

Table 41 – Additional entries specific to a type 3 function dictionary

Key Type Value

Functions array (Required) An array of k 1-input functions that shall make up the stitching
function. The output dimensionality of all functions shall be the same, and
compatible with the value of Range if Range is present.

Bounds array (Required) An array of k − 1 numbers that, in combination with Domain, shall
define the intervals to which each function from the Functions array shall apply.
Bounds elements shall be in order of increasing value, and each value shall be
within the domain defined by Domain.

Encode array (Required) An array of 2 × k numbers that, taken in pairs, shall map each
subset of the domain defined by Domain and the Bounds array to the domain
of the corresponding function.

Domain0 Bounds0 Bounds1 … Boundsk 2– Domain1< < < < <

x′ Interpolate x Boundsi 1– Boundsi
· Encode2i Encode2i 1+, , , ,)(=

PDF 32000-1:2008

98 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE Although any function can be sampled (in a type 0 PDF function) and others can be described with exponential
functions (type 2 in PDF), type 4 functions offer greater flexibility and potentially greater accuracy. For
example, a tint transformation function for a hexachrome (six-component) DeviceN colour space with an
alternate colour space of DeviceCMYK (see 8.6.6.5, "DeviceN Colour Spaces") requires a 6-in, 4-out function.
If such a function were sampled with m values for each input variable, the number of samples, 4 ¥ m6, could be
prohibitively large. In practice, such functions can often be written as short, simple PostScript functions.

Type 4 functions also make it possible to include a wide variety of halftone spot functions without the loss of
accuracy that comes from sampling, and without adding to the list of predefined spot functions (see 10.5.3,
"Spot Functions"). All of the predefined spot functions can be written as type 4 functions.

The language that shall be used in a type 4 function contains expressions involving integers, real numbers, and
boolean values only. There shall be no composite data structures such as strings or arrays, no procedures, and
no variables or names. Table 42 lists the operators that can be used in this type of function. (For more
information on these operators, see Appendix B of the PostScript Language Reference, Third Edition.)
Although the semantics are those of the corresponding PostScript operators, a full PostScript interpreter is not
required.

The operand syntax for type 4 functions shall follow PDF conventions rather than PostScript conventions. The
entire code stream defining the function shall be enclosed in braces { } (using LEFT CURLY BRACE (7Bh) and
RIGHT CURLY BRACE (07hD)). Braces also shall delimit expressions that are executed conditionally by the if
and ifelse operators:

• boolean { expression } if

• boolean { expression1 } { expression2 } ifelse

This construct is purely syntactic; unlike in PostScript, no “procedure objects” shall be involved.

A type 4 function dictionary shall include the entries in Table 38, as well as other appropriate stream attributes
(see Table 5). The following example shows a type 4 function equivalent to the predefined spot function
DoubleDot (see 10.5.3, "Spot Functions").

EXAMPLE 10 0 obj
 << /FunctionType 4

 /Domain [-1.0 1.0 -1.0 1.0]
 /Range [-1.0 1.0]
 /Length 71

>>
stream

Table 42 – Operators in type 4 functions

Operator Type Operators

Arithmetic operators abs
add
atan
ceiling
cos

cvi
cvr
div
exp

floor
idiv
ln
log

mod
mul
neg
round

sin
sqrt
sub
truncate

Relational, boolean,
and bitwise
operators

and
bitshift
eq

false
ge
gt

le
lt
ne

not
or

true
xor

Conditional
operators

if ifelse

Stack operators copy
dup

exch
index

pop
roll

© Adobe Systems Incorporated 2008 – All rights reserved 99

PDF 32000-1:2008

{ 360 mul sin
 2 div
 exch 360 mul sin
 2 div
 add
}

endstream
endobj

The Domain and Range entries shall both be required. The input variables shall constitute the initial operand
stack; the items remaining on the operand stack after execution of the function shall be the output variables. It
shall be an error for the number of remaining operands to differ from the number of output variables specified
by Range or for any of them to be objects other than numbers.

Implementations of type 4 functions shall provide a stack with room for at least 100 entries. No implementation
shall be required to provide a larger stack, and it shall be an error to overflow the stack.

Although any integers or real numbers that may appear in the stream fall under the same implementation limits
(defined in Annex C) as in other contexts, the intermediate results in type 4 function computations shall not. An
implementation may use a representation that exceeds those limits. Operations on real numbers, for example,
might use single-precision or double-precision floating-point numbers.

7.10.5.2 Errors in Type 4 Functions

The part of a conforming reader that reads a type 4 function (analogous to the PostScript scanner) shall detect
and report syntax errors. Any errors detected by the conforming reader shall be errors in the PDF file and shall
be handled like other errors in the file.

The part of a conforming reader that executes a type 4 function (analogous to the PostScript interpreter) shall
detect and report errors. This specification does not define a representation for the errors; those details shall be
provided by the conforming reader that processes the PDF file. The following types of errors can occur (among
others):

• Stack overflow

• Stack underflow

• A type error (for example, applying not to a real number)

• A range error (for example, applying sqrt to a negative number)

• An undefined result (for example, dividing by 0)

7.11 File Specifications

7.11.1 General

A PDF file can refer to the contents of another file by using a file specification (PDF 1.1), which shall take either
of two forms:

• A simple file specification shall give just the name of the target file in a standard format, independent of the
naming conventions of any particular file system. It shall take the form of either a string or a dictionary

• A full file specification shall include information related to one or more specific file systems. It shall only be
represented as a dictionary.

PDF 32000-1:2008

100 © Adobe Systems Incorporated 2008 – All rights reserved

A file specification shall refer to a file external to the PDF file or to a file embedded within the referring PDF file,
allowing its contents to be stored or transmitted along with the PDF file. The file shall be considered to be
external to the PDF file in either case.

7.11.2 File Specification Strings

7.11.2.1 General

The standard format for representing a simple file specification in string form divides the string into component
substrings separated by the SOLIDUS character (2Fh) (/). The SOLIDUS is a generic component separator
that shall be mapped to the appropriate platform-specific separator when generating a platform-dependent file
name. Any of the components may be empty. If a component contains one or more literal SOLIDI, each shall be
preceded by a REVERSE SOLIDUS (5Ch) (\), which in turn shall be preceded by another REVERSE SOLIDUS
to indicate that it is part of the string and not an escape character.

EXAMPLE (in \ \ /out)
represents the file name
in / out

The REVERSE SOLIDI shall be removed in processing the string; they are needed only to distinguish the
component values from the component separators. The component substrings shall be stored as bytes and
shall be passed to the operating system without interpretation or conversion of any sort.

7.11.2.2 Absolute and Relative File Specifications

A simple file specification that begins with a SOLIDUS shall be an absolute file specification. The last
component shall be the file name; the preceding components shall specify its context. In some file
specifications, the file name may be empty; for example, URL (uniform resource locator) specifications can
specify directories instead of files. A file specification that does not begin with a SOLIDUS shall be a relative file
specification giving the location of the file relative to that of the PDF file containing it.

In the case of a URL-based file system, the rules of Internet RFC 1808, Relative Uniform Resource Locators
(see the Bibliography), shall be used to compute an absolute URL from a relative file specification and the
specification of the PDF file. Prior to this process, the relative file specification shall be converted to a relative
URL by using the escape mechanism of RFC 1738, Uniform Resource Locators, to represent any bytes that
would be either unsafe according to RFC 1738 or not representable in 7-bit U.S. ASCII. In addition, such URL-
based relative file specifications shall be limited to paths as defined in RFC 1808. The scheme, network
location/login, fragment identifier, query information, and parameter sections shall not be allowed.

In the case of other file systems, a relative file specification shall be converted to an absolute file specification
by removing the file name component from the specification of the containing PDF file and appending the
relative file specification in its place.

EXAMPLE 1 The relative file specification

ArtFiles / Figure1 . pdf

appearing in a PDF file whose specification is

/ HardDisk / PDFDocuments / AnnualReport / Summary . pdf

yields the absolute specification

/ HardDisk / PDFDocuments / AnnualReport / ArtFiles / Figure1 . pdf

The special component . . (two PERIODs) (2Eh) can be used in a relative file specification to move up a level in
the file system hierarchy. After an absolute specification has been derived, when the component immediately
preceding . . is not another . . , the two cancel each other; both are eliminated from the file specification and the
process is repeated.

© Adobe Systems Incorporated 2008 – All rights reserved 101

PDF 32000-1:2008

EXAMPLE 2 The relative file specification from EXAMPLE 1 in this sub-clause using the .. (two PERIODs) special
component

. . /. . / ArtFiles / Figure1 . pdf

would yield the absolute specification

/ HardDisk / ArtFiles / Figure1 . pdf

7.11.2.3 Conversion to Platform-Dependent File Names

The conversion of a file specification to a platform-dependent file name depends on the specific file naming
conventions of each platform:

• For DOS, the initial component shall be either a physical or logical drive identifier or a network resource
name as returned by the Microsoft Windows function WNetGetConnection, and shall be followed by a
COLON (3Ah) (:). A network resource name shall be constructed from the first two components; the first
component shall be the server name and the second shall be the share name (volume name). All
components shall be separated by REVERSE SOLIDI (backslashes) (5Ch). It shall be possible to specify
an absolute DOS path without a drive by making the first component empty. (Empty components are
ignored by other platforms.)

• For Mac OS, all components shall be separated by COLONs.

• For UNIX, all components shall be separated by SOLIDI (2Fh) (slashes). An initial SOLIDUS, if present,
shall be preserved.

Strings used to specify a file name shall be interpreted in the standard encoding for the platform on which the
document is being viewed. Table 43 shows examples of file specifications on the most common platforms.

NOTE 1 When creating documents that are to be viewed on multiple platforms, care should be taken to ensure file
name compatibility. Only a subset of the U.S. ASCII character set should be used in file specifications: the
uppercase alphabetic characters (A–Z), the numeric characters (0–9), the PERIOD (2Eh) and the LOW LINE
(underscore) (5Fh). The PERIOD has special meaning in DOS and Windows file names, and as the first
character in a Mac OS pathname. In file specifications, the PERIOD should be used only to separate a base
file name from a file extension.

NOTE 2 Some file systems are case-insensitive, and names within a directory are unique so names should remain
distinguishable if lowercase letters are changed to uppercase or vice versa. On DOS and Windows 3.1
systems and on some CD-ROM file systems, file names are limited to 8 characters plus a 3-character
extension. File system software typically converts long names to short names by retaining the first 6 or 7
characters of the file name and the first 3 characters after the last PERIOD, if any. Since characters beyond the
sixth or seventh are often converted to other values unrelated to the original value, file names should be
distinguishable from the first 6 characters.

Table 43 – Examples of file specifications

System System-dependent paths Written form

DOS \ pdfdocs \ spec . pdf (no drive)
 r : \ pdfdocs \ spec . pdf
pclib / eng : \ pdfdocs \ spec . pdf

(/ / pdfdocs / spec . pdf)
(/ r / pdfdocs / spec . pdf)
(/ pclib / eng / pdfdocs /
 spec . pdf)

Mac OS Mac HD : PDFDocs : spec . pdf (/Mac HD/ PDFDocs/
 spec . pdf)

UNIX / user / fred / pdfdocs / spec . pdf
 pdfdocs / spec . pdf (relative)

(/ user / fred / pdfdocs /
 spec . pdf)
 (pdfdocs / spec . pdf)

PDF 32000-1:2008

102 © Adobe Systems Incorporated 2008 – All rights reserved

7.11.2.4 Multiple-Byte Strings in File Specifications

In PDF 1.2 or higher, a file specification may contain multiple-byte character codes, represented in
hexadecimal form between angle brackets (< and >) (using LESS-THAN SIGN (3Ch) and GREATER-THAN
SIGN (3Eh)). Since the SOLIDUS (2Fh) (slash character), denoted as < 2F >, is used as a component delimiter
and the REVERSE SOLIDUS (5Ch) (backslash character), denoted as < 5C >, is used as an escape character,
any occurrence of either of these bytes in a multiple-byte character shall be preceded by the ASCII code for the
SOLIDUS (2Fh).

EXAMPLE A file name containing the 2-byte character code < 89 5C > is written as < 89 5C 5C >. When the
application encounters this sequence of bytes in a file name, it replaces the sequence with the original
2-byte code.

7.11.3 File Specification Dictionaries

The dictionary form of file specification provides more flexibility than the string form, allowing different files to be
specified for different file systems or platforms, or for file systems other than the standard ones (DOS/Windows,
Mac OS, and UNIX). Table 44 shows the entries in a file specification dictionary. Regardless of the platform,
conforming readers should use the F and UF (beginning with PDF 1.7) entries to specify files. The UF entry is
optional, but should be included because it enables cross-platform and cross-language compatibility.

Table 44 – Entries in a file specification dictionary

Key Type Value

Type name (Required if an EF or RF entry is present; recommended always) The type of
PDF object that this dictionary describes; shall be Filespec for a file
specification dictionary.

FS name (Optional) The name of the file system that shall be used to interpret this file
specification. If this entry is present, all other entries in the dictionary shall be
interpreted by the designated file system. PDF shall define only one standard
file system name, URL (see 7.11.5, "URL Specifications"); an application can
register other names (see Annex E). This entry shall be independent of the F,
UF, DOS, Mac, and Unix entries.

F string (Required if the DOS, Mac, and Unix entries are all absent; amended with the
UF entry for PDF 1.7) A file specification string of the form described in 7.11.2,
"File Specification Strings," or (if the file system is URL) a uniform resource
locator, as described in 7.11.5, "URL Specifications."
The UF entry should be used in addition to the F entry. The UF entry provides
cross-platform and cross-language compatibility and the F entry provides
backwards compatibility.

UF text string (Optional, but recommended if the F entry exists in the dictionary; PDF 1.7) A
Unicode text string that provides file specification of the form described in
7.11.2, "File Specification Strings." This is a text string encoded using
PDFDocEncoding or UTF-16BE with a leading byte-order marker (as defined
in 7.9.2.2, "Text String Type"). The F entry should be included along with this
entry for backwards compatibility reasons.

DOS byte string (Optional) A file specification string (see 7.11.2, "File Specification Strings")
representing a DOS file name.
This entry is obsolescent and should not be used by conforming writers.

Mac byte string (Optional) A file specification string (see 7.11.2, "File Specification Strings")
representing a Mac OS file name.
This entry is obsolescent and should not be used by conforming writers.

Unix byte string (Optional) A file specification string (see 7.11.2, "File Specification Strings")
representing a UNIX file name.
This entry is obsolescent and should not be used by conforming writers.

© Adobe Systems Incorporated 2008 – All rights reserved 103

PDF 32000-1:2008

7.11.4 Embedded File Streams

7.11.4.1 General

If a PDF file contains file specifications that refer to an external file and the PDF file is archived or transmitted,
some provision should be made to ensure that the external references will remain valid. One way to do this is to
arrange for copies of the external files to accompany the PDF file. Embedded file streams (PDF 1.3) address
this problem by allowing the contents of referenced files to be embedded directly within the body of the PDF
file. This makes the PDF file a self-contained unit that can be stored or transmitted as a single entity. (The
embedded files are included purely for convenience and need not be directly processed by any conforming
reader.)

NOTE If the file contains OPI (Open Prepress Interface) dictionaries that refer to externally stored high-resolution
images (see 14.11.7, "Open Prepress Interface (OPI)"), the image data can be incorporated into the PDF file
with embedded file streams.

An embedded file stream shall be included in a PDF document in one of the following ways:

• Any file specification dictionary in the document may have an EF entry that specifies an embedded file
stream. The stream data shall still be associated with a location in the file system. In particular, this method

ID array (Optional) An array of two byte strings constituting a file identifier (see 14.4,
"File Identifiers") that should be included in the referenced file.
NOTE The use of this entry improves an application’s chances of finding

the intended file and allows it to warn the user if the file has
changed since the link was made.

V boolean (Optional; PDF 1.2) A flag indicating whether the file referenced by the file
specification is volatile (changes frequently with time). If the value is true,
applications shall not cache a copy of the file. For example, a movie
annotation referencing a URL to a live video camera could set this flag to true
to notify the conforming reader that it should re-acquire the movie each time it
is played. Default value: false.

EF dictionary (Required if RF is present; PDF 1.3; amended to include the UF key in PDF
1.7) A dictionary containing a subset of the keys F, UF, DOS, Mac, and Unix,
corresponding to the entries by those names in the file specification dictionary.
The value of each such key shall be an embedded file stream (see 7.11.4,
"Embedded File Streams") containing the corresponding file. If this entry is
present, the Type entry is required and the file specification dictionary shall be
indirectly referenced.
The F and UF entries should be used in place of the DOS, Mac, or Unix
entries.

RF dictionary (Optional; PDF 1.3) A dictionary with the same structure as the EF dictionary,
which shall be present. Each key in the RF dictionary shall also be present in
the EF dictionary. Each value shall be a related files array (see 7.11.4.2,
"Related Files Arrays") identifying files that are related to the corresponding
file in the EF dictionary. If this entry is present, the Type entry is required and
the file specification dictionary shall be indirectly referenced.

Desc text string (Optional; PDF 1.6) Descriptive text associated with the file specification. It
shall be used for files in the EmbeddedFiles name tree (see 7.7.4, "Name
Dictionary").

CI dictionary (Optional; shall be indirect reference; PDF 1.7) A collection item dictionary,
which shall be used to create the user interface for portable collections (see
7.11.6, "Collection Items").

Table 44 – Entries in a file specification dictionary (continued)

Key Type Value

PDF 32000-1:2008

104 © Adobe Systems Incorporated 2008 – All rights reserved

shall be used for file attachment annotations (see 12.5.6.15, "File Attachment Annotations"), which
associate the embedded file with a location on a page in the document.

• Embedded file streams may be associated with the document as a whole through the EmbeddedFiles
entry (PDF 1.4) in the PDF document’s name dictionary (see 7.7.4, "Name Dictionary"). The associated
name tree shall map name strings to file specifications that refer to embedded file streams through their EF
entries.

Beginning with PDF 1.6, the Desc entry of the file specification dictionary (see Table 44) should be used to
provide a textual description of the embedded file, which can be displayed in the user interface of a conforming
reader. Previously, it was necessary to identify document-level embedded files by the name string provided in
the name dictionary associated with an embedded file stream in much the same way that the JavaScript name
tree associates name strings with document-level JavaScript actions (see 12.6.4.16, "JavaScript Actions").

The stream dictionary describing an embedded file shall contain the standard entries for any stream, such as
Length and Filter (see Table 5), as well as the additional entries shown in Table 45.

Table 45 – Additional entries in an embedded file stream dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be EmbeddedFile for an embedded file stream.

Subtype name (Optional) The subtype of the embedded file. The value of this entry
shall be a first-class name, as defined in Annex E. Names without a
registered prefix shall conform to the MIME media type names defined
in Internet RFC 2046, Multipurpose Internet Mail Extensions (MIME),
Part Two: Media Types (see the Bibliography), with the provision that
characters not allowed in names shall use the 2-character
hexadecimal code format described in 7.3.5, "Name Objects."

Params dictionary (Optional) An embedded file parameter dictionary that shall contain
additional file-specific information (see Table 46).

Table 46 – Entries in an embedded file parameter dictionary

Key Type Value

Size integer (Optional) The size of the uncompressed embedded file, in bytes.

CreationDate date (Optional) The date and time when the embedded file was created.

ModDate date (Optional) The date and time when the embedded file was last
modified.

Mac dictionary (Optional) A subdictionary containing additional information specific to
Mac OS files (see Table 47).

CheckSum string (Optional) A 16-byte string that is the checksum of the bytes of the
uncompressed embedded file. The checksum shall be calculated by
applying the standard MD5 message-digest algorithm (described in
Internet RFC 1321, The MD5 Message-Digest Algorithm; see the
Bibliography) to the bytes of the embedded file stream.

© Adobe Systems Incorporated 2008 – All rights reserved 105

PDF 32000-1:2008

For Mac OS files, the Mac entry in the embedded file parameter dictionary should hold a further subdictionary
containing Mac OS–specific file information. Table 47 shows the contents of this subdictionary.

7.11.4.2 Related Files Arrays

In some circumstances, a PDF file can refer to a group of related files, such as the set of five files that make up
a DCS 1.0 colour-separated image. The file specification explicitly names only one of the files; the rest shall be
identified by some systematic variation of that file name (such as by altering the extension). When such a file is
to be embedded in a PDF file, the related files shall be embedded as well. This is accomplished by including a
related files array (PDF 1.3) as the value of the RF entry in the file specification dictionary. The array shall have
2 ¥ n elements, which shall be paired in the form

[string1 stream1
 string2 stream2
 …
 stringn streamn
]

The first element of each pair shall be a string giving the name of one of the related files; the second element
shall be an embedded file stream holding the file’s contents.

EXAMPLE In the following example, objects 21, 31, and 41 are embedded file streams containing the DOS file
SUNSET . EPS, the Mac OS file Sunset . eps, and the UNIX file Sunset . eps, respectively. The file
specification dictionary’s RF entry specifies an array, object 30, identifying a set of embedded files related
to the Mac OS file, forming a DCS 1.0 set. The example shows only the first two embedded file streams in
the set; an actual PDF file would, of course, include all of them.

10 0 obj % File specification dictionary

<< /Type /Filespec
/DOS (SUNSET . EPS)
 /Mac (Sunset . eps) % Name of Mac OS file
 /Unix (Sunset . eps)

 /EF << /DOS 21 0 R

/Mac 31 0 R % Embedded Mac OS file
/Unix 41 0 R

 >>
/RF << /Mac 30 0 R >> % Related files array for Mac OS file

>>
endobj

30 0 obj % Related files array for Mac OS file

[(Sunset . eps) 31 0 R % Includes file Sunset . eps itself
 (Sunset . C) 32 0 R
 (Sunset . M) 33 0 R
 (Sunset . Y) 34 0 R

Table 47 – Entries in a Mac OS file information dictionary

Key Type Value

Subtype integer (Optional) The embedded file’s file type. It shall be encoded as an integer
according to Mac OS conventions: a 4-character ASCII text literal, that shall be
a 32-bit integer, with the high-order byte first.
EXAMPLE The file type “CARO” is represented as the hexadecimal

integer 4341524F, which is expressed in decimal as
1128354383.

Creator integer (Optional) The embedded file’s creator signature shall be encoded in the same
way as Subtype.

ResFork stream (Optional) The binary contents of the embedded file’s resource fork.

PDF 32000-1:2008

106 © Adobe Systems Incorporated 2008 – All rights reserved

 (Sunset . K) 35 0 R
]

endobj

31 0 obj % Embedded file stream for Mac OS file

<< /Type /EmbeddedFile % Sunset . eps
 /Length …
 /Filter …

>>
stream
… Data for Sunset . eps …
endstream
endobj

32 0 obj % Embedded file stream for related file

<< /Type /EmbeddedFile % Sunset . C
 /Length …
 /Filter …

>>
stream
… Data for Sunset . C …
endstream
endobj

7.11.5 URL Specifications

When the FS entry in a file specification dictionary has the value URL, the value of the F entry in that dictionary
is not a file specification string, but a uniform resource locator (URL) of the form defined in Internet RFC 1738,
Uniform Resource Locators (see the Bibliography).

EXAMPLE The following example shows a URL specification.

<< /FS /URL

 /F (ftp : / / www . beatles . com / Movies / AbbeyRoad . mov)
>>

The URL shall adhere to the character-encoding requirements specified in RFC 1738. Because 7-bit U.S.
ASCII is a strict subset of PDFDocEncoding, this value shall also be considered to be in that encoding.

7.11.6 Collection Items

Beginning with PDF 1.7, a collection item dictionary shall contain the data described by the collection schema
dictionary for a particular file in a collection (see 12.3.5, "Collections"). Table 48 describes the entries in a
collection item dictionary.

Table 48 – Entries in a collection item dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be CollectionItem for a collection item dictionary.

© Adobe Systems Incorporated 2008 – All rights reserved 107

PDF 32000-1:2008

A collection subitem dictionary provides the data corresponding to the related fields in the collection dictionary,
and it provides a means of associating a prefix string with that data value. The prefix shall be ignored by the
sorting algorithm. Table 49 describes the entries in a collection subitem dictionary.

7.11.7 Maintenance of File Specifications

The techniques described in this sub-clause can be used to maintain the integrity of the file specifications within
a PDF file during the following types of operations:

• Updating the relevant file specification when a referenced file is renamed

• Determining the complete collection of files that are copied to a mirror site

• When creating new links to external files, discovering existing file specifications that refer to the same files
and sharing them

• Finding the file specifications associated with embedded files to be packed or unpacked

NOTE 1 It is not possible, in general, to find all file specification strings in a PDF file because there is no way to
determine whether a given string is a file specification string. It is possible, however, to find all file specification
dictionaries, provided that they meet the following conditions:

They are indirect objects.

They contain a Type entry whose value is the name Filespec.

NOTE 2 A conforming reader can locate all of the file specification dictionaries by traversing the PDF file’s cross-
reference table (see 7.5.4, "Cross-Reference Table") and finding all dictionaries with Type keys whose value is
Filespec. For this reason, all file specifications should be expressed in dictionary form and meet the conditions
stated above. Any file specification dictionary specifying embedded files (that is, one that contains an EF entry)
should satisfy these conditions (see Table 44).

Other
keys

text string,
date,
number or
dictionary

(Optional) Provides the data corresponding to the related fields in the
collection dictionary. If the entry is a dictionary, then it shall be a collection
subitem dictionary (see Table 49).
The type of each entry shall match the type of data identified by the collection
field dictionary (see Table 157) referenced by the same key in the collection
schema dictionary (see Table 156).
EXAMPLE If the corresponding collection field has a Subtype entry of

S, then the entry is a text string.

A single collection item dictionary may contain multiple entries, with one entry
representing each key (see EXAMPLE 1 in 12.3.5, "Collections").

Table 49 – Entries in a collection subitem dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be CollectionSubitem for a collection item dictionary.

D text string,
date, or
number

(Optional) The data corresponding to the related entry in the collection field
dictionary (see Table 157). The type of data shall match the data type
identified by the corresponding collection field dictionary. Default: none.

P text string (Optional) A prefix string that shall be concatenated with the text string
presented to the user. This entry is ignored when a conforming reader sorts
the items in the collection. Default: none.

Table 48 – Entries in a collection item dictionary (continued)

Key Type Value

PDF 32000-1:2008

108 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 3 It may not be possible to locate file specification dictionaries that are direct objects, since they are neither self-
typed nor necessarily reachable by any standard path of object references.

NOTE 4 Files may be embedded in a PDF file either directly, using the EF entry in a file specification dictionary, or
indirectly, using related files arrays specified in the RF entry. If a file is embedded indirectly, its name is given
by the string that precedes the embedded file stream in the related files array. If it is embedded directly, its
name is obtained from the value of the corresponding entry in the file specification dictionary.

EXAMPLE The EXAMPLE in 7.11.4.2, "Related Files Arrays," for instance, shows the EF dictionary having a DOS
entry identifying object number 21 as an embedded file stream. The name of the embedded DOS file,
SUNSET . EPS, is given by the DOS entry in the file specification dictionary.

NOTE 5 A given external file may be referenced from more than one file specification. Therefore, when embedding a
file with a given name, it is recommended to check for other occurrences of the same name as the value
associated with the corresponding key in other file specification dictionaries. This requires finding all
embeddable file specifications and, for each matching key, checking for both of the following conditions:

The string value associated with the key matches the name of the file being embedded.

A file has not already been embedded for the file specification.

NOTE 6 If there is already a corresponding key in the EF dictionary, a file has already been embedded for that use of
the file name.

NOTE 7 Files associated with a given file name need not be unique. The same file name, such as readme . txt, may be
associated with different embedded files in distinct file specifications.

7.12 Extensions Dictionary

7.12.1 General

The extensions dictionary, an entry in the document’s catalog dictionary, if present, shall contain one or more
entries identifying developer-defined extensions to the ISO 32000-1 Standard. An extensions dictionary, not
shown, may optionally contain a Type entry whose value is the name Extensions. The keys in the extensions
dictionary shall be names consisting only of the registered prefixes, described in Annex E, of the developers
whose extensions are being used. The values shall be developer extensions dictionaries specifying developer-
defined version information as shown in Table 50. The extensions dictionary, all developer extensions
dictionary entries in the extensions dictionary, as well as their entries, all shall be direct objects (i.e., this
information shall be nested directly within the catalog dictionary with no indirect objects used).

7.12.2 Developer Extensions Dictionary

Table 50 describes the entries in a developer extensions dictionary.

Table 50 – Entries in a developer extensions dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be DeveloperExtensions.

BaseVersion name (Required) The name of the PDF version to which this extension applies. The
name shall be consistent with the syntax used for the Version entry of the
catalog dictionary (see 7.7.2, “Document Catalog”).

ExtensionLevel integer (Required) An integer defined by the developer to denote the extension being
used. If the developer introduces more than one extension to a given
BaseVersion the extension level numbers assigned by that developer shall
increase over time.

© Adobe Systems Incorporated 2008 – All rights reserved 109

PDF 32000-1:2008

7.12.3 BaseVersion

The value of the BaseVersion entry shall be a name and shall be consistent with the syntax used for the
Version entry value of the catalog dictionary (see 7.7.2, “Document Catalog”). The value of BaseVersion,
when treated as a version number, shall be less than or equal to the PDF version, both in the document header
(see 7.5.2, “File Header”) and the catalog Version key value, if present. The value of BaseVersion may be
different from the version number in the document header or that supplied by the Version key in the Catalog.
This is because it reflects the version of the standard that has been extended and not the version of this
particular file.

NOTE 1 The value of BaseVersion is not to be interpreted as a real number but as two integers with a PERIOD (2Eh)
between them.

7.12.4 ExtensionLevel

The value of the ExtensionLevel entry shall be an integer, which shall be interpreted with respect to the
BaseVersion value. If a developer has released multiple extensions against the same BaseVersion value,
they shall be ordered over time and the ExtensionsLevel numbers shall be a monotonically increasing
sequence over time.

EXAMPLE 1 %PDF–1.7
<</Type /Catalog
 /Extensions

<< /ADBE
<</BaseVersion /1.7
 /ExtensionLevel 3
>>

>>
>>

EXAMPLE 2 %PDF–1.7
<</Type /Catalog
 /Extensions

<< /GLGR
<</BaseVersion /1.7
 /ExtensionLevel 1002
>>

>>
>>

EXAMPLE 3 %PDF–1.7
<</Type /Catalog
 /Extensions

<< /ADBE
<</BaseVersion /1.7
 /ExtensionLevel 3
>>

 /GLGR
<</BaseVersion /1.7
 /ExtensionLevel 1002
>>

>>
>>

PDF 32000-1:2008

110 © Adobe Systems Incorporated 2008 – All rights reserved

8 Graphics

8.1 General

The graphics operators used in PDF content streams describe the appearance of pages that are to be
reproduced on a raster output device. The facilities described in this clause are intended for both printer and
display applications.

The graphics operators form six main groups:

• Graphics state operators manipulate the data structure called the graphics state, the global framework
within which the other graphics operators execute. The graphics state includes the current transformation
matrix (CTM), which maps user space coordinates used within a PDF content stream into output device
coordinates. It also includes the current colour, the current clipping path, and many other parameters that
are implicit operands of the painting operators.

• Path construction operators specify paths, which define shapes, line trajectories, and regions of various
sorts. They include operators for beginning a new path, adding line segments and curves to it, and closing
it.

• Path-painting operators fill a path with a colour, paint a stroke along it, or use it as a clipping boundary.

• Other painting operators paint certain self-describing graphics objects. These include sampled images,
geometrically defined shadings, and entire content streams that in turn contain sequences of graphics
operators.

• Text operators select and show character glyphs from fonts (descriptions of typefaces for representing text
characters). Because PDF treats glyphs as general graphical shapes, many of the text operators could be
grouped with the graphics state or painting operators. However, the data structures and mechanisms for
dealing with glyph and font descriptions are sufficiently specialized that clause 9, "Text" focuses on them.

• Marked-content operators associate higher-level logical information with objects in the content stream.
This information does not affect the rendered appearance of the content (although it may determine if the
content should be presented at all; see 8.11, "Optional Content"); it is useful to applications that use PDF
for document interchange. Marked content is described in 14.6, "Marked Content".

This clause presents general information about device-independent graphics in PDF: how a PDF content
stream describes the abstract appearance of a page. Rendering—the device-dependent part of graphics—is
covered in clause 10, "Rendering". The Bibliography lists a number of books that give details of these computer
graphics concepts and their implementation.

8.2 Graphics Objects

As discussed in 7.8.2, "Content Streams", the data in a content stream shall be interpreted as a sequence of
operators and their operands, expressed as basic data objects according to standard PDF syntax. A content
stream can describe the appearance of a page, or it can be treated as a graphical element in certain other
contexts.

The operands and operators shall be written sequentially using postfix notation. Although this notation
resembles the sequential execution model of the PostScript language, a PDF content stream is not a program
to be interpreted; rather, it is a static description of a sequence of graphics objects. There are specific rules,
described below, for writing the operands and operators that describe a graphics object.

PDF provides five types of graphics objects:

• A path object is an arbitrary shape made up of straight lines, rectangles, and cubic Bézier curves. A path
may intersect itself and may have disconnected sections and holes. A path object ends with one or more

© Adobe Systems Incorporated 2008 – All rights reserved 111

PDF 32000-1:2008

painting operators that specify whether the path shall be stroked, filled, used as a clipping boundary, or
some combination of these operations.

• A text object consists of one or more character strings that identify sequences of glyphs to be painted. Like
a path, text can be stroked, filled, or used as a clipping boundary.

• An external object (XObject) is an object defined outside the content stream and referenced as a named
resource (see 7.8.3, "Resource Dictionaries"). The interpretation of an XObject depends on its type. An
image XObject defines a rectangular array of colour samples to be painted; a form XObject is an entire
content stream to be treated as a single graphics object. Specialized types of form XObjects shall be used
to import content from one PDF file into another (reference XObjects) and to group graphical elements
together as a unit for various purposes (group XObjects). In particular, the latter are used to define
transparency groups for use in the transparent imaging model (transparency group XObjects, discussed in
detail in clause 11, "Transparency"). There is also a PostScript XObject that may appear in some existing
PDF files, but it should not be used by a PDF 1.7 conforming writer.

• An inline image object uses a special syntax to express the data for a small image directly within the
content stream.

• A shading object describes a geometric shape whose colour is an arbitrary function of position within the
shape. (A shading can also be treated as a colour when painting other graphics objects; it is not
considered to be a separate graphics object in that case.)

PDF 1.3 and earlier versions use an opaque imaging model in which each graphics object is painted in
sequence, completely obscuring any previous marks it may overlay on the page. PDF 1.4 introduced a
transparent imaging model in which objects can be less than fully opaque, allowing previously painted marks to
show through. Each object is painted on the page with a specified opacity, which may be constant at every
point within the object’s shape or may vary from point to point. The previously existing contents of the page
form a backdrop with which the new object is composited, producing results that combine the colours of the
object and backdrop according to their respective opacity characteristics. The objects at any given point on the
page forms a transparency stack, where the stacking order is defined to be the order in which the objects shall
be specified, bottommost object first. All objects in the stack can potentially contribute to the result, depending
on their colours, shapes, and opacities.

PDF’s graphics parameters are so arranged that objects shall be painted by default with full opacity, reducing
the behaviour of the transparent imaging model to that of the opaque model. Accordingly, the material in this
clause applies to both the opaque and transparent models except where explicitly stated otherwise; the
transparent model is described in its full generality in clause 11, "Transparency".

Although the painting behaviour described above is often attributed to individual operators making up an object,
it is always the object as a whole that is painted. Figure 9 in Annex L shows the ordering rules for the
operations that define graphics objects. Some operations shall be permitted only in certain types of graphics
objects or in the intervals between graphics objects (called the page description level in the figure). Every
content stream begins at the page description level, where changes may be made to the graphics state, such
as colours and text attributes, as discussed in the following sub-clauses.

In the Figure 9 in Annex L, arrows indicate the operators that mark the beginning or end of each type of
graphics object. Some operators are identified individually, others by general category. Table 51 summarizes
these categories for all PDF operators.

Table 51 – Operator Categories

Category Operators Table

General graphics state w, J, j, M, d, ri, i, gs 57

Special graphics state q, Q, cm 57

Path construction m, l, c, v, y, h, re 59

PDF 32000-1:2008

112 © Adobe Systems Incorporated 2008 – All rights reserved

Path painting S, s, f, F, f*, B, B*, b, b*, n 60

Clipping paths W, W* 61

Text objects BT, ET 107

Text state Tc, Tw, Tz, TL, Tf, Tr, Ts

Text positioning Td, TD, Tm, T* 108

Text showing Tj, TJ, ', " 109

Type 3 fonts d0, d1 113

Color CS, cs, SC, SCN, sc, scn, G, g, RG,
rg, K, k

74

Shading patterns sh 77

Inline images BI, ID, EI 92

XObjects Do 87

Marked content MP, DP, BMC, BDC, EMC 320

Compatibility BX, EX 32

Table 51 – Operator Categories (continued)

Category Operators Table

© Adobe Systems Incorporated 2008 – All rights reserved 113

PDF 32000-1:2008

Figure 9 – Graphics Objects

EXAMPLE The path construction operators m and re signal the beginning of a path object. Inside the path object,
additional path construction operators are permitted, as are the clipping path operators W and W*, but not
general graphics state operators such as w or J. A path-painting operator, such as S or f, ends the path
object and returns to the page description level.

NOTE A conforming reader may process a content stream whose operations violate these rules for describing
graphics objects and can produce unpredictable behaviour, even though it may display and print the stream
correctly. Applications that attempt to extract graphics objects for editing or other purposes depend on the
objects’ being well formed. The rules for graphics objects are also important for the proper interpretation of
marked content (see 14.6, "Marked Content").

A graphics object also implicitly includes all graphics state parameters that affect its behaviour. For instance, a
path object depends on the value of the current colour parameter at the moment the path object is defined. The
effect shall be as if this parameter were specified as part of the definition of the path object. However, the
operators that are invoked at the page description level to set graphics state parameters shall not be

Path object

Allowed operators:
• Path construction

Text object

Allowed operators:
• General graphics state
• Color
• Text state
• Text-showing
• Text-positioning
• Marked-content

Page description level

Allowed operators:
• General graphics state
• Special graphics state
• Color
• Text state
• Marked-content

Clipping path object

Allowed operators:
• None

Shading object

Allowed operators:
• None

In-line image object

Allowed operators:
• ID

External object

Allowed operators:
• None

(immediate)

Path-painting
operators

(immediate)

Path-painting
operators

m, re

EI BI Do

sh

BT ETW, W*

PDF 32000-1:2008

114 © Adobe Systems Incorporated 2008 – All rights reserved

considered to belong to any particular graphics object. Graphics state parameters should be specified only
when they change. A graphics object can depend on parameters that were defined much earlier.

Similarly, the individual character strings within a text object implicitly include the graphics state parameters on
which they depend. Most of these parameters may be set inside or outside the text object. The effect is as if
they were separately specified for each text string.

The important point is that there is no semantic significance to the exact arrangement of graphics state
operators. A conforming reader or writer of a PDF content stream may change an arrangement of graphics
state operators to any other arrangement that achieves the same values of the relevant graphics state
parameters for each graphics object. A conforming reader or writer shall not infer any higher-level logical
semantics from the arrangement of tokens constituting a graphics object. A separate mechanism, marked
content (see 14.6, "Marked Content"), allows such higher-level information to be explicitly associated with the
graphics objects.

8.3 Coordinate Systems

8.3.1 General

Coordinate systems define the canvas on which all painting occurs. They determine the position, orientation,
and size of the text, graphics, and images that appear on a page. This sub-clause describes each of the
coordinate systems used in PDF, how they are related, and how transformations among them are specified.

NOTE The coordinate systems discussed in this sub-clause apply to two-dimensional graphics. PDF 1.6 introduced
the ability to display 3D artwork, in which objects are described in a three-dimensional coordinate system, as
described in 13.6.5, "Coordinate Systems for 3D".

8.3.2 Coordinate Spaces

8.3.2.1 General

Paths and positions shall be defined in terms of pairs of coordinates on the Cartesian plane. A coordinate pair
is a pair of real numbers x and y that locate a point horizontally and vertically within a two-dimensional
coordinate space. A coordinate space is determined by the following properties with respect to the current
page:

• The location of the origin

• The orientation of the x and y axes

• The lengths of the units along each axis

PDF defines several coordinate spaces in which the coordinates specifying graphics objects shall be
interpreted. The following sub-clauses describe these spaces and the relationships among them.

Transformations among coordinate spaces shall be defined by transformation matrices, which can specify any
linear mapping of two-dimensional coordinates, including translation, scaling, rotation, reflection, and skewing.
Transformation matrices are discussed in 8.3.3, "Common Transformations" and 8.3.4, "Transformation
Matrices".

8.3.2.2 Device Space

The contents of a page ultimately appear on a raster output device such as a display or a printer. Such devices
vary greatly in the built-in coordinate systems they use to address pixels within their imageable areas. A
particular device’s coordinate system is called its device space. The origin of the device space on different
devices can fall in different places on the output page; on displays, the origin can vary depending on the
window system. Because the paper or other output medium moves through different printers and imagesetters
in different directions, the axes of their device spaces may be oriented differently. For instance, vertical (y)

© Adobe Systems Incorporated 2008 – All rights reserved 115

PDF 32000-1:2008

coordinates may increase from the top of the page to the bottom on some devices and from bottom to top on
others. Finally, different devices have different resolutions; some even have resolutions that differ in the
horizontal and vertical directions.

NOTE If coordinates in a PDF file were specified in device space, the file would be device-dependent and would
appear differently on different devices.

EXAMPLE Images specified in the typical device spaces of a 72-pixel-per-inch display and a 600-dot-per-inch printer
would differ in size by more than a factor of 8; an 8-inch line segment on the display would appear less
than 1 inch long on the printer. Figure 10 in Annex L shows how the same graphics object, specified in
device space, can appear drastically different when rendered on different output devices.

Figure 10 – Device Space

8.3.2.3 User Space

To avoid the device-dependent effects of specifying objects in device space, PDF defines a device-independent
coordinate system that always bears the same relationship to the current page, regardless of the output device
on which printing or displaying occurs. This device-independent coordinate system is called user space.

The user space coordinate system shall be initialized to a default state for each page of a document. The
CropBox entry in the page dictionary shall specify the rectangle of user space corresponding to the visible
area of the intended output medium (display window or printed page). The positive x axis extends horizontally
to the right and the positive y axis vertically upward, as in standard mathematical practice (subject to alteration
by the Rotate entry in the page dictionary). The length of a unit along both the x and y axes is set by the
UserUnit entry (PDF 1.6) in the page dictionary (see Table 30). If that entry is not present or supported, the
default value of 1 ⁄ 72 inch is used. This coordinate system is called default user space.

NOTE 1 In PostScript, the origin of default user space always corresponds to the lower-left corner of the output
medium. While this convention is common in PDF documents as well, it is not required; the page dictionary’s
CropBox entry can specify any rectangle of default user space to be made visible on the medium.

NOTE 2 The default for the size of the unit in default user space (1 ⁄ 72 inch) is approximately the same as a point, a unit
widely used in the printing industry. It is not exactly the same, however; there is no universal definition of a
point.

Conceptually, user space is an infinite plane. Only a small portion of this plane corresponds to the imageable
area of the output device: a rectangular region defined by the CropBox entry in the page dictionary. The region
of default user space that is viewed or printed can be different for each page and is described in 14.11.2, "Page
Boundaries".

Coordinates in user space (as in any other coordinate space) may be specified as either integers or real
numbers, and the unit size in default user space does not constrain positions to any arbitrary grid. The
resolution of coordinates in user space is not related in any way to the resolution of pixels in device space.

Device space for
72-dpi screen

Device space for
300-dpi printer

PDF 32000-1:2008

116 © Adobe Systems Incorporated 2008 – All rights reserved

The transformation from user space to device space is defined by the current transformation matrix (CTM), an
element of the PDF graphics state (see 8.4, "Graphics State"). A conforming reader can adjust the CTM for the
native resolution of a particular output device, maintaining the device-independence of the PDF page
description. Figure 11 in Annex L shows how this allows an object specified in user space to appear the same
regardless of the device on which it is rendered.

NOTE 3 The default user space provides a consistent, dependable starting place for PDF page descriptions regardless
of the output device used. If necessary, a PDF content stream may modify user space to be more suitable to its
needs by applying the coordinate transformation operator, cm (see 8.4.4, "Graphics State Operators"). Thus,
what may appear to be absolute coordinates in a content stream are not absolute with respect to the current
page because they are expressed in a coordinate system that may slide around and shrink or expand.
Coordinate system transformation not only enhances device-independence but is a useful tool in its own right.

EXAMPLE A content stream originally composed to occupy an entire page can be incorporated without change as an
element of another page by shrinking the coordinate system in which it is drawn.

Figure 11 – User Space

8.3.2.4 Other Coordinate Spaces

In addition to device space and user space, PDF uses a variety of other coordinate spaces for specialized
purposes:

• The coordinates of text shall be specified in text space. The transformation from text space to user space
shall be defined by a text matrix in combination with several text-related parameters in the graphics state
(see 9.4.2, "Text-Positioning Operators").

• Character glyphs in a font shall be defined in glyph space (see 9.2.4, "Glyph Positioning and Metrics"). The
transformation from glyph space to text space shall be defined by the font matrix. For most types of fonts,
this matrix shall be predefined to map 1000 units of glyph space to 1 unit of text space; for Type 3 fonts, the
font matrix shall be given explicitly in the font dictionary (see 9.6.5, "Type 3 Fonts").

• All sampled images shall be defined in image space. The transformation from image space to user space
shall be predefined and cannot be changed. All images shall be 1 unit wide by 1 unit high in user space,

User space

Device space for
72-dpi screen

Device space for
300-dpi printer

CTM

© Adobe Systems Incorporated 2008 – All rights reserved 117

PDF 32000-1:2008

regardless of the number of samples in the image. To be painted, an image shall be mapped to a region of
the page by temporarily altering the CTM.

• A form XObject (discussed in 8.10, "Form XObjects") is a self-contained content stream that can be treated
as a graphical element within another content stream. The space in which it is defined is called form space.
The transformation from form space to user space shall be specified by a form matrix contained in the form
XObject.

• PDF 1.2 defined a type of colour known as a pattern, discussed in 8.7, "Patterns". A pattern shall be
defined either by a content stream that shall be invoked repeatedly to tile an area or by a shading whose
colour is a function of position. The space in which a pattern is defined is called pattern space. The
transformation from pattern space to user space shall be specified by a pattern matrix contained in the
pattern.

• PDF 1.6 embedded 3D artwork, which is described in three-dimensional coordinates (see 13.6.5,
"Coordinate Systems for 3D") that are projected into an annotation’s target coordinate system (see 13.6.2,
"3D Annotations").

8.3.2.5 Relationships among Coordinate Spaces

Figure 12 in Annex L shows the relationships among the coordinate spaces described above. Each arrow in the
figure represents a transformation from one coordinate space to another. PDF allows modifications to many of
these transformations.

Because PDF coordinate spaces are defined relative to one another, changes made to one transformation can
affect the appearance of objects defined in several coordinate spaces.

EXAMPLE A change in the CTM, which defines the transformation from user space to device space, affects forms,
text, images, and patterns, since they are all upstream from user space.

8.3.3 Common Transformations

A transformation matrix specifies the relationship between two coordinate spaces. By modifying a
transformation matrix, objects can be scaled, rotated, translated, or transformed in other ways.

Figure 12 – Relationships Among Coordinate Systems

A transformation matrix in PDF shall be specified by six numbers, usually in the form of an array containing six
elements. In its most general form, this array is denoted [a b c d e f]; it can represent any linear
transformation from one coordinate system to another. This sub-clause lists the arrays that specify the most
common transformations; 8.3.4, "Transformation Matrices", discusses more mathematical details of
transformations, including information on specifying transformations that are combinations of those listed here:

User
space

Device
space

Form
space

Glyph
space

Text
space

Image
space

Pattern
space

PDF 32000-1:2008

118 © Adobe Systems Incorporated 2008 – All rights reserved

• Translations shall be specified as [1 0 0 1 tx ty], where tx and ty shall be the distances to translate the
origin of the coordinate system in the horizontal and vertical dimensions, respectively.

• Scaling shall be obtained by [sx 0 0 sy 0 0]. This scales the coordinates so that 1 unit in the horizontal
and vertical dimensions of the new coordinate system is the same size as sx and sy units, respectively, in
the previous coordinate system.

• Rotations shall be produced by [cos q sin q -sin q cos q 0 0], which has the effect of rotating the
coordinate system axes by an angle q counter clockwise.

• Skew shall be specified by [1 tan a tan b 1 0 0], which skews the x axis by an angle a and the y axis by
an angle b.

Figure 13 in Annex L shows examples of each transformation. The directions of translation, rotation, and skew
shown in the figure correspond to positive values of the array elements.

Figure 13 – Effects of Coordinate Transformations

NOTE If several transformations are combined, the order in which they are applied is significant. For example, first
scaling and then translating the x axis is not the same as first translating and then scaling it. In general, to
obtain the expected results, transformations should be done in the following order: Translate, Rotate, Scale or
skew.

Figure 14 in Annex L shows the effect of the order in which transformations are applied. The figure shows two
sequences of transformations applied to a coordinate system. After each successive transformation, an outline
of the letter n is drawn.

ty

tx

sy

sx

SkewingRotationScalingTranslation

q
a

b

© Adobe Systems Incorporated 2008 – All rights reserved 119

PDF 32000-1:2008

Figure 14 – Effect of Transformation Order

NOTE The following transformations are shown in the figure: a translation of 10 units in the x direction and 20 units in
the y direction; a rotation of 30 degrees; a scaling by a factor of 3 in the x direction

In the figure, the axes are shown with a dash pattern having a 2-unit dash and a 2-unit gap. In addition, the
original (untransformed) axes are shown in a lighter colour for reference. Notice that the scale-rotate-translate
ordering results in a distortion of the coordinate system, leaving the x and y axes no longer perpendicular; the
recommended translate-rotate-scale ordering results in no distortion.

8.3.4 Transformation Matrices

This sub-clause discusses the mathematics of transformation matrices.

To understand the mathematics of coordinate transformations in PDF, it is vital to remember two points:

• Transformations alter coordinate systems, not graphics objects. All objects painted before a transformation
is applied shall be unaffected by the transformation. Objects painted after the transformation is applied
shall be interpreted in the transformed coordinate system.

• Transformation matrices specify the transformation from the new (transformed) coordinate system to the
original (untransformed) coordinate system. All coordinates used after the transformation shall be
expressed in the transformed coordinate system. PDF applies the transformation matrix to find the
equivalent coordinates in the untransformed coordinate system.

NOTE 1 Many computer graphics textbooks consider transformations of graphics objects rather than of coordinate
systems. Although either approach is correct and self-consistent, some details of the calculations differ
depending on which point of view is taken.

PDF represents coordinates in a two-dimensional space. The point (x, y) in such a space can be expressed in
vector form as [x y 1]. The constant third element of this vector (1) is needed so that the vector can be used
with 3-by-3 matrices in the calculations described below.

The transformation between two coordinate systems can be represented by a 3-by-3 transformation matrix
written as follows:

Original Step 1: Translation Step 2: Rotation Step 3: Scaling

Original Step 1: Scaling Step 2: Rotation Step 3: Translation

PDF 32000-1:2008

120 © Adobe Systems Incorporated 2008 – All rights reserved

Because a transformation matrix has only six elements that can be changed, in most cases in PDF it shall be
specified as the six-element array [a b c d e f].

Coordinate transformations shall be expressed as matrix multiplications:

Because PDF transformation matrices specify the conversion from the transformed coordinate system to the
original (untransformed) coordinate system, x ¢ and y ¢ in this equation shall be the coordinates in the
untransformed coordinate system, and x and y shall be the coordinates in the transformed system. The
multiplication is carried out as follows:

If a series of transformations is carried out, the matrices representing each of the individual transformations can
be multiplied together to produce a single equivalent matrix representing the composite transformation.

NOTE 2 Matrix multiplication is not commutative—the order in which matrices are multiplied is significant. Consider a
sequence of two transformations: a scaling transformation applied to the user space coordinate system,
followed by a conversion from the resulting scaled user space to device space. Let MS be the matrix specifying
the scaling and MC the current transformation matrix, which transforms user space to device space. Recalling
that coordinates are always specified in the transformed space, the correct order of transformations first
converts the scaled coordinates to default user space and then converts the default user space coordinates to
device space. This can be expressed as

where

XD denotes the coordinates in device space

XU denotes the coordinates in default user space

XS denotes the coordinates in scaled user space

This shows that when a new transformation is concatenated with an existing one, the matrix representing it
shall be multiplied before (premultiplied with) the existing transformation matrix.

This result is true in general for PDF: when a sequence of transformations is carried out, the matrix
representing the combined transformation (M¢) is calculated by premultiplying the matrix representing the
additional transformation (MT) with the one representing all previously existing transformations (M):

NOTE 3 When rendering graphics objects, it is sometimes necessary for a conforming reader to perform the inverse of
a transformation—that is, to find the user space coordinates that correspond to a given pair of device space

a b 0
c d 0
e f 1

x′ y′ 1[] x y 1[]
a b 0
c d 0
e f 1

×=

x′ a x× c y× e+ +=

y′ b x× d y× f+ +=

XD XU MC× XS MS×() MC× XS MS MC×(×= = =

M′ MT M×=

© Adobe Systems Incorporated 2008 – All rights reserved 121

PDF 32000-1:2008

coordinates. Not all transformations are invertible, however. For example, if a matrix contains a, b, c, and d
elements that are all zero, all user coordinates map to the same device coordinates and there is no unique
inverse transformation. Such noninvertible transformations are not very useful and generally arise from
unintended operations, such as scaling by 0. Use of a noninvertible matrix when painting graphics objects can
result in unpredictable behaviour.

8.4 Graphics State

8.4.1 General

A conforming reader shall maintain an internal data structure called the graphics state that holds current
graphics control parameters. These parameters define the global framework within which the graphics
operators execute.

EXAMPLE 1 The f (fill) operator implicitly uses the current colour parameter, and the S (stroke) operator additionally
uses the current line width parameter from the graphics state.

A conforming reader shall initialize the graphic state at the beginning of each page with the values specified in
Table 52 and Table 53. Table 52 lists those graphics state parameters that are device-independent and are
appropriate to specify in page descriptions. The parameters listed in Table 53 control details of the rendering
(scan conversion) process and are device-dependent; a page description that is intended to be device-
independent should not be written to modify these parameters.

Table 52 – Device-Independent Graphics State Parameters

Parameter Type Value

CTM array The current transformation matrix, which maps positions from
user coordinates to device coordinates (see 8.3, "Coordinate
Systems"). This matrix is modified by each application of the
coordinate transformation operator, cm. Initial value: a matrix
that transforms default user coordinates to device
coordinates.

clipping path (internal) The current clipping path, which defines the boundary against
which all output shall be cropped (see 8.5.4, "Clipping Path
Operators"). Initial value: the boundary of the entire
imageable portion of the output page.

color space name or array The current colour space in which colour values shall be
interpreted (see 8.6, "Colour Spaces"). There are two
separate colour space parameters: one for stroking and one
for all other painting operations. Initial value: DeviceGray.

color (various) The current colour to be used during painting operations (see
8.6, "Colour Spaces"). The type and interpretation of this
parameter depend on the current colour space; for most
colour spaces, a colour value consists of one to four
numbers. There are two separate colour parameters: one for
stroking and one for all other painting operations. Initial value:
black.

text state (various) A set of nine graphics state parameters that pertain only to
the painting of text. These include parameters that select the
font, scale the glyphs to an appropriate size, and accomplish
other effects. The text state parameters are described in 9.3,
"Text State Parameters and Operators".

line width number The thickness, in user space units, of paths to be stroked
(see 8.4.3.2, "Line Width"). Initial value: 1.0.

PDF 32000-1:2008

122 © Adobe Systems Incorporated 2008 – All rights reserved

line cap integer A code specifying the shape of the endpoints for any open
path that is stroked (see 8.4.3.3, "Line Cap Style"). Initial
value: 0, for square butt caps.

line join integer A code specifying the shape of joints between connected
segments of a stroked path (see 8.4.3.4, "Line Join Style").
Initial value: 0, for mitered joins.

miter limit number The maximum length of mitered line joins for stroked paths
(see 8.4.3.5, "Miter Limit"). This parameter limits the length of
“spikes” produced when line segments join at sharp angles.
Initial value: 10.0, for a miter cutoff below approximately 11.5
degrees.

dash pattern array and
number

A description of the dash pattern to be used when paths are
stroked (see 8.4.3.6, "Line Dash Pattern"). Initial value: a
solid line.

rendering intent name The rendering intent to be used when converting CIE-based
colours to device colours (see 8.6.5.8, "Rendering Intents").
Initial value: RelativeColorimetric.

stroke adjustment boolean (PDF 1.2) A flag specifying whether to compensate for
possible rasterization effects when stroking a path with a line
width that is small relative to the pixel resolution of the output
device (see 10.6.5, "Automatic Stroke Adjustment").
NOTE This is considered a device-independent

parameter, even though the details of its effects
are device-dependent.

Initial value: false.

blend mode name or array (PDF 1.4) The current blend mode to be used in the
transparent imaging model (see 11.3.5, "Blend Mode" and
11.6.3, "Specifying Blending Colour Space and Blend Mode").
A conforming reader shall implicitly reset this parameter to its
initial value at the beginning of execution of a transparency
group XObject (see 11.6.6, "Transparency Group XObjects").
Initial value: Normal.

soft mask dictionary
or name

(PDF 1.4) A soft-mask dictionary (see 11.6.5.2, "Soft-Mask
Dictionaries") specifying the mask shape or mask opacity
values to be used in the transparent imaging model (see
11.3.7.2, "Source Shape and Opacity" and 11.6.4.3, "Mask
Shape and Opacity"), or the name None if no such mask is
specified. A conforming reader shall implicitly reset this
parameter implicitly reset to its initial value at the beginning of
execution of a transparency group XObject (see 11.6.6,
"Transparency Group XObjects"). Initial value: None.

alpha constant number (PDF 1.4) The constant shape or constant opacity value to be
used in the transparent imaging model (see 11.3.7.2, "Source
Shape and Opacity" and 11.6.4.4, "Constant Shape and
Opacity"). There are two separate alpha constant
parameters: one for stroking and one for all other painting
operations. A conforming reader shall implicitly reset this
parameter to its initial value at the beginning of execution of a
transparency group XObject (see 11.6.6, "Transparency
Group XObjects"). Initial value: 1.0.

Table 52 – Device-Independent Graphics State Parameters (continued)

Parameter Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 123

PDF 32000-1:2008

alpha source boolean (PDF 1.4) A flag specifying whether the current soft mask and
alpha constant parameters shall be interpreted as shape
values (true) or opacity values (false). This flag also governs
the interpretation of the SMask entry, if any, in an image
dictionary (see 8.9.5, "Image Dictionaries"). Initial value:
false.

Table 53 – Device-Dependent Graphics State Parameters

Parameter Type Value

overprint boolean (PDF 1.2) A flag specifying (on output devices that support
the overprint control feature) whether painting in one set of
colorants should cause the corresponding areas of other
colorants to be erased (false) or left unchanged (true); see
8.6.7, "Overprint Control". In PDF 1.3, there are two separate
overprint parameters: one for stroking and one for all other
painting operations. Initial value: false.

overprint mode number (PDF 1.3) A code specifying whether a colour component
value of 0 in a DeviceCMYK colour space should erase that
component (0) or leave it unchanged (1) when overprinting
(see 8.6.7, "Overprint Control"). Initial value: 0.

black generation function
or name

(PDF 1.2) A function that calculates the level of the black
colour component to use when converting RGB colours to
CMYK (see 10.3.4, "Conversion from DeviceRGB to
DeviceCMYK"). Initial value: a conforming reader shall
initialize this to a suitable device dependent value.

undercolor removal function
or name

(PDF 1.2) A function that calculates the reduction in the
levels of the cyan, magenta, and yellow colour components to
compensate for the amount of black added by black
generation (see 10.3.4, "Conversion from DeviceRGB to
DeviceCMYK"). Initial value: a conforming reader shall
initialize this to a suitable device dependent value.

transfer function,
array, or name

(PDF 1.2) A function that adjusts device gray or colour
component levels to compensate for nonlinear response in a
particular output device (see 10.4, “Transfer Functions“).
Initial value: a conforming reader shall initialize this to a
suitable device dependent value.

halftone dictionary,
stream, or name

(PDF 1.2) A halftone screen for gray and colour rendering,
specified as a halftone dictionary or stream (see 10.5,
"Halftones"). Initial value: a conforming reader shall initialize
this to a suitable device dependent value.

flatness number The precision with which curves shall be rendered on the
output device (see 10.6.2, "Flatness Tolerance"). The value
of this parameter (positive number) gives the maximum error
tolerance, measured in output device pixels; smaller numbers
give smoother curves at the expense of more computation
and memory use. Initial value: 1.0.

Table 52 – Device-Independent Graphics State Parameters (continued)

Parameter Type Value

PDF 32000-1:2008

124 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 1 Some graphics state parameters are set with specific PDF operators, some are set by including a particular
entry in a graphics state parameter dictionary, and some can be specified either way.

EXAMPLE 2 The current line width can be set either with the w operator or (in PDF 1.3) with the LW entry in a graphics
state parameter dictionary, whereas the current colour is set only with specific operators, and the current
halftone is set only with a graphics state parameter dictionary.

In general, a conforming reader, when interpreting the operators that set graphics state parameters, shall
simply store them unchanged for later use when interpreting the painting operators.However, some parameters
have special properties or call for behaviour that a conforming reader shall handle:

• Most parameters shall be of the correct type or have values that fall within a certain range.

• Parameters that are numeric values, such as the current colour, line width, and miter limit, shall be forced
into valid range, if necessary. However, they shall not be adjusted to reflect capabilities of the raster output
device, such as resolution or number of distinguishable colours. Painting operators perform such
adjustments, but the adjusted values shall not be stored back into the graphics state.

• Paths shall be internal objects that shall not be directly represented in PDF.

NOTE 2 As indicated in Table 52 and Table 53, some of the parameters—color space, color, and overprint—have two
values, one used for stroking (of paths and text objects) and one for all other painting operations. The two
parameter values can be set independently, allowing for operations such as combined filling and stroking of the
same path with different colours. Except where noted, a term such as current colour should be interpreted to
refer to whichever colour parameter applies to the operation being performed. When necessary, the individual
colour parameters are distinguished explicitly as the stroking colour and the nonstroking colour.

8.4.2 Graphics State Stack

A PDF document typically contains many graphical elements that are independent of each other and nested to
multiple levels. The graphics state stack allows these elements to make local changes to the graphics state
without disturbing the graphics state of the surrounding environment. The stack is a LIFO (last in, first out) data
structure in which the contents of the graphics state may be saved and later restored using the following
operators:

• The q operator shall push a copy of the entire graphics state onto the stack.

• The Q operator shall restore the entire graphics state to its former value by popping it from the stack.

NOTE These operators can be used to encapsulate a graphical element so that it can modify parameters of the
graphics state and later restore them to their previous values.

Occurrences of the q and Q operators shall be balanced within a given content stream (or within the sequence
of streams specified in a page dictionary’s Contents array).

smoothness number (PDF 1.3) The precision with which colour gradients are to be
rendered on the output device (see 10.6.3, "Smoothness
Tolerance"). The value of this parameter (0 to 1.0) gives the
maximum error tolerance, expressed as a fraction of the
range of each colour component; smaller numbers give
smoother colour transitions at the expense of more
computation and memory use. Initial value: a conforming
reader shall initialize this to a suitable device dependent
value.

Table 53 – Device-Dependent Graphics State Parameters (continued)

Parameter Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 125

PDF 32000-1:2008

8.4.3 Details of Graphics State Parameters

8.4.3.1 General

This sub-clause gives details of several of the device-independent graphics state parameters listed in Table 52.

8.4.3.2 Line Width

The line width parameter specifies the thickness of the line used to stroke a path. It shall be a non-negative
number expressed in user space units; stroking a path shall entail painting all points whose perpendicular
distance from the path in user space is less than or equal to half the line width. The effect produced in device
space depends on the current transformation matrix (CTM) in effect at the time the path is stroked. If the CTM
specifies scaling by different factors in the horizontal and vertical dimensions, the thickness of stroked lines in
device space shall vary according to their orientation. The actual line width achieved can differ from the
requested width by as much as 2 device pixels, depending on the positions of lines with respect to the pixel
grid. Automatic stroke adjustment may be used to ensure uniform line width; see 10.6.5, "Automatic Stroke
Adjustment".

A line width of 0 shall denote the thinnest line that can be rendered at device resolution: 1 device pixel wide.
However, some devices cannot reproduce 1-pixel lines, and on high-resolution devices, they are nearly
invisible. Since the results of rendering such zero-width lines are device-dependent, they should not be used.

8.4.3.3 Line Cap Style

The line cap style shall specify the shape that shall be used at the ends of open subpaths (and dashes, if any)
when they are stroked. Table 54 shows the possible values.

8.4.3.4 Line Join Style

The line join style shall specify the shape to be used at the corners of paths that are stroked. Table 55 shows
the possible values. Join styles shall be significant only at points where consecutive segments of a path
connect at an angle; segments that meet or intersect fortuitously shall receive no special treatment.

Table 54 – Line Cap Styles

Style Appearance Description

0 Butt cap. The stroke shall be squared off at the endpoint of the path.
There shall be no projection beyond the end of the path.

1 Round cap. A semicircular arc with a diameter equal to the line width
shall be drawn around the endpoint and shall be filled in.

2 Projecting square cap. The stroke shall continue beyond the endpoint
of the path for a distance equal to half the line width and shall be
squared off.

Table 55 – Line Join Styles

Style Appearance Description

0 Miter join. The outer edges of the strokes for the two segments shall be
extended until they meet at an angle, as in a picture frame. If the
segments meet at too sharp an angle (as defined by the miter limit
parameter—see 8.4.3.5, "Miter Limit"), a bevel join shall be used
instead.

PDF 32000-1:2008

126 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE The definition of round join was changed in PDF 1.5. In rare cases, the implementation of the previous
specification could produce unexpected results.

8.4.3.5 Miter Limit

When two line segments meet at a sharp angle and mitered joins have been specified as the line join style, it is
possible for the miter to extend far beyond the thickness of the line stroking the path. The miter limit shall
impose a maximum on the ratio of the miter length to the line width (see Figure 15 in Annex L). When the limit
is exceeded, the join is converted from a miter to a bevel.

The ratio of miter length to line width is directly related to the angle j between the segments in user space by
the following formula:

EXAMPLE A miter limit of 1.414 converts miters to bevels for j less than 90 degrees, a limit of 2.0 converts them for j
less than 60 degrees, and a limit of 10.0 converts them for j less than approximately 11.5 degrees.

Figure 15 – Miter Length

8.4.3.6 Line Dash Pattern

The line dash pattern shall control the pattern of dashes and gaps used to stroke paths. It shall be specified by
a dash array and a dash phase. The dash array’s elements shall be numbers that specify the lengths of
alternating dashes and gaps; the numbers shall be nonnegative and not all zero. The dash phase shall specify
the distance into the dash pattern at which to start the dash. The elements of both the dash array and the dash
phase shall be expressed in user space units.

Before beginning to stroke a path, the dash array shall be cycled through, adding up the lengths of dashes and
gaps. When the accumulated length equals the value specified by the dash phase, stroking of the path shall
begin, and the dash array shall be used cyclically from that point onward. Table 56 shows examples of line

1 Round join. An arc of a circle with a diameter equal to the line width
shall be drawn around the point where the two segments meet,
connecting the outer edges of the strokes for the two segments. This
pieslice-shaped figure shall be filled in, producing a rounded corner.

2 Bevel join. The two segments shall be finished with butt caps (see
8.4.3.3, "Line Cap Style") and the resulting notch beyond the ends of
the segments shall be filled with a triangle.

Table 55 – Line Join Styles (continued)

Style Appearance Description

miterLength
lineWidth

----------------------------- 1
ϕ
2
---⎝ ⎠

⎛ ⎞sin
------------------=

Miter
length

Line width

j

© Adobe Systems Incorporated 2008 – All rights reserved 127

PDF 32000-1:2008

dash patterns. As can be seen from the table, an empty dash array and zero phase can be used to restore the
dash pattern to a solid line.

Dashed lines shall wrap around curves and corners just as solid stroked lines do. The ends of each dash shall
be treated with the current line cap style, and corners within dashes shall be treated with the current line join
style. A stroking operation shall take no measures to coordinate the dash pattern with features of the path; it
simply shall dispense dashes and gaps along the path in the pattern defined by the dash array.

When a path consisting of several subpaths is stroked, each subpath shall be treated independently—that is,
the dash pattern shall be restarted and the dash phase shall be reapplied to it at the beginning of each subpath.

8.4.4 Graphics State Operators

Table 57 shows the operators that set the values of parameters in the graphics state. (See also the colour
operators listed in Table 74 and the text state operators in Table 105.)

Table 56 – Examples of Line Dash Patterns

Dash Array
and Phase

Appearance Description

[] 0 No dash; solid, unbroken lines

[3] 0 3 units on, 3 units off, …

[2] 1 1 on, 2 off, 2 on, 2 off, …

[2 1] 0 2 on, 1 off, 2 on, 1 off, …

[3 5] 6 2 off, 3 on, 5 off, 3 on, 5 off, …

[2 3] 11 1 on, 3 off, 2 on, 3 off, 2 on, …

Table 57 – Graphics State Operators

Operands Operator Description

— q Save the current graphics state on the graphics state stack (see
8.4.2, "Graphics State Stack").

— Q Restore the graphics state by removing the most recently saved
state from the stack and making it the current state (see 8.4.2,
"Graphics State Stack").

a b c d e f cm Modify the current transformation matrix (CTM) by concatenating
the specified matrix (see 8.3.2, "Coordinate Spaces"). Although the
operands specify a matrix, they shall be written as six separate
numbers, not as an array.

lineWidth w Set the line width in the graphics state (see 8.4.3.2, "Line Width").

lineCap J Set the line cap style in the graphics state (see 8.4.3.3, "Line Cap
Style").

lineJoin j Set the line join style in the graphics state (see 8.4.3.4, "Line Join
Style").

miterLimit M Set the miter limit in the graphics state (see 8.4.3.5, "Miter Limit").

dashArray dashPhase d Set the line dash pattern in the graphics state (see 8.4.3.6, "Line
Dash Pattern").

intent ri (PDF 1.1) Set the colour rendering intent in the graphics state (see
8.6.5.8, "Rendering Intents").

PDF 32000-1:2008

128 © Adobe Systems Incorporated 2008 – All rights reserved

8.4.5 Graphics State Parameter Dictionaries

While some parameters in the graphics state may be set with individual operators, as shown in Table 57, others
may not. The latter may only be set with the generic graphics state operator gs (PDF 1.2). The operand
supplied to this operator shall be the name of a graphics state parameter dictionary whose contents specify the
values of one or more graphics state parameters. This name shall be looked up in the ExtGState subdictionary
of the current resource dictionary.

The graphics state parameter dictionary is also used by type 2 patterns, which do not have a content stream in
which the graphics state operators could be invoked (see 8.7.4, "Shading Patterns").

Each entry in the parameter dictionary shall specify the value of an individual graphics state parameter, as
shown in Table 58. All entries need not be present for every invocation of the gs operator; the supplied
parameter dictionary may include any combination of parameter entries. The results of gs shall be cumulative;
parameter values established in previous invocations persist until explicitly overridden.

NOTE Note that some parameters appear in both Table 57 and Table 58; these parameters can be set either with
individual graphics state operators or with gs. It is expected that any future extensions to the graphics state will
be implemented by adding new entries to the graphics state parameter dictionary rather than by introducing
new graphics state operators.

flatness i Set the flatness tolerance in the graphics state (see 10.6.2,
"Flatness Tolerance"). flatness is a number in the range 0 to 100; a
value of 0 shall specify the output device’s default flatness
tolerance.

dictName gs (PDF 1.2) Set the specified parameters in the graphics state.
dictName shall be the name of a graphics state parameter
dictionary in the ExtGState subdictionary of the current resource
dictionary (see the next sub-clause).

Table 58 – Entries in a Graphics State Parameter Dictionary

Key Type Description

Type name (Optional) The type of PDF object that this dictionary describes; shall
be ExtGState for a graphics state parameter dictionary.

LW number (Optional; PDF 1.3) The line width (see 8.4.3.2, "Line Width").

LC integer (Optional; PDF 1.3) The line cap style (see 8.4.3.3, "Line Cap Style").

LJ integer (Optional; PDF 1.3) The line join style (see 8.4.3.4, "Line Join Style").

ML number (Optional; PDF 1.3) The miter limit (see 8.4.3.5, "Miter Limit").

D array (Optional; PDF 1.3) The line dash pattern, expressed as an array of
the form [dashArray dashPhase], where dashArray shall be itself an
array and dashPhase shall be an integer (see 8.4.3.6, "Line Dash
Pattern").

RI name (Optional; PDF 1.3) The name of the rendering intent (see 8.6.5.8,
"Rendering Intents").

Table 57 – Graphics State Operators (continued)

Operands Operator Description

© Adobe Systems Incorporated 2008 – All rights reserved 129

PDF 32000-1:2008

OP boolean (Optional) A flag specifying whether to apply overprint (see 8.6.7,
"Overprint Control"). In PDF 1.2 and earlier, there is a single overprint
parameter that applies to all painting operations. Beginning with PDF
1.3, there shall be two separate overprint parameters: one for stroking
and one for all other painting operations. Specifying an OP entry shall
set both parameters unless there is also an op entry in the same
graphics state parameter dictionary, in which case the OP entry shall
set only the overprint parameter for stroking.

op boolean (Optional; PDF 1.3) A flag specifying whether to apply overprint (see
8.6.7, "Overprint Control") for painting operations other than stroking. If
this entry is absent, the OP entry, if any, shall also set this parameter.

OPM integer (Optional; PDF 1.3) The overprint mode (see 8.6.7, "Overprint
Control").

Font array (Optional; PDF 1.3) An array of the form [font size], where font shall
be an indirect reference to a font dictionary and size shall be a number
expressed in text space units. These two objects correspond to the
operands of the Tf operator (see 9.3, "Text State Parameters and
Operators"); however, the first operand shall be an indirect object
reference instead of a resource name.

BG function (Optional) The black-generation function, which maps the interval
[0.0 1.0] to the interval [0.0 1.0] (see 10.3.4, "Conversion from
DeviceRGB to DeviceCMYK").

BG2 function or name (Optional; PDF 1.3) Same as BG except that the value may also be
the name Default, denoting the black-generation function that was in
effect at the start of the page. If both BG and BG2 are present in the
same graphics state parameter dictionary, BG2 shall take precedence.

UCR function (Optional) The undercolor-removal function, which maps the interval
[0.0 1.0] to the interval [−1.0 1.0] (see 10.3.4, "Conversion from
DeviceRGB to DeviceCMYK").

UCR2 function or name (Optional; PDF 1.3) Same as UCR except that the value may also be
the name Default, denoting the undercolor-removal function that was
in effect at the start of the page. If both UCR and UCR2 are present in
the same graphics state parameter dictionary, UCR2 shall take
precedence.

TR function, array, or
name

(Optional) The transfer function, which maps the interval [0.0 1.0] to
the interval [0.0 1.0] (see 10.4, "Transfer Functions"). The value shall
be either a single function (which applies to all process colorants) or
an array of four functions (which apply to the process colorants
individually). The name Identity may be used to represent the identity
function.

TR2 function, array, or
name

(Optional; PDF 1.3) Same as TR except that the value may also be the
name Default, denoting the transfer function that was in effect at the
start of the page. If both TR and TR2 are present in the same graphics
state parameter dictionary, TR2 shall take precedence.

HT dictionary,
stream, or name

(Optional) The halftone dictionary or stream (see 10.5, "Halftones") or
the name Default, denoting the halftone that was in effect at the start of
the page.

FL number (Optional; PDF 1.3) The flatness tolerance (see 10.6.2, "Flatness
Tolerance").

SM number (Optional; PDF 1.3) The smoothness tolerance (see 10.6.3,
"Smoothness Tolerance").

Table 58 – Entries in a Graphics State Parameter Dictionary (continued)

Key Type Description

PDF 32000-1:2008

130 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE The following shows two graphics state parameter dictionaries. In the first, automatic stroke adjustment is
turned on, and the dictionary includes a transfer function that inverts its value, f (x) = 1 - x. In the second,
overprint is turned off, and the dictionary includes a parabolic transfer function, f (x) = (2x - 1) 2, with a
sample of 21 values. The domain of the transfer function, [0.0 1.0], is mapped to [0 20], and the range
of the sample values, [0 255], is mapped to the range of the transfer function, [0.0 1.0].

10 0 obj % Page object

<< /Type /Page
/Parent 5 0 R
/Resources 20 0 R
/Contents 40 0 R

>>
endobj

20 0 obj % Resource dictionary for page

<< /ProcSet [/PDF /Text]
 /Font << /F1 25 0 R >>
 /ExtGState << /GS1 30 0 R

 /GS2 35 0 R
 >>

>>
endobj

30 0 obj % First graphics state parameter dictionary

<< /Type /ExtGState
 /SA true
 /TR 31 0 R
>>

endobj

SA boolean (Optional) A flag specifying whether to apply automatic stroke
adjustment (see 10.6.5, "Automatic Stroke Adjustment").

BM name or array (Optional; PDF 1.4) The current blend mode to be used in the
transparent imaging model (see 11.3.5, "Blend Mode" and 11.6.3,
"Specifying Blending Colour Space and Blend Mode").

SMask dictionary or
name

(Optional; PDF 1.4) The current soft mask, specifying the mask shape
or mask opacity values that shall be used in the transparent imaging
model (see 11.3.7.2, "Source Shape and Opacity" and 11.6.4.3, "Mask
Shape and Opacity").
Although the current soft mask is sometimes referred to as a “soft clip,”
altering it with the gs operator completely replaces the old value with
the new one, rather than intersecting the two as is done with the
current clipping path parameter (see 8.5.4, "Clipping Path Operators").

CA number (Optional; PDF 1.4) The current stroking alpha constant, specifying the
constant shape or constant opacity value that shall be used for
stroking operations in the transparent imaging model (see 11.3.7.2,
"Source Shape and Opacity" and 11.6.4.4, "Constant Shape and
Opacity").

ca number (Optional; PDF 1.4) Same as CA, but for nonstroking operations.

AIS boolean (Optional; PDF 1.4) The alpha source flag (“alpha is shape”),
specifying whether the current soft mask and alpha constant shall be
interpreted as shape values (true) or opacity values (false).

TK boolean (Optional; PDF 1.4) The text knockout flag, shall determine the
behaviour of overlapping glyphs within a text object in the transparent
imaging model (see 9.3.8, "Text Knockout").

Table 58 – Entries in a Graphics State Parameter Dictionary (continued)

Key Type Description

© Adobe Systems Incorporated 2008 – All rights reserved 131

PDF 32000-1:2008

31 0 obj % First transfer function
<< /FunctionType 0
 /Domain [0.0 1.0]
 /Range [0.0 1.0]
 /Size 2
 /BitsPerSample 8
 /Length 7
 /Filter /ASCIIHexDecode
>>

stream
01 00 >
endstream
endobj

35 0 obj % Second graphics state parameter dictionary

<< /Type /ExtGState
 /OP false
 /TR 36 0 R
>>

endobj

36 0 obj % Second transfer function

<< /FunctionType 0
 /Domain [0.0 1.0]
 /Range [0.0 1.0]
 /Size 21
 /BitsPerSample 8
 /Length 63
 /Filter /ASCIIHexDecode
>>

stream
FF CE A3 7C 5B 3F 28 16 0A 02 00 02 0A 16 28 3F 5B 7C A3 CE FF >
endstream
endobj

8.5 Path Construction and Painting

8.5.1 General

Paths define shapes, trajectories, and regions of all sorts. They shall be used to draw lines, define the shapes
of filled areas, and specify boundaries for clipping other graphics. The graphics state shall include a current
clipping path that shall define the clipping boundary for the current page. At the beginning of each page, the
clipping path shall be initialized to include the entire page.

A path shall be composed of straight and curved line segments, which may connect to one another or may be
disconnected. A pair of segments shall be said to connect only if they are defined consecutively, with the
second segment starting where the first one ends. Thus, the order in which the segments of a path are defined
shall be significant. Nonconsecutive segments that meet or intersect fortuitously shall not be considered to
connect.

NOTE A path is made up of one or more disconnected subpaths, each comprising a sequence of connected
segments. The topology of the path is unrestricted: it may be concave or convex, may contain multiple
subpaths representing disjoint areas, and may intersect itself in arbitrary ways.

The h operator explicitly shall connect the end of a subpath back to its starting point; such a subpath is said to
be closed. A subpath that has not been explicitly closed is said to be open.

PDF 32000-1:2008

132 © Adobe Systems Incorporated 2008 – All rights reserved

As discussed in 8.2, "Graphics Objects", a path object is defined by a sequence of operators to construct the
path, followed by one or more operators to paint the path or to use it as a clipping boundary. PDF path
operators fall into three categories:

• Path construction operators (8.5.2, "Path Construction Operators") define the geometry of a path. A path is
constructed by sequentially applying one or more of these operators.

• Path-painting operators (8.5.3, "Path-Painting Operators") end a path object, usually causing the object to
be painted on the current page in any of a variety of ways.

• Clipping path operators (8.5.4, "Clipping Path Operators"), invoked immediately before a path-painting
operator, cause the path object also to be used for clipping of subsequent graphics objects.

8.5.2 Path Construction Operators

8.5.2.1 General

A page description shall begin with an empty path and shall build up its definition by invoking one or more path
construction operators to add segments to it. The path construction operators may be invoked in any sequence,
but the first one invoked shall be m or re to begin a new subpath. The path definition may conclude with the
application of a path-painting operator such as S, f, or b (see 8.5.3, "Path-Painting Operators"); this operator
may optionally be preceded by one of the clipping path operators W or W* (8.5.4, "Clipping Path Operators").

NOTE Note that the path construction operators do not place any marks on the page; only the painting operators do
that. A path definition is not complete until a path-painting operator has been applied to it.

The path currently under construction is called the current path. In PDF (unlike PostScript), the current path is
not part of the graphics state and is not saved and restored along with the other graphics state parameters.
PDF paths shall be strictly internal objects with no explicit representation. After the current path has been
painted, it shall become no longer defined; there is then no current path until a new one is begun with the m or
re operator.

The trailing endpoint of the segment most recently added to the current path is referred to as the current point.
If the current path is empty, the current point shall be undefined. Most operators that add a segment to the
current path start at the current point; if the current point is undefined, an error shall be generated.

Table 59 shows the path construction operators. All operands shall be numbers denoting coordinates in user
space.

Table 59 – Path Construction Operators

Operands Operator Description

x y m Begin a new subpath by moving the current point to
coordinates (x, y), omitting any connecting line segment. If
the previous path construction operator in the current path
was also m, the new m overrides it; no vestige of the
previous m operation remains in the path.

x y l (lowercase L) Append a straight line segment from the current point to the
point (x, y). The new current point shall be (x, y).

x1 y1 x2 y2 x3 y3 c Append a cubic Bézier curve to the current path. The curve
shall extend from the current point to the point (x3 , y3), using
(x1 , y1) and (x2 , y2) as the Bézier control points (see 8.5.2.2,
"Cubic Bézier Curves"). The new current point shall be
(x3 , y3).

© Adobe Systems Incorporated 2008 – All rights reserved 133

PDF 32000-1:2008

8.5.2.2 Cubic Bézier Curves

Curved path segments shall be specified as cubic Bézier curves. Such curves shall be defined by four points:
the two endpoints (the current point P0 and the final point P3) and two control points P1 and P2 . Given the
coordinates of the four points, the curve shall be generated by varying the parameter t from 0.0 to 1.0 in the
following equation:

When t = 0.0, the value of the function R (t) coincides with the current point P0 ; when t = 1.0, R (t) coincides with
the final point P3 . Intermediate values of t generate intermediate points along the curve. The curve does not, in
general, pass through the two control points P1 and P2 .

NOTE 1 Cubic Bézier curves have two useful properties:

The curve can be very quickly split into smaller pieces for rapid rendering.

The curve is contained within the convex hull of the four points defining the curve, most easily visualized as the
polygon obtained by stretching a rubber band around the outside of the four points. This property allows rapid
testing of whether the curve lies completely outside the visible region, and hence does not have to be
rendered.

NOTE 2 The Bibliography lists several books that describe cubic Bézier curves in more depth.

x2 y2 x3 y3 v Append a cubic Bézier curve to the current path. The curve
shall extend from the current point to the point (x3 , y3), using
the current point and (x2 , y2) as the Bézier control points (see
8.5.2.2, "Cubic Bézier Curves"). The new current point shall
be (x3 , y3).

x1 y1 x3 y3 y Append a cubic Bézier curve to the current path. The curve
shall extend from the current point to the point (x3 , y3), using
(x1 , y1) and (x3 , y3) as the Bézier control points (see 8.5.2.2,
"Cubic Bézier Curves"). The new current point shall be
(x3 , y3).

— h Close the current subpath by appending a straight line
segment from the current point to the starting point of the
subpath. If the current subpath is already closed, h shall do
nothing.
This operator terminates the current subpath. Appending
another segment to the current path shall begin a new
subpath, even if the new segment begins at the endpoint
reached by the h operation.

x y width height re Append a rectangle to the current path as a complete
subpath, with lower-left corner (x, y) and dimensions width
and height in user space. The operation
x y width height re
is equivalent to
x y m
(x + width) y l
(x + width) (y + height) l
x (y + height) l
h

Table 59 – Path Construction Operators (continued)

Operands Operator Description

R t() 1 t–()3P0 3t 1 t–()2P1 3t2 1 t–()P2 t3P3+ + +=

PDF 32000-1:2008

134 © Adobe Systems Incorporated 2008 – All rights reserved

The most general PDF operator for constructing curved path segments is the c operator, which specifies the
coordinates of points P1 , P2 , and P3 explicitly, as shown in Figure 16 in Annex L. (The starting point, P0 , is
defined implicitly by the current point.)

Figure 16 – Cubic Bézier Curve Generated by the c Operator

Two more operators, v and y, each specify one of the two control points implicitly (see Figure 17 in Annex L). In
both of these cases, one control point and the final point of the curve shall be supplied as operands; the other
control point shall be implied:

• For the v operator, the first control point shall coincide with initial point of the curve.

• For the y operator, the second control point shall coincide with final point of the curve.

Figure 17 – Cubic Bézier Curves Generated by the v and y Operators

8.5.3 Path-Painting Operators

8.5.3.1 General

The path-painting operators end a path object, causing it to be painted on the current page in the manner that
the operator specifies. The principal path-painting operators shall be S (for stroking) and f (for filling). Variants

x1 y1 x2 y2 x3 y3 c
P0 (current point)

P2 (x2
, y2

)

P3 (x3
, y3

)

P1 (x1, y1
)

x2 y2 x3 y3 v
Current point

(x2
,

y2

)

(x3
,

y3

)

x1 y1 x3 y3 y
Current point

(x1
,

y1

)

(x3
,

y3

)

© Adobe Systems Incorporated 2008 – All rights reserved 135

PDF 32000-1:2008

of these operators combine stroking and filling in a single operation or apply different rules for determining the
area to be filled. Table 60 lists all the path-painting operators.

8.5.3.2 Stroking

The S operator shall paint a line along the current path. The stroked line shall follow each straight or curved
segment in the path, centred on the segment with sides parallel to it. Each of the path’s subpaths shall be
treated separately.

The results of the S operator shall depend on the current settings of various parameters in the graphics state
(see 8.4, "Graphics State", for further information on these parameters):

• The width of the stroked line shall be determined by the current line width parameter (8.4.3.2, "Line
Width").

• The colour or pattern of the line shall be determined by the current colour and colour space for stroking
operations.

Table 60 – Path-Painting Operators

Operands Operator Description

— S Stroke the path.

— s Close and stroke the path. This operator shall have the same effect as the
sequence h S.

— f Fill the path, using the nonzero winding number rule to determine the region
to fill (see 8.5.3.3.2, "Nonzero Winding Number Rule"). Any subpaths that
are open shall be implicitly closed before being filled.

— F Equivalent to f; included only for compatibility. Although PDF reader
applications shall be able to accept this operator, PDF writer applications
should use f instead.

— f* Fill the path, using the even-odd rule to determine the region to fill (see
8.5.3.3.3, "Even-Odd Rule").

— B Fill and then stroke the path, using the nonzero winding number rule to
determine the region to fill. This operator shall produce the same result as
constructing two identical path objects, painting the first with f and the
second with S.
NOTE The filling and stroking portions of the operation consult

different values of several graphics state parameters, such as
the current colour. See also 11.7.4.4, "Special Path-Painting
Considerations".

— B* Fill and then stroke the path, using the even-odd rule to determine the region
to fill. This operator shall produce the same result as B, except that the path
is filled as if with f* instead of f. See also 11.7.4.4, "Special Path-Painting
Considerations".

— b Close, fill, and then stroke the path, using the nonzero winding number rule
to determine the region to fill. This operator shall have the same effect as the
sequence h B. See also 11.7.4.4, "Special Path-Painting Considerations".

— b* Close, fill, and then stroke the path, using the even-odd rule to determine the
region to fill. This operator shall have the same effect as the sequence h B*.
See also 11.7.4.4, "Special Path-Painting Considerations".

— n End the path object without filling or stroking it. This operator shall be a path-
painting no-op, used primarily for the side effect of changing the current
clipping path (see 8.5.4, "Clipping Path Operators").

PDF 32000-1:2008

136 © Adobe Systems Incorporated 2008 – All rights reserved

• The line may be painted either solid or with a dash pattern, as specified by the current line dash pattern
(see 8.4.3.6, "Line Dash Pattern").

• If a subpath is open, the unconnected ends shall be treated according to the current line cap style, which
may be butt, rounded, or square (see 8.4.3.3, "Line Cap Style").

• Wherever two consecutive segments are connected, the joint between them shall be treated according to
the current line join style, which may be mitered, rounded, or beveled (see 8.4.3.4, "Line Join Style").
Mitered joins shall be subject to the current miter limit (see 8.4.3.5, "Miter Limit").

Points at which unconnected segments happen to meet or intersect receive no special treatment. In particular,
using an explicit l operator to give the appearance of closing a subpath, rather than using h, may result in a
messy corner, because line caps are applied instead of a line join.

• The stroke adjustment parameter (PDF 1.2) specifies that coordinates and line widths be adjusted
automatically to produce strokes of uniform thickness despite rasterization effects (see 10.6.5, "Automatic
Stroke Adjustment").

If a subpath is degenerate (consists of a single-point closed path or of two or more points at the same
coordinates), the S operator shall paint it only if round line caps have been specified, producing a filled circle
centered at the single point. If butt or projecting square line caps have been specified, S shall produce no
output, because the orientation of the caps would be indeterminate. This rule shall apply only to zero-length
subpaths of the path being stroked, and not to zero-length dashes in a dash pattern. In the latter case, the line
caps shall always be painted, since their orientation is determined by the direction of the underlying path. A
single-point open subpath (specified by a trailing m operator) shall produce no output.

8.5.3.3 Filling

8.5.3.3.1 General

The f operator shall use the current nonstroking colour to paint the entire region enclosed by the current path. If
the path consists of several disconnected subpaths, f shall paint the insides of all subpaths, considered
together. Any subpaths that are open shall be implicitly closed before being filled.

If a subpath is degenerate (consists of a single-point closed path or of two or more points at the same
coordinates), f shall paint the single device pixel lying under that point; the result is device-dependent and not
generally useful. A single-point open subpath (specified by a trailing m operator) shall produce no output.

For a simple path, it is intuitively clear what region lies inside. However, for a more complex path, it is not
always obvious which points lie inside the path. For more detailed information, see 10.6.4, “Scan Conversion
Rules“.

EXAMPLE A path that intersects itself or has one subpath that encloses another.

The path machinery shall use one of two rules for determining which points lie inside a path: the nonzero
winding number rule and the even-odd rule, both discussed in detail below. The nonzero winding number rule is
more versatile than the even-odd rule and shall be the standard rule the f operator uses. Similarly, the W
operator shall use this rule to determine the inside of the current clipping path. The even-odd rule is
occasionally useful for special effects or for compatibility with other graphics systems; the f* and W* operators
invoke this rule.

8.5.3.3.2 Nonzero Winding Number Rule

The nonzero winding number rule determines whether a given point is inside a path by conceptually drawing a
ray from that point to infinity in any direction and then examining the places where a segment of the path
crosses the ray. Starting with a count of 0, the rule adds 1 each time a path segment crosses the ray from left to
right and subtracts 1 each time a segment crosses from right to left. After counting all the crossings, if the result
is 0, the point is outside the path; otherwise, it is inside.

© Adobe Systems Incorporated 2008 – All rights reserved 137

PDF 32000-1:2008

The method just described does not specify what to do if a path segment coincides with or is tangent to the
chosen ray. Since the direction of the ray is arbitrary, the rule simply chooses a ray that does not encounter
such problem intersections.

For simple convex paths, the nonzero winding number rule defines the inside and outside as one would
intuitively expect. The more interesting cases are those involving complex or self-intersecting paths like the
ones shown in Figure 18 in Annex L. For a path consisting of a five-pointed star, drawn with five connected
straight line segments intersecting each other, the rule considers the inside to be the entire area enclosed by
the star, including the pentagon in the centre. For a path composed of two concentric circles, the areas
enclosed by both circles are considered to be inside, provided that both are drawn in the same direction. If the
circles are drawn in opposite directions, only the doughnut shape between them is inside, according to the rule;
the doughnut hole is outside.

Figure 18 – Nonzero Winding Number Rule

8.5.3.3.3 Even-Odd Rule

An alternative to the nonzero winding number rule is the even-odd rule. This rule determines whether a point is
inside a path by drawing a ray from that point in any direction and simply counting the number of path segments
that cross the ray, regardless of direction. If this number is odd, the point is inside; if even, the point is outside.
This yields the same results as the nonzero winding number rule for paths with simple shapes, but produces
different results for more complex shapes.

Figure 19 shows the effects of applying the even-odd rule to complex paths. For the five-pointed star, the rule
considers the triangular points to be inside the path, but not the pentagon in the centre. For the two concentric
circles, only the doughnut shape between the two circles is considered inside, regardless of the directions in
which the circles are drawn.

Figure 19 – Even-Odd Rule

8.5.4 Clipping Path Operators

The graphics state shall contain a current clipping path that limits the regions of the page affected by painting
operators. The closed subpaths of this path shall define the area that can be painted. Marks falling inside this
area shall be applied to the page; those falling outside it shall not be. Sub-clause 8.5.3.3, "Filling" discusses
precisely what shall be considered to be inside a path.

PDF 32000-1:2008

138 © Adobe Systems Incorporated 2008 – All rights reserved

In the context of the transparent imaging model (PDF 1.4), the current clipping path constrains an object’s
shape (see 11.2, "Overview of Transparency"). The effective shape is the intersection of the object’s intrinsic
shape with the clipping path; the source shape value shall be 0.0 outside this intersection. Similarly, the shape
of a transparency group (defined as the union of the shapes of its constituent objects) shall be influenced both
by the clipping path in effect when each of the objects is painted and by the one in effect at the time the group’s
results are painted onto its backdrop.

The initial clipping path shall include the entire page. A clipping path operator (W or W*, shown in Table 61)
may appear after the last path construction operator and before the path-painting operator that terminates a
path object. Although the clipping path operator appears before the painting operator, it shall not alter the
clipping path at the point where it appears. Rather, it shall modify the effect of the succeeding painting operator.
After the path has been painted, the clipping path in the graphics state shall be set to the intersection of the
current clipping path and the newly constructed path.

NOTE 1 In addition to path objects, text objects may also be used for clipping; see 9.3.6, "Text Rendering Mode".

The n operator (see Table 60) is a no-op path-painting operator; it shall cause no marks to be placed on the
page, but can be used with a clipping path operator to establish a new clipping path. That is, after a path has
been constructed, the sequence W n shall intersect that path with the current clipping path and shall establish a
new clipping path.

NOTE 2 There is no way to enlarge the current clipping path or to set a new clipping path without reference to the
current one. However, since the clipping path is part of the graphics state, its effect can be localized to specific
graphics objects by enclosing the modification of the clipping path and the painting of those objects between a
pair of q and Q operators (see 8.4.2, "Graphics State Stack"). Execution of the Q operator causes the clipping
path to revert to the value that was saved by the q operator before the clipping path was modified.

8.6 Colour Spaces

8.6.1 General

PDF includes facilities for specifying the colours of graphics objects to be painted on the current page. The
colour facilities are divided into two parts:

• Colour specification. A conforming writer may specify abstract colours in a device-independent way.
Colours may be described in any of a variety of colour systems, or colour spaces. Some colour spaces are
related to device colour representation (grayscale, RGB, CMYK), others to human visual perception (CIE-
based). Certain special features are also modelled as colour spaces: patterns, colour mapping,
separations, and high-fidelity and multitone colour.

• Colour rendering. A conforming reader shall reproduce colours on the raster output device by a multiple-
step process that includes some combination of colour conversion, gamma correction, halftoning, and
scan conversion. Some aspects of this process use information that is specified in PDF. However, unlike
the facilities for colour specification, the colour-rendering facilities are device-dependent and should not be
included in a page description.

Figure 20 and Figure 21 illustrate the division between PDF’s (device-independent) colour specification and
(device-dependent) colour-rendering facilities. This sub-clause describes the colour specification features,
covering everything that PDF documents need to specify colours. The facilities for controlling colour rendering

Table 61 – Clipping Path Operators

Operands Operator Description

— W Modify the current clipping path by intersecting it with the current path, using
the nonzero winding number rule to determine which regions lie inside the
clipping path.

— W* Modify the current clipping path by intersecting it with the current path, using
the even-odd rule to determine which regions lie inside the clipping path.

© Adobe Systems Incorporated 2008 – All rights reserved 139

PDF 32000-1:2008

are described in clause 10, "Rendering"; a conforming writer should use these facilities only to configure or
calibrate an output device or to achieve special device-dependent effects.

8.6.2 Colour Values

As described in 8.5.3, "Path-Painting Operators", marks placed on the page by operators such as f and S shall
have a colour that is determined by the current colour parameter of the graphics state. A colour value consists
of one or more colour components, which are usually numbers. A gray level shall be specified by a single
number ranging from 0.0 (black) to 1.0 (white). Full colour values may be specified in any of several ways; a
common method uses three numeric values to specify red, green, and blue components.

Colour values shall be interpreted according to the current colour space, another parameter of the graphics
state. A PDF content stream first selects a colour space by invoking the CS operator (for the stroking colour) or
the cs operator (for the nonstroking colour). It then selects colour values within that colour space with the SC
operator (stroking) or the sc operator (nonstroking). There are also convenience operators—G, g, RG, rg, K,
and k—that select both a colour space and a colour value within it in a single step. Table 74 lists all the colour-
setting operators.

Sampled images (see 8.9, "Images") specify the colour values of individual samples with respect to a colour
space designated by the image object itself. While these values are independent of the current colour space
and colour parameters in the graphics state, all later stages of colour processing shall treat them in exactly the
same way as colour values specified with the SC or sc operator.

8.6.3 Colour Space Families

Colour spaces are classified into colour space families. Spaces within a family share the same general
characteristics; they shall be distinguished by parameter values supplied at the time the space is specified. The
families fall into three broad categories:

• Device colour spaces directly specify colours or shades of gray that the output device shall produce. They
provide a variety of colour specification methods, including grayscale, RGB (red-green-blue), and CMYK
(cyan-magenta-yellow-black), corresponding to the colour space families DeviceGray, DeviceRGB, and
DeviceCMYK. Since each of these families consists of just a single colour space with no parameters, they
may be referred to as the DeviceGray, DeviceRGB, and DeviceCMYK colour spaces.

• CIE-based colour spaces shall be based on an international standard for colour specification created by
the Commission Internationale de l’Éclairage (International Commission on Illumination). These spaces
specify colours in a way that is independent of the characteristics of any particular output device. Colour
space families in this category include CalGray, CalRGB, Lab, and ICCBased. Individual colour spaces
within these families shall be specified by means of dictionaries containing the parameter values needed to
define the space.

• Special colour spaces add features or properties to an underlying colour space. They include facilities for
patterns, colour mapping, separations, and high-fidelity and multitone colour. The corresponding colour
space families are Pattern, Indexed, Separation, and DeviceN. Individual colour spaces within these
families shall be specified by means of additional parameters.

Table 62 summarizes the colour space families in PDF.

Table 62 – Colour Space Families

Device CIE-based Special

DeviceGray (PDF 1.1) CalGray (PDF 1.1) Indexed (PDF 1.1)

DeviceRGB (PDF 1.1) CalRGB (PDF 1.1) Pattern (PDF 1.2)

DeviceCMYK (PDF 1.1) Lab (PDF 1.1) Separation (PDF 1.2)

ICCBased (PDF 1.3) DeviceN (PDF 1.3)

PDF 32000-1:2008

140 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 20 – Colour Specification

Color spaces Color values
Sources of
color values

CalRGB

Conversion
to internal

X, Y, Z
values

A, B, C

X, Y, Z

sc, SC, sh,
BI, Do (image XObject)

Alternative
color

transform
tint

Another
color space

scn, SCN, sh,
BI, Do (image XObject)

Indexed
Table

lookup
Another

color space

CIE-
based
color
spaces

Device
color
spaces

Special
color
spaces

Pattern

sc, SC, sh,
BI, Do (image XObject)

scn, SCN

Another
color space

Pattern
dictionary

CalGray
A

sc, SC, sh,
BI, Do (image XObject)

index

pattern

Separation

Lab
A, B, C

sc, SC, sh,
BI, Do (image XObject)

ICCBased
scn, SCN, sh,
BI, Do (image XObject)

DeviceCMYK
C, M, Y, K

k, K, sc, SC, sh,
BI, Do (image XObject)

Another
(4-component)

color space

DeviceGray
gray

g, G, sc, SC, sh,
BI, Do (image XObject)

Another
(1-component)

color space

Alternative
color

transformn
components

Another
color space

scn, SCN, sh,
BI, Do (image XObject)

DeviceN

DeviceRGB
rg, RG, sc, SC, sh,
BI, Do (image XObject)

R, G, B

DefaultCMYK

DefaultGray

DefaultRGB
Another

(3-component)
color space

n
components

© Adobe Systems Incorporated 2008 – All rights reserved 141

PDF 32000-1:2008

Figure 21 – Colour Rendering

A colour space shall be defined by an array object whose first element is a name object identifying the colour
space family. The remaining array elements, if any, are parameters that further characterize the colour space;
their number and types vary according to the particular family. For families that do not require parameters, the
colour space may be specified simply by the family name itself instead of an array.

A colour space shall be specified in one of two ways:

• Within a content stream, the CS or cs operator establishes the current colour space parameter in the
graphics state. The operand shall always be name object, which either identifies one of the colour spaces
that need no additional parameters (DeviceGray, DeviceRGB, DeviceCMYK, or some cases of Pattern)
or shall be used as a key in the ColorSpace subdictionary of the current resource dictionary (see 7.8.3,

Conversion
from CIE-based

to device
color space

R, G, B

C, M, Y, K

gray

Device color values
(depending on

results of
conversion)

R, G, B

C, M, Y, K

Conversion
from input

device color
space to
device’s

process color
model

Transfer
functions

(per
component)

Halftones
(per

component)

Any single
device

colorant

Device’s
process

colorant(s)

UCR, BG

TR, HT HT

X, Y, Z

gray

tint

(not specified by PDF)

n
components Any n device

colorants

Component(s)
of device’s

process
color model

PDF 32000-1:2008

142 © Adobe Systems Incorporated 2008 – All rights reserved

"Resource Dictionaries"). In the latter case, the value of the dictionary entry in turn shall be a colour space
array or name. A colour space array shall never be inline within a content stream.

• Outside a content stream, certain objects, such as image XObjects, shall specify a colour space as an
explicit parameter, often associated with the key ColorSpace. In this case, the colour space array or name
shall always be defined directly as a PDF object, not by an entry in the ColorSpace resource
subdictionary. This convention also applies when colour spaces are defined in terms of other colour
spaces.

The following operators shall set the current colour space and current colour parameters in the graphics state:

• CS shall set the stroking colour space; cs shall set the nonstroking colour space.

• SC and SCN shall set the stroking colour; sc and scn shall set the nonstroking colour. Depending on the
colour space, these operators shall have one or more operands, each specifying one component of the
colour value.

• G, RG, and K shall set the stroking colour space implicitly and the stroking colour as specified by the
operands; g, rg, and k do the same for the nonstroking colour space and colour.

8.6.4 Device Colour Spaces

8.6.4.1 General

The device colour spaces enable a page description to specify colour values that are directly related to their
representation on an output device. Colour values in these spaces map directly (or by simple conversions) to
the application of device colorants, such as quantities of ink or intensities of display phosphors. This enables a
conforming writer to control colours precisely for a particular device, but the results might not be consistent
from one device to another.

Output devices form colours either by adding light sources together or by subtracting light from an illuminating
source. Computer displays and film recorders typically add colours; printing inks typically subtract them. These
two ways of forming colours give rise to two complementary methods of colour specification, called additive and
subtractive colour (see Figure L.1 in Annex L). The most widely used forms of these two types of colour
specification are known as RGB and CMYK, respectively, for the names of the primary colours on which they
are based. They correspond to the following device colour spaces:

• DeviceGray controls the intensity of achromatic light, on a scale from black to white.

• DeviceRGB controls the intensities of red, green, and blue light, the three additive primary colours used in
displays.

• DeviceCMYK controls the concentrations of cyan, magenta, yellow, and black inks, the four subtractive
process colours used in printing.

NOTE Although the notion of explicit colour spaces is a PDF 1.1 feature, the operators for specifying colours in the
device colour spaces—G, g, RG, rg, K, and k—are available in all versions of PDF. Beginning with PDF 1.2,
colours specified in device colour spaces can optionally be remapped systematically into other colour spaces;
see 8.6.5.6, "Default Colour Spaces".

In the transparent imaging model (PDF 1.4), the use of device colour spaces is subject to special treatment
within a transparency group whose group colour space is CIE-based (see 11.4, "Transparency Groups" and
11.6.6, "Transparency Group XObjects"). In particular, the device colour space operators should be used only if
device colour spaces have been remapped to CIE-based spaces by means of the default colour space
mechanism. Otherwise, the results are implementation-dependent and unpredictable.

© Adobe Systems Incorporated 2008 – All rights reserved 143

PDF 32000-1:2008

8.6.4.2 DeviceGray Colour Space

Black, white, and intermediate shades of gray are special cases of full colour. A grayscale value shall be
represented by a single number in the range 0.0 to 1.0, where 0.0 corresponds to black, 1.0 to white, and
intermediate values to different gray levels.

EXAMPLE This example shows alternative ways to select the DeviceGray colour space and a specific gray level
within that space for stroking operations.

/DeviceGray CS % Set DeviceGray colour space
gray SC % Set gray level
gray G % Set both in one operation

The CS and SC operators shall select the current stroking colour space and current stroking colour separately;
G shall set them in combination. (The cs, sc, and g operators shall perform the same functions for nonstroking
operations.) Setting either current colour space to DeviceGray shall initialize the corresponding current colour
to 0.0.

8.6.4.3 DeviceRGB Colour Space

Colours in the DeviceRGB colour space shall be specified according to the additive RGB (red-green-blue)
colour model, in which colour values shall be defined by three components representing the intensities of the
additive primary colorants red, green, and blue. Each component shall be specified by a number in the range
0.0 to 1.0, where 0.0 shall denote the complete absence of a primary component and 1.0 shall denote
maximum intensity.

EXAMPLE This example shows alternative ways to select the DeviceRGB colour space and a specific colour within
that space for stroking operations.

/DeviceRGB CS % Set DeviceRGB colour space
red green blue SC % Set colour
red green blue RG % Set both in one operation

The CS and SC operators shall select the current stroking colour space and current stroking colour separately;
RG shall set them in combination. The cs, sc, and rg operators shall perform the same functions for
nonstroking operations. Setting either current colour space to DeviceRGB shall initialize the red, green, and
blue components of the corresponding current colour to 0.0.

8.6.4.4 DeviceCMYK Colour Space

The DeviceCMYK colour space allows colours to be specified according to the subtractive CMYK (cyan-
magenta-yellow-black) model typical of printers and other paper-based output devices. The four components in
a DeviceCMYK colour value shall represent the concentrations of these process colorants. Each component
shall be a number in the range 0.0 to 1.0, where 0.0 shall denote the complete absence of a process colorant
and 1.0 shall denote maximum concentration (absorbs as much as possible of the additive primary).

NOTE As much as the reflective colours (CMYK) decrease reflection with increased ink values and radiant colours
(RGB) increases the intensity of colours with increased values the values work in an opposite manner.

EXAMPLE The following shows alternative ways to select the DeviceCMYK colour space and a specific colour within
that space for stroking operations.

/DeviceCMYK CS % Set DeviceCMYK colour space
cyan magenta yellow black SC % Set colour
cyan magenta yellow black K % Set both in one operation

The CS and SC operators shall select the current stroking colour space and current stroking colour separately;
K shall set them in combination. The cs, sc, and k operators shall perform the same functions for nonstroking
operations. Setting either current colour space to DeviceCMYK shall initialize the cyan, magenta, and yellow
components of the corresponding current colour to 0.0 and the black component to 1.0.

PDF 32000-1:2008

144 © Adobe Systems Incorporated 2008 – All rights reserved

8.6.5 CIE-Based Colour Spaces

8.6.5.1 General

Calibrated colour in PDF shall be defined in terms of an international standard used in the graphic arts,
television, and printing industries. CIE-based colour spaces enable a page description to specify colour values
in a way that is related to human visual perception. The goal is for the same colour specification to produce
consistent results on different output devices, within the limitations of each device; Figure L.2 in Annex L
illustrates the kind of variation in colour reproduction that can result from the use of uncalibrated colour on
different devices. PDF 1.1 supports three CIE-based colour space families, named CalGray, CalRGB, and
Lab; PDF 1.3 added a fourth, named ICCBased.

NOTE 1 In PDF 1.1, a colour space family named CalCMYK was partially defined, with the expectation that its definition
would be completed in a future version. However, this feature has been deprecated. PDF 1.3 and later
versions support calibrated four-component colour spaces by means of ICC profiles (see 8.6.5.5, "ICCBased
Colour Spaces"). A conforming reader should ignore CalCMYK colour space attributes and render colours
specified in this family as if they had been specified using DeviceCMYK.

NOTE 2 The details of the CIE colourimetric system and the theory on which it is based are beyond the scope of this
specification; see the Bibliography for sources of further information. The semantics of CIE-based colour
spaces are defined in terms of the relationship between the space’s components and the tristimulus values X,
Y, and Z of the CIE 1931 XYZ space. The CalRGB and Lab colour spaces (PDF 1.1) are special cases of
three-component CIE-based colour spaces, known as CIE-based ABC colour spaces. These spaces are
defined in terms of a two-stage, nonlinear transformation of the CIE 1931 XYZ space. The formulation of such
colour spaces models a simple zone theory of colour vision, consisting of a nonlinear trichromatic first stage
combined with a nonlinear opponent-colour second stage. This formulation allows colours to be digitized with
minimum loss of fidelity, an important consideration in sampled images.

Colour values in a CIE-based ABC colour space shall have three components, arbitrarily named A, B, and C.
The first stage shall transform these components by first forcing their values to a specified range, then applying
decoding functions, and then multiplying the results by a 3-by-3 matrix, producing three intermediate
components arbitrarily named L, M, and N. The second stage shall transform these intermediate components
in a similar fashion, producing the final X, Y, and Z components of the CIE 1931 XYZ space (see Figure 22).

Figure 22 – Component Transformations in a CIE-based ABC Colour Space

Colour spaces in the CIE-based families shall be defined by an array

[name dictionary]

where name is the name of the family and dictionary is a dictionary containing parameters that further
characterize the space. The entries in this dictionary have specific interpretations that depend on the colour
space; some entries are required and some are optional. See the sub-clauses on specific colour space families
for details.

Setting the current stroking or nonstroking colour space to any CIE-based colour space shall initialize all
components of the corresponding current colour to 0.0 (unless the range of valid values for a given component
does not include 0.0, in which case the nearest valid value shall be substituted.)

Decode ABC Decode LMN

A

B

C

Matrix ABC

L

M

N

Matrix LMN

X

Y

Z

© Adobe Systems Incorporated 2008 – All rights reserved 145

PDF 32000-1:2008

NOTE 3 The model and terminology used here—CIE-based ABC (above) and CIE-based A (below)—are derived from
the PostScript language, which supports these colour space families in their full generality. PDF supports
specific useful cases of CIE-based ABC and CIE-based A spaces; most others can be represented as
ICCBased spaces.

8.6.5.2 CalGray Colour Spaces

A CalGray colour space (PDF 1.1) is a special case of a single-component CIE-based colour space, known as
a CIE-based A colour space. This type of space is the one-dimensional (and usually achromatic) analog of CIE-
based ABC spaces. Colour values in a CIE-based A space shall have a single component, arbitrarily named A.
Figure 23 illustrates the transformations of the A component to X, Y, and Z components of the CIE 1931 XYZ
space.

Figure 23 – Component Transformations in a CIE-based A Colour Space

A CalGray colour space shall be a CIE-based A colour space with only one transformation stage instead of
two. In this type of space, A represents the gray component of a calibrated gray space. This component shall
be in the range 0.0 to 1.0. The decoding function (denoted by “Decode A” in Figure 23) is a gamma function
whose coefficient shall be specified by the Gamma entry in the colour space dictionary (see Table 63). The
transformation matrix denoted by “Matrix A” in the figure is derived from the dictionary’s WhitePoint entry, as
described below. Since there is no second transformation stage, “Decode LMN” and “Matrix LMN” shall be
implicitly taken to be identity transformations.

The transformation defined by the Gamma and WhitePoint entries is

Table 63 – Entries in a CalGray Colour Space Dictionary

Key Type Value

WhitePoint array (Required) An array of three numbers [XW YW ZW] specifying the
tristimulus value, in the CIE 1931 XYZ space, of the diffuse white point;
see 8.6.5.3, "CalRGB Colour Spaces", for further discussion. The
numbers XW and ZW shall be positive, and YW shall be equal to 1.0.

BlackPoint array (Optional) An array of three numbers [XB YB ZB] specifying the
tristimulus value, in the CIE 1931 XYZ space, of the diffuse black point;
see 8.6.5.3, "CalRGB Colour Spaces", for further discussion. All three
of these numbers shall be non-negative. Default value: [0.0 0.0 0.0].

Gamma number (Optional) A number G defining the gamma for the gray (A)
component. G shall be positive and is generally greater than or equal
to 1. Default value: 1.

Decode A Decode LMN

A

L

M

N

Matrix A Matrix LMN

X

Y

Z

X L XW AG×= =

Y M YW AG×= =

Z N ZW AG×= =

PDF 32000-1:2008

146 © Adobe Systems Incorporated 2008 – All rights reserved

In other words, the A component shall be first decoded by the gamma function, and the result shall be
multiplied by the components of the white point to obtain the L, M, and N components of the intermediate
representation. Since there is no second stage, the L, M, and N components shall also be the X, Y, and Z
components of the final representation.

EXAMPLE 1 The examples in this sub-clause illustrate interesting and useful special cases of CalGray spaces. This
example establishes a space consisting of the Y dimension of the CIE 1931 XYZ space with the CCIR XA/
11–recommended D65 white point.

[/CalGray

<< /WhitePoint [0.9505 1.0000 1.0890] >>
]

EXAMPLE 2 This example establishes a calibrated gray space with the CCIR XA/11–recommended D65 white point
and opto-electronic transfer function.

[/CalGray

<< /WhitePoint [0.9505 1.0000 1.0890]
 /Gamma 2.222
>>

]

8.6.5.3 CalRGB Colour Spaces

A CalRGB colour space is a CIE-based ABC colour space with only one transformation stage instead of two. In
this type of space, A, B, and C represent calibrated red, green, and blue colour values. These three colour
components shall be in the range 0.0 to 1.0; component values falling outside that range shall be adjusted to
the nearest valid value without error indication. The decoding functions (denoted by “Decode ABC” in Figure
22) are gamma functions whose coefficients shall be specified by the Gamma entry in the colour space
dictionary (see Table 64). The transformation matrix denoted by “Matrix ABC” in Figure 22 shall be defined by
the dictionary’s Matrix entry. Since there is no second transformation stage, “Decode LMN” and “Matrix LMN”
shall be implicitly taken to be identity transformations.

The WhitePoint and BlackPoint entries in the colour space dictionary shall control the overall effect of the
CIE-based gamut mapping function described in sub-clause 10.2, "CIE-Based Colour to Device Colour".
Typically, the colours specified by WhitePoint and BlackPoint shall be mapped to the nearly lightest and
nearly darkest achromatic colours that the output device is capable of rendering in a way that preserves colour
appearance and visual contrast.

Table 64 – Entries in a CalRGB Colour Space Dictionary

Key Type Value

WhitePoint array (Required) An array of three numbers [XW YW ZW] specifying the tristimulus
value, in the CIE 1931 XYZ space, of the diffuse white point; see below for
further discussion. The numbers XW and ZW shall be positive, and YW shall be
equal to 1.0.

BlackPoint array (Optional) An array of three numbers [XB YB ZB] specifying the tristimulus
value, in the CIE 1931 XYZ space, of the diffuse black point; see below for
further discussion. All three of these numbers shall be non-negative. Default
value: [0.0 0.0 0.0].

Gamma array (Optional) An array of three numbers [GR GG GB] specifying the gamma for
the red, green, and blue (A, B, and C) components of the colour space.
Default value: [1.0 1.0 1.0].

Matrix array (Optional) An array of nine numbers [XA YA ZA XB YB ZB XC YC ZC]
specifying the linear interpretation of the decoded A, B, and C components of
the colour space with respect to the final XYZ representation. Default value:
the identity matrix [1 0 0 0 1 0 0 0 1].

© Adobe Systems Incorporated 2008 – All rights reserved 147

PDF 32000-1:2008

WhitePoint represents the diffuse achromatic highlight, not a specular highlight. Specular highlights,
achromatic or otherwise, are often reproduced lighter than the diffuse highlight. BlackPoint represents the
diffuse achromatic shadow; its value is limited by the dynamic range of the input device. In images produced by
a photographic system, the values of WhitePoint and BlackPoint vary with exposure, system response, and
artistic intent; hence, their values are image-dependent.

The transformation defined by the Gamma and Matrix entries in the CalRGB colour space dictionary shall be

The A, B, and C components shall first be decoded individually by the gamma functions. The results shall be
treated as a three-element vector and multiplied by Matrix (a 3-by-3 matrix) to obtain the L, M, and N
components of the intermediate representation. Since there is no second stage, these shall also be the X, Y,
and Z components of the final representation.

EXAMPLE The following shows an example of a CalRGB colour space for the CCIR XA/11–recommended D65
white point with 1.8 gammas and Sony Trinitron phosphor chromaticities.

[/CalRGB

<< /WhitePoint [0.9505 1.0000 1.0890]
 /Gamma [1.8000 1.8000 1.8 000]
 /Matrix [0.4497 0.2446 0.0252

 0.3163 0.6720 0.1412
 0.1845 0.0833 0.9227
]

>>
]

The parameters of a CalRGB colour space may be specified in terms of the CIE 1931 chromaticity coordinates
(xR , yR), (xG , yG), (xB , yB) of the red, green, and blue phosphors, respectively, and the chromaticity (xW , yW)
of the diffuse white point corresponding to a linear RGB value (R, G, B), where R, G, and B should all equal 1.0.
The standard CIE notation uses lowercase letters to specify chromaticity coordinates and uppercase letters to
specify tristimulus values. Given this information, Matrix and WhitePoint shall be calculated as follows:

X L XA A
GR× XB B

GG× XC C
G

×+ += =

Y M YA A
GR× YB B

GG× YC C
G

×+ += =

Z N ZA A
GR× ZB B

GG× ZC C
GB×+ += =

z yW xG xB–() yR× xR xB–() yG×– xR xG–() yB×+(×=

YA
yR
R

xG xB–() yW× xW xB–() yG× xW xG–() y×+–

z
--×=

XA YA
xR
yR
------×= ZA YA

1 xR–

yR
--------------- 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

×=

YB
yG
G
------–

xR xB–() yW× xW xB–() yR× xW xR–() y×+–

z
---×=

XB YB
xG
yG
------×= ZB YB

1 xG–

yG
--------------- 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

×=

PDF 32000-1:2008

148 © Adobe Systems Incorporated 2008 – All rights reserved

8.6.5.4 Lab Colour Spaces

A Lab colour space is a CIE-based ABC colour space with two transformation stages (see Figure 22). In this
type of space, A, B, and C represent the L*, a*, and b* components of a CIE 1976 L*a*b* space. The range of
the first (L*) component shall be 0 to 100; the ranges of the second and third (a* and b*) components shall be
defined by the Range entry in the colour space dictionary (see Table 65).

Figure L.3 in Annex L illustrates the coordinates of a typical Lab colour space; Figure L.4 in Annex L compares
the gamuts (ranges of representable colours) for L*a*b*, RGB, and CMYK spaces.

A Lab colour space shall not specify explicit decoding functions or matrix coefficients for either stage of the
transformation from L*a*b* space to XYZ space (denoted by “Decode ABC,” “Matrix ABC,” “Decode LMN,” and
“Matrix LMN” in Figure 22). Instead, these parameters shall have constant implicit values. The first
transformation stage shall be defined by the equations

Table 65 – Entries in a Lab Colour Space Dictionary

Key Type Value

WhitePoint array (Required) An array of three numbers [XW YW ZW] that shall specify the
tristimulus value, in the CIE 1931 XYZ space, of the diffuse white point; see
8.6.5.3, "CalRGB Colour Spaces" for further discussion. The numbers XW and
ZW shall be positive, and YW shall be 1.0.

BlackPoint array (Optional) An array of three numbers [XB YB ZB] that shall specify the
tristimulus value, in the CIE 1931 XYZ space, of the diffuse black point; see
8.6.5.3, "CalRGB Colour Spaces" for further discussion. All three of these
numbers shall be non-negative. Default value: [0.0 0.0 0.0].

Range array (Optional) An array of four numbers [amin amax bmin bmax] that shall specify
the range of valid values for the a* and b* (B and C) components of the colour
space—that is,

and

Component values falling outside the specified range shall be adjusted to the
nearest valid value without error indication.
Default value: [−100 100 −100 100].

YC
yB
B

xR xG–() yW× xW xG–() yR× xW xR–() y×+–

z
--×=

XC YC
xB
yB
------×= ZC YC

1 xB–

yB
--------------- 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

×=

XW XA R× XB G× XC B×++=

YW YA R× YB G× YC B×++=

ZW ZA R× ZB G× ZC B×+ +=

amin a* amax≤ ≤

bmin b* bmax≤ ≤

© Adobe Systems Incorporated 2008 – All rights reserved 149

PDF 32000-1:2008

The second transformation stage shall be

where the function g (x) shall be defined as

EXAMPLE The following defines the CIE 1976 L*a*b* space with the CCIR XA/11–recommended D65 white point.
The a* and b* components, although theoretically unbounded, are defined to lie in the useful range -128
to +127.

[/Lab

<< /WhitePoint [0.9505 1.0000 1.0890]
 /Range [-128 127 -128 127]
>>

]

8.6.5.5 ICCBased Colour Spaces

ICCBased colour spaces (PDF 1.3) shall be based on a cross-platform colour profile as defined by the
International Color Consortium (ICC) (see, “Bibliography“). Unlike the CalGray, CalRGB, and Lab colour
spaces, which are characterized by entries in the colour space dictionary, an ICCBased colour space shall be
characterized by a sequence of bytes in a standard format. Details of the profile format can be found in the ICC
specification (see, “Bibliography“).

An ICCBased colour space shall be an array:

[/ICCBased stream]

The stream shall contain the ICC profile. Besides the usual entries common to all streams (see Table 5), the
profile stream shall have the additional entries listed in Table 66.

Table 66 – Additional Entries Specific to an ICC Profile Stream Dictionary

Key Type Value

N integer (Required) The number of colour components in the colour space described
by the ICC profile data. This number shall match the number of components
actually in the ICC profile. N shall be 1, 3, or 4.

L L* 16+
116

------------------- a*
500
---------+=

M L* 16+
116

-------------------=

N L* 16+
116

------------------- b*
200
---------–=

X XW g L()×=

Y YW g M()×=

Z ZW g N()×=

g x() x3= if x 6
29
------≥

g x() 108
841
--------- x 4

29
------–⎝ ⎠

⎛ ⎞×= otherwise

PDF 32000-1:2008

150 © Adobe Systems Incorporated 2008 – All rights reserved

The ICC specification is an evolving standard. Table 67 shows the versions of the ICC specification on which
the ICCBased colour spaces that PDF versions 1.3 and later shall use. (Earlier versions of the ICC
specification shall also be supported.)

Conforming writers and readers should follow these guidelines:

• A conforming reader shall support ICC.1:2004:10 as required by PDF 1.7, which will enable it to properly
render all embedded ICC profiles regardless of the PDF version.

• A conforming reader shall always process an embedded ICC profile according to the corresponding
version of the PDF being processed as shown in Table 67 above; it shall not substitute the Alternate colour
space in these cases.

• A conforming writer should use ICC 1:2004-10 profiles. It may embed profiles conforming to a later ICC
version. The conforming reader should process such profiles according to Table 67; if that is not possible,
it shall substitute the Alternate colour space.

• Conforming writers shall only use the profile types shown in Table 68 for specifying calibrated colour
spaces for colouring graphic objects. Each of the indicated fields shall have one of the values listed for that
field in the second column of the table. Profiles shall satisfy both the criteria shown in the table. The
terminology is taken from the ICC specifications.

Alternate array or
name

(Optional) An alternate colour space that shall be used in case the one
specified in the stream data is not supported. Non-conforming readers may
use this colour space. The alternate space may be any valid colour space
(except a Pattern colour space) that has the number of components specified
by N. If this entry is omitted and the conforming reader does not understand
the ICC profile data, the colour space that shall be used is DeviceGray,
DeviceRGB, or DeviceCMYK, depending on whether the value of N is 1, 3, or
4, respectively.
There shall not be conversion of source colour values, such as a tint
transformation, when using the alternate colour space. Colour values within
the range of the ICCBased colour space might not be within the range of the
alternate colour space. In this case, the nearest values within the range of the
alternate space shall be substituted.

Range array (Optional) An array of 2 × N numbers [min0 max0 min1 max1 …] that shall
specify the minimum and maximum valid values of the corresponding colour
components. These values shall match the information in the ICC profile.
Default value: [0.0 1.0 0.0 1.0 …].

Metadata stream (Optional; PDF 1.4) A metadata stream that shall contain metadata for the
colour space (see 14.3.2, "Metadata Streams").

Table 67 – ICC Specification Versions Supported by ICC Based Colour Spaces

PDF
Version

ICC Specification Version

1.3 3.3

1.4 ICC.1:1998-09 and its addendum ICC.1A:1999-04

1.5 ICC.1:2001-12

1.6 ICC.1:2003-09

1.7 ICC.1:2004-10 (ISO 15076-1:2005)

Table 66 – Additional Entries Specific to an ICC Profile Stream Dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 151

PDF 32000-1:2008

NOTE 1 XYZ and 16-bit L*a*b* profiles are not listed.

The terminology used in PDF colour spaces and ICC colour profiles is similar, but sometimes the same terms
are used with different meanings. The default value for each component in an ICCBased colour space is 0. The
range of each colour component is a function of the colour space specified by the profile and is indicated in the
ICC specification. The ranges for several ICC colour spaces are shown in Table 69.

Since the ICCBased colour space is being used as a source colour space, only the “to CIE” profile information
(AToB in ICC terminology) shall be used; the “from CIE” (BToA) information shall be ignored when present. An
ICC profile may also specify a rendering intent, but a conforming reader shall ignore this information; the
rendering intent shall be specified in PDF by a separate parameter (see 8.6.5.8, "Rendering Intents").

The requirements stated above apply to an ICCBased colour space that is used to specify the source colours
of graphics objects. When such a space is used as the blending colour space for a transparency group in the
transparent imaging model (see 11.3.4, "Blending Colour Space"; 11.4, "Transparency Groups"; and 11.6.6,
"Transparency Group XObjects"), it shall have both “to CIE” (AToB) and “from CIE” (BToA) information. This is
because the group colour space shall be used as both the destination for objects being painted within the group
and the source for the group’s results. ICC profiles shall also be used in specifying output intents for matching
the colour characteristics of a PDF document with those of a target output device or production environment.
When used in this context, they shall be subject to still other constraints on the “to CIE” and “from CIE”
information; see 14.11.5, "Output Intents", for details.

The representations of ICCBased colour spaces are less compact than CalGray, CalRGB, and Lab, but can
represent a wider range of colour spaces.

NOTE 2 One particular colour space is the “standard RGB” or sRGB, defined in the International Electrotechnical
Commission (IEC) document Color Measurement and Management in Multimedia Systems and Equipment
(see, “Bibliography“). In PDF, the sRGB colour space can only be expressed as an ICCBased space,
although it can be approximated by a CalRGB space.

EXAMPLE The following shows an ICCBased colour space for a typical three-component RGB space. The profile’s
data has been encoded in hexadecimal representation for readability; in actual practice, a lossless
decompression filter such as FlateDecode should be used.

10 0 obj % Colour space

[/ICCBased 15 0 R]

Table 68 – ICC Profile Types

Header Field Required Value

deviceClass icSigInputClass ('scnr')
icSigDisplayClass ('mntr')
icSigOutputClass ('prtr')
icSigColorSpaceClass ('spac')

colorSpace icSigGrayData ('GRAY')
icSigRgbData ('RGB ')
icSigCmykData ('CMYK')
icSigLabData ('Lab ')

Table 69 – Ranges for Typical ICC Colour Spaces

ICC Colour Space Component Ranges

Gray [0.0 1.0]

RGB [0.0 1.0]

CMYK [0.0 1.0]

L*a*b* L*: [0 100]; a* and b*: [−128 127]

PDF 32000-1:2008

152 © Adobe Systems Incorporated 2008 – All rights reserved

endobj

15 0 obj % ICC profile stream

<< /N 3
 /Alternate /DeviceRGB
 /Length 1605
 /Filter /ASCIIHexDecode
>>

stream
00 00 02 0C 61 70 70 6C 02 00 00 00 6D 6E 74 72
52 47 42 20 58 59 5A 20 07 CB 00 02 00 16 00 0E
00 22 00 2C 61 63 73 70 41 50 50 4C 00 00 00 00
61 70 70 6C 00 00 04 01 00 00 00 00 00 00 00 02
00 00 00 00 00 00 F6 D4 00 01 00 00 00 00 D3 2B
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 09 64 65 73 63 00 00 00 F0 00 00 00 71
72 58 59 5A 00 00 01 64 00 00 00 14 67 58 59 5A
00 00 01 78 00 00 00 14 62 58 59 5A 00 00 01 8C
00 00 00 14 72 54 52 43 00 00 01 A0 00 00 00 0E
67 54 52 43 00 00 01 B0 00 00 00 0E 62 54 52 43
00 00 01 C0 00 00 00 0E 77 74 70 74 00 00 01 D0
00 00 00 14 63 70 72 74 00 00 01 E4 00 00 00 27
64 65 73 63 00 00 00 00 00 00 00 17 41 70 70 6C
65 20 31 33 22 20 52 47 42 20 53 74 61 6E 64 61
72 64 00 00 00 00 00 00 00 00 00 00 00 17 41 70
70 6C 65 20 31 33 22 20 52 47 42 20 53 74 61 6E
64 61 72 64 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 58 59 5A 58 59 5A 20 00 00 00 00 00 00 63 0A
00 00 35 0F 00 00 03 30 58 59 5A 20 00 00 00 00
00 00 53 3D 00 00 AE 37 00 00 15 76 58 59 5A 20
00 00 00 00 00 00 40 89 00 00 1C AF 00 00 BA 82
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 63 75
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 63 75
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 58 59
58 59 5A 20 00 00 00 00 00 00 F3 1B 00 01 00 00
00 01 67 E7 74 65 78 74 00 00 00 00 20 43 6F 70
79 72 69 67 68 74 20 41 70 70 6C 65 20 43 6F 6D
70 75 74 65 72 73 20 31 39 39 34 00 >
endstream
endobj

8.6.5.6 Default Colour Spaces

Colours that are specified in a device colour space (DeviceGray, DeviceRGB, or DeviceCMYK) are device-
dependent. By setting default colour spaces (PDF 1.1), a conforming writer can request that such colours shall
be systematically transformed (remapped) into device-independent CIE-based colour spaces. This capability
can be useful in a variety of circumstances:

• A document originally intended for one output device is redirected to a different device.

• A document is intended to be compatible with non-compliant readers and thus cannot specify CIE-based
colours directly.

• Colour corrections or rendering intents need to be applied to device colours (see 8.6.5.8, "Rendering
Intents").

A colour space is selected for painting each graphics object. This is either the current colour space parameter
in the graphics state or a colour space given as an entry in an image XObject, inline image, or shading

© Adobe Systems Incorporated 2008 – All rights reserved 153

PDF 32000-1:2008

dictionary. Regardless of how the colour space is specified, it shall be subject to remapping as described
below.

When a device colour space is selected, the ColorSpace subdictionary of the current resource dictionary (see
7.8.3, "Resource Dictionaries") is checked for the presence of an entry designating a corresponding default
colour space (DefaultGray, DefaultRGB, or DefaultCMYK, corresponding to DeviceGray, DeviceRGB, or
DeviceCMYK, respectively). If such an entry is present, its value shall be used as the colour space for the
operation currently being performed.

Colour values in the original device colour space shall be passed unchanged to the default colour space, which
shall have the same number of components as the original space. The default colour space should be chosen
to be compatible with the original, taking into account the components’ ranges and whether the components
are additive or subtractive. If a colour value lies outside the range of the default colour space, it shall be
adjusted to the nearest valid value.

Any colour space other than a Lab, Indexed, or Pattern colour space may be used as a default colour space
and it should be compatible with the original device colour space as described above.

If the selected space is a special colour space based on an underlying device colour space, the default colour
space shall be used in place of the underlying space. This shall apply to the following colour spaces:

• The underlying colour space of a Pattern colour space

• The base colour space of an Indexed colour space

• The alternate colour space of a Separation or DeviceN colour space (but only if the alternate colour space
is actually selected)

See 8.6.6, "Special Colour Spaces", for details on these colour spaces.

There is no conversion of colour values, such as a tint transformation, when using the default colour space.
Colour values that are within the range of the device colour space might not be within the range of the default
colour space (particularly if the default is an ICCBased colour space). In this case, the nearest values within
the range of the default space are used. For this reason, a Lab colour space shall not be used as the
DefaultRGB colour space.

8.6.5.7 Implicit Conversion of CIE-Based Colour Spaces

In cases where a source colour space accurately represents the particular output device being used, a
conforming reader should avoid converting the component colour values but use the source values directly as
output values. This avoids any unwanted computational error and in the case of 4 component colour spaces
avoids the conversion from 4 components to 3 and back to 4, a process that loses critical colour information.

NOTE 1 In workflows in which PDF documents are intended for rendering on a specific target output device (such as a
printing press with particular inks and media), it is often useful to specify the source colours for some or all of a
document’s objects in a CIE-based colour space that matches the calibration of the intended device. The
resulting document, although tailored to the specific characteristics of the target device, remains device-
independent and will produce reasonable results if retargeted to a different output device. However, the
expectation is that if the document is printed on the intended target device, source colours that have been
specified in a colour space matching the calibration of the device will pass through unchanged, without
conversion to and from the intermediate CIE 1931 XYZ space as depicted in Figure 22.

NOTE 2 In particular, when colours intended for a CMYK output device are specified in an ICCBased colour space
using a matching CMYK printing profile, converting such colours from four components to three and back is
unnecessary and results in a loss of fidelity in the black component. In such cases, a conforming reader may
provide the ability for the user to specify a particular calibration to use for printing, proofing, or previewing. This
calibration is then considered to be that of the native colour space of the intended output device (typically
DeviceCMYK), and colours expressed in a CIE-based source colour space matching it can be treated as if
they were specified directly in the device’s native colour space.

PDF 32000-1:2008

154 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 3 The conditions under which such implicit conversion is done cannot be specified in PDF, since nothing in PDF
describes the calibration of the output device (although an output intent dictionary, if present, may suggest
such a calibration; see 14.11.5, "Output Intents"). The conversion is completely hidden by the conforming
reader and plays no part in the interpretation of PDF colour spaces.

When this type of implicit conversion is done, all of the semantics of the device colour space shall also apply,
even though they do not apply to CIE-based spaces in general. In particular:

• The nonzero overprint mode (see 8.6.7, "Overprint Control") shall determine the interpretation of colour
component values in the space.

• If the space is used as the blending colour space for a transparency group in the transparent imaging
model (see 11.3.4, "Blending Colour Space"; 11.4, "Transparency Groups"; and 11.6.6, "Transparency
Group XObjects"), components of the space, such as Cyan, may be selected in a Separation or DeviceN
colour space used within the group (see 8.6.6.4, "Separation Colour Spaces" and 8.6.6.5, "DeviceN Colour
Spaces").

• Likewise, any uses of device colour spaces for objects within such a transparency group have well-defined
conversions to the group colour space.

NOTE 4 A source colour space can be specified directly (for example, with an ICCBased colour space) or indirectly
using the default colour space mechanism (for example, DefaultCMYK; see 8.6.5.6, "Default Colour Spaces").
The implicit conversion of a CIE-based colour space to a device space should not depend on whether the CIE-
based space is specified directly or indirectly.

8.6.5.8 Rendering Intents

Although CIE-based colour specifications are theoretically device-independent, they are subject to practical
limitations in the colour reproduction capabilities of the output device. Such limitations may sometimes require
compromises to be made among various properties of a colour specification when rendering colours for a given
device. Specifying a rendering intent (PDF 1.1) allows a conforming writer to set priorities regarding which of
these properties to preserve and which to sacrifice.

EXAMPLE The conforming writer might request that colours falling within the output device’s gamut (the range of
colours it can reproduce) be rendered exactly while sacrificing the accuracy of out-of-gamut colours, or
that a scanned image such as a photograph be rendered in a perceptually pleasing manner at the cost of
strict colourimetric accuracy.

Rendering intents shall be specified with the ri operator (see 8.4.4, "Graphics State Operators"), the RI entry in
a graphics state parameter dictionary (see 8.4.5, "Graphics State Parameter Dictionaries"), or with the Intent
entry in image dictionaries (see 8.9.5, "Image Dictionaries"). The value shall be a name identifying the
rendering intent. Table 70 lists the standard rendering intents that shall be recognized. Figure L.5 in Annex L
illustrates their effects. These intents have been chosen to correspond to those defined by the International
Color Consortium (ICC), an industry organization that has developed standards for device-independent colour.
If a conforming reader does not recognize the specified name, it shall use the RelativeColorimetric intent by
default.

NOTE Note, however, that the exact set of rendering intents supported may vary from one output device to another; a
particular device may not support all possible intents or may support additional ones beyond those listed in the
table.

See 11.7.5, "Rendering Parameters and Transparency", and in particular 11.7.5.3, "Rendering Intent and
Colour Conversions", for further discussion of the role of rendering intents in the transparent imaging model.

© Adobe Systems Incorporated 2008 – All rights reserved 155

PDF 32000-1:2008

8.6.6 Special Colour Spaces

8.6.6.1 General

Special colour spaces add features or properties to an underlying colour space. There are four special colour
space families: Pattern, Indexed, Separation, and DeviceN.

Table 70 – Rendering Intents

Name Description

AbsoluteColorimetric Colours shall be represented solely with respect to the
light source; no correction shall be made for the output
medium’s white point (such as the colour of unprinted
paper). Thus, for example, a monitor’s white point, which
is bluish compared to that of a printer’s paper, would be
reproduced with a blue cast. In-gamut colours shall be
reproduced exactly; out-of-gamut colours shall be mapped
to the nearest value within the reproducible gamut.
NOTE 1 This style of reproduction has the advantage

of providing exact colour matches from one
output medium to another. It has the
disadvantage of causing colours with Y
values between the medium’s white point and
1.0 to be out of gamut. A typical use might be
for logos and solid colours that require exact
reproduction across different media.

RelativeColorimetric Colours shall be represented with respect to the
combination of the light source and the output medium’s
white point (such as the colour of unprinted paper). Thus,
a monitor’s white point can be reproduced on a printer by
simply leaving the paper unmarked, ignoring colour
differences between the two media. In-gamut colours shall
be reproduced exactly; out-of-gamut colours shall be
mapped to the nearest value within the reproducible
gamut.
NOTE 2 This style of reproduction has the advantage

of adapting for the varying white points of
different output media. It has the
disadvantage of not providing exact colour
matches from one medium to another. A
typical use might be for vector graphics.

Saturation Colours shall be represented in a manner that preserves
or emphasizes saturation. Reproduction of in-gamut
colours may or may not be colourimetrically accurate.
NOTE 3 A typical use might be for business graphics,

where saturation is the most important
attribute of the colour.

Perceptual Colours shall be represented in a manner that provides a
pleasing perceptual appearance. To preserve colour
relationships, both in-gamut and out-of-gamut colours
shall be generally modified from their precise colourimetric
values.
NOTE 4 A typical use might be for scanned images.

PDF 32000-1:2008

156 © Adobe Systems Incorporated 2008 – All rights reserved

8.6.6.2 Pattern Colour Spaces

A Pattern colour space (PDF 1.2) specifies that an area is to be painted with a pattern rather than a single
colour. The pattern shall be either a tiling pattern (type 1) or a shading pattern (type 2). 8.7, "Patterns",
discusses patterns in detail.

8.6.6.3 Indexed Colour Spaces

An Indexed colour space specifies that an area is to be painted using a colour map or colour table of arbitrary
colours in some other space. A conforming reader shall treat each sample value as an index into the colour
table and shall use the colour value it finds there. This technique can considerably reduce the amount of data
required to represent a sampled image.

An Indexed colour space shall be defined by a four-element array:

[/Indexed base hival lookup]

The first element shall be the colour space family name Indexed. The remaining elements shall be parameters
that an Indexed colour space requires; their meanings are discussed below. Setting the current stroking or
nonstroking colour space to an Indexed colour space shall initialize the corresponding current colour to 0.

The base parameter shall be an array or name that identifies the base colour space in which the values in the
colour table are to be interpreted. It shall be any device or CIE-based colour space or (PDF 1.3) a Separation
or DeviceN space, but shall not be a Pattern space or another Indexed space. If the base colour space is
DeviceRGB, the values in the colour table shall be interpreted as red, green, and blue components; if the base
colour space is a CIE-based ABC space such as a CalRGB or Lab space, the values shall be interpreted as A,
B, and C components.

The hival parameter shall be an integer that specifies the maximum valid index value. The colour table shall be
indexed by integers in the range 0 to hival. hival shall be no greater than 255, which is the integer required to
index a table with 8-bit index values.

The colour table shall be defined by the lookup parameter, which may be either a stream or (PDF 1.2) a byte
string. It shall provide the mapping between index values and the corresponding colours in the base colour
space.

The colour table data shall be m ¥ (hival + 1) bytes long, where m is the number of colour components in the
base colour space. Each byte shall be an unsigned integer in the range 0 to 255 that shall be scaled to the
range of the corresponding colour component in the base colour space; that is, 0 corresponds to the minimum
value in the range for that component, and 255 corresponds to the maximum.

The colour components for each entry in the table shall appear consecutively in the string or stream.

EXAMPLE 1 If the base colour space is DeviceRGB and the indexed colour space contains two colours, the order of
bytes in the string or stream is R0 G0 B0 R1 G1 B1 , where letters denote the colour component and
numeric subscripts denote the table entry.

EXAMPLE 1 The following illustrates the specification of an Indexed colour space that maps 8-bit index values to
three-component colour values in the DeviceRGB colour space.

[/Indexed

/DeviceRGB
255
< 000000 FF0000 00FF00 0000FF B57342 … >

]

The example shows only the first five colour values in the lookup string; in all, there should be 256 colour
values and the string should be 768 bytes long. Having established this colour space, the program can
now specify colours as single-component values in the range 0 to 255. For example, a colour value of 4
selects an RGB colour whose components are coded as the hexadecimal integers B5, 73, and 42.

© Adobe Systems Incorporated 2008 – All rights reserved 157

PDF 32000-1:2008

Dividing these by 255 and scaling the results to the range 0.0 to 1.0 yields a colour with red, green, and
blue components of 0.710, 0.451, and 0.259, respectively.

Although an Indexed colour space is useful mainly for images, index values can also be used with the colour
selection operators SC, SCN, sc, and scn.

EXAMPLE 2 The following selects the same colour as does an image sample value of 123.

123 sc

The index value should be an integer in the range 0 to hival. If the value is a real number, it shall be rounded to
the nearest integer; if it is outside the range 0 to hival, it shall be adjusted to the nearest value within that range.

8.6.6.4 Separation Colour Spaces

A Separation colour space (PDF 1.2) provides a means for specifying the use of additional colorants or for
isolating the control of individual colour components of a device colour space for a subtractive device. When
such a space is the current colour space, the current colour shall be a single-component value, called a tint,
that controls the application of the given colorant or colour components only.

NOTE 1 Colour output devices produce full colour by combining primary or process colorants in varying amounts. On
an additive colour device such as a display, the primary colorants consist of red, green, and blue phosphors;
on a subtractive device such as a printer, they typically consist of cyan, magenta, yellow, and sometimes black
inks. In addition, some devices can apply special colorants, often called spot colorants, to produce effects that
cannot be achieved with the standard process colorants alone. Examples include metallic and fluorescent
colours and special textures.

NOTE 2 When printing a page, most devices produce a single composite page on which all process colorants (and spot
colorants, if any) are combined. However, some devices, such as imagesetters, produce a separate,
monochromatic rendition of the page, called a separation, for each colorant. When the separations are later
combined—on a printing press, for example—and the proper inks or other colorants are applied to them, the
result is a full-colour page.

NOTE 3 The term separation is often misused as a synonym for an individual device colorant. In the context of this
discussion, a printing system that produces separations generates a separate piece of physical medium
(generally film) for each colorant. It is these pieces of physical medium that are correctly referred to as
separations. A particular colorant properly constitutes a separation only if the device is generating physical
separations, one of which corresponds to the given colorant. The Separation colour space is so named for
historical reasons, but it has evolved to the broader purpose of controlling the application of individual
colorants in general, regardless of whether they are actually realized as physical separations.

NOTE 4 The operation of a Separation colour space itself is independent of the characteristics of any particular output
device. Depending on the device, the space may or may not correspond to a true, physical separation or to an
actual colorant. For example, a Separation colour space could be used to control the application of a single
process colorant (such as cyan) on a composite device that does not produce physical separations, or could
represent a colour (such as orange) for which no specific colorant exists on the device. A Separation colour
space provides consistent, predictable behaviour, even on devices that cannot directly generate the requested
colour.

A Separation colour space is defined as follows:

[/Separation name alternateSpace tintTransform]

It shall be a four-element array whose first element shall be the colour space family name Separation. The
remaining elements are parameters that a Separation colour space requires; their meanings are discussed
below.

A colour value in a Separation colour space shall consist of a single tint component in the range 0.0 to 1.0. The
value 0.0 shall represent the minimum amount of colorant that can be applied; 1.0 shall represent the
maximum. Tints shall always be treated as subtractive colours, even if the device produces output for the
designated component by an additive method. Thus, a tint value of 0.0 denotes the lightest colour that can be

PDF 32000-1:2008

158 © Adobe Systems Incorporated 2008 – All rights reserved

achieved with the given colorant, and 1.0 is the darkest. The initial value for both the stroking and nonstroking
colour in the graphics state shall be 1.0. The SCN and scn operators respectively shall set the current stroking
and nonstroking colour to a tint value. A sampled image with single-component samples may also be used as a
source of tint values.

NOTE 5 This convention is the same as for DeviceCMYK colour components but opposite to the one for DeviceGray
and DeviceRGB.

The name parameter is a name object that shall specify the name of the colorant that this Separation colour
space is intended to represent (or one of the special names All or None; see below). Such colorant names are
arbitrary, and there may be any number of them, subject to implementation limits.

The special colorant name All shall refer collectively to all colorants available on an output device, including
those for the standard process colorants. When a Separation space with this colorant name is the current
colour space, painting operators shall apply tint values to all available colorants at once.

NOTE 6 This is useful for purposes such as painting registration targets in the same place on every separation. Such
marks are typically painted as the last step in composing a page to ensure that they are not overwritten by
subsequent painting operations.

The special colorant name None shall not produce any visible output. Painting operations in a Separation
space with this colorant name shall have no effect on the current page.

A conforming reader shall support Separation colour spaces with the colorant names All and None on all
devices, even if the devices are not capable of supporting any others. When processing Separation spaces
with either of these colorant names conforming readers shall ignore the alternateSpace and tintTransform
parameters (discussed below), although valid values shall still be provided.

At the moment the colour space is set to a Separation space, the conforming reader shall determine whether
the device has an available colorant corresponding to the name of the requested space. If so, the conforming
reader shall ignore the alternateSpace and tintTransform parameters; subsequent painting operations within
the space shall apply the designated colorant directly, according to the tint values supplied.

The preceding paragraph applies only to subtractive output devices such as printers and imagesetters. For an
additive device such as a computer display, a Separation colour space never applies a process colorant
directly; it always reverts to the alternate colour space as described below. This is because the model of
applying process colorants independently does not work as intended on an additive device.

EXAMPLE 1 Painting tints of the Red component on a white background produces a result that varies from white to
cyan.

This exception applies only to colorants for additive devices, not to the specific names Red, Green, and Blue.
In contrast, a printer might have a (subtractive) ink named Red, which should work as a Separation colour
space just the same as any other supported colorant.

If the colorant name associated with a Separation colour space does not correspond to a colorant available on
the device, the conforming reader shall arrange for subsequent painting operations to be performed in an
alternate colour space. The intended colours may be approximated by colours in a device or CIE-based colour
space, which shall then be rendered with the usual primary or process colorants:

• The alternateSpace parameter shall be an array or name object that identifies the alternate colour space,
which may be any device or CIE-based colour space but may not be another special colour space
(Pattern, Indexed, Separation, or DeviceN).

• The tintTransform parameter shall be a function (see 7.10, "Functions"). During subsequent painting
operations, a conforming reader calls this function to transform a tint value into colour component values in
the alternate colour space. The function shall be called with the tint value and shall return the
corresponding colour component values. That is, the number of components and the interpretation of their
values shall depend on the alternate colour space.

© Adobe Systems Incorporated 2008 – All rights reserved 159

PDF 32000-1:2008

NOTE 7 Painting in the alternate colour space may produce a good approximation of the intended colour when only
opaque objects are painted. However, it does not correctly represent the interactions between an object and its
backdrop when the object is painted with transparency or when overprinting (see 8.6.7, "Overprint Control") is
enabled.

EXAMPLE 2 The following illustrates the specification of a Separation colour space (object 5) that is intended to
produce a colour named LogoGreen. If the output device has no colorant corresponding to this colour,
DeviceCMYK is used as the alternate colour space, and the tint transformation function (object 12) maps
tint values linearly into shades of a CMYK colour value approximating the LogoGreen colour.

5 0 obj % Colour space

[/Separation
/LogoGreen
/DeviceCMYK
12 0 R

]
endobj

12 0 obj % Tint transformation function

<< /FunctionType 4
 /Domain [0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 /Length 62
>>

stream

{ dup 0.84 mul
 exch 0.00 exch dup 0.44 mul
 exch 0.21 mul

}
endstream
endobj

See 11.7.3, "Spot Colours and Transparency", for further discussion of the role of Separation colour spaces in
the transparent imaging model.

8.6.6.5 DeviceN Colour Spaces

DeviceN colour spaces (PDF 1.3) may contain an arbitrary number of colour components.

NOTE 1 They provide greater flexibility than is possible with standard device colour spaces such as DeviceCMYK or
with individual Separation colour spaces.

EXAMPLE 1 It is possible to create a DeviceN colour space consisting of only the cyan, magenta, and yellow colour
components, with the black component excluded.

NOTE 2 DeviceN colour spaces are used in applications such as these:

High-fidelity colour is the use of more than the standard CMYK process colorants to produce an extended
gamut, or range of colours. A popular example is the PANTONE Hexachrome system, which uses six
colorants: the usual cyan, magenta, yellow, and black, plus orange and green.

Multitone colour systems use a single-component image to specify multiple colour components. In a duotone,
for example, a single-component image can be used to specify both the black component and a spot colour
component. The tone reproduction is generally different for the different components. For example, the black
component might be painted with the exact sample data from the single-component image; the spot colour
component might be generated as a nonlinear function of the image data in a manner that emphasizes the
shadows. Figure L.6 in Annex L shows an example that uses black and magenta colour components. In Figure
L.7 in Annex L, a single-component grayscale image is used to generate a quadtone result that uses four
colorants: black and three PANTONE spot colours. See EXAMPLE 5 in this sub-clause for the code used to
generate this image.

PDF 32000-1:2008

160 © Adobe Systems Incorporated 2008 – All rights reserved

DeviceN shall be used to represent colour spaces containing multiple components that correspond to colorants
of some target device. As with Separation colour spaces, conforming readers shall be able to approximate the
colorants if they are not available on the current output device, such as a display. To accomplish this, the colour
space definition provides a tint transformation function that shall be used to convert all the components to an
alternate colour space.

PDF 1.6 extended the meaning of DeviceN to include colour spaces that are referred to as NChannel colour
spaces. Such colour spaces may contain an arbitrary number of spot and process components, which may or
may not correspond to specific device colorants (the process components shall be from a single process colour
space). They provide information about each component that allows conforming readers more flexibility in
converting colours. These colour spaces shall be identified by a value of NChannel for the Subtype entry of
the attributes dictionary (see Table 71). A value of DeviceN for the Subtype entry, or no value, shall mean that
only the previous features shall be supported. Conforming readers that do not support PDF 1.6 shall treat these
colour spaces as normal DeviceN colour spaces and shall use the tint transformation function as appropriate.
Conforming writers using the NChannel features should follow certain guidelines, as noted throughout this
sub-clause, to achieve good backward compatibility.

EXAMPLE 2 They may use their own blending algorithms for on-screen viewing and composite printing, rather than
being required to use a specified tint transformation function.

DeviceN colour spaces shall be defined in a similar way to Separation colour spaces—in fact, a Separation
colour space can be defined as a DeviceN colour space with only one component.

A DeviceN colour space shall be specified as follows:

[/DeviceN names alternateSpace tintTransform]

or

[/DeviceN names alternateSpace tintTransform attributes]

It is a four- or five-element array whose first element shall be the colour space family name DeviceN. The
remaining elements shall be parameters that a DeviceN colour space requires.

The names parameter shall be an array of name objects specifying the individual colour components. The
length of the array shall determine the number of components in the DeviceN colour space, which is subject to
an implementation limit; see Annex C.The component names shall all be different from one another, except for
the name None, which may be repeated as described later in this sub-clause. The special name All, used by
Separation colour spaces, shall not be used.

Colour values shall be tint components in the range 0.0 to 1.0:

• For DeviceN colour spaces that do not have a subtype of NChannel, 0.0 shall represent the minimum
amount of colorant; 1.0 shall represent the maximum. Tints shall always be treated as subtractive colours,
even if the device produces output for the designated component by an additive method. Thus, a tint value
of 0.0 shall denote the lightest colour that can be achieved with the given colorant, and 1.0 the darkest.

NOTE 3 This convention is the same one as for DeviceCMYK colour components but opposite to the one for
DeviceGray and DeviceRGB.

• For NChannel colour spaces, values for additive process colours (such as RGB) shall be specified in their
natural form, where 1.0 shall represent maximum intensity of colour.

When this space is set to the current colour space (using the CS or cs operators), each component shall be
given an initial value of 1.0. The SCN and scn operators respectively shall set the current stroking and
nonstroking colour. Operand values supplied to SCN or scn shall be interpreted as colour component values in
the order in which the colours are given in the names array, as are the values in a sampled image that uses a
DeviceN colour space.

© Adobe Systems Incorporated 2008 – All rights reserved 161

PDF 32000-1:2008

The alternateSpace parameter shall be an array or name object that can be any device or CIE-based colour
space but shall not be another special colour space (Pattern, Indexed, Separation, or DeviceN). When the
colour space is set to a DeviceN space, if any of the component names in the colour space do not correspond
to a colorant available on the device, the conforming reader shall perform subsequent painting operations in
the alternate colour space specified by this parameter.

For NChannel colour spaces, the components shall be evaluated individually; that is, only the ones not present
on the output device shall use the alternate colour space.

The tintTransform parameter shall specify a function (see 7.10, "Functions") that is used to transform the tint
values into the alternate colour space. It shall be called with n tint values and returns m colour component
values, where n is the number of components needed to specify a colour in the DeviceN colour space and m is
the number required by the alternate colour space.

NOTE 4 Painting in the alternate colour space may produce a good approximation of the intended colour when only
opaque objects are painted. However, it does not correctly represent the interactions between an object and its
backdrop when the object is painted with transparency or when overprinting (see 8.6.7, "Overprint Control") is
enabled.

The colour component name None, which may be present only for DeviceN colour spaces that do not have the
NChannel subtype, indicates that the corresponding colour component shall never be painted on the page, as
in a Separation colour space for the None colorant. When a DeviceN colour space is painting the named
device colorants directly, colour components corresponding to None colorants shall be discarded. However,
when the DeviceN colour space reverts to its alternate colour space, those components shall be passed to the
tint transformation function, which may use them as desired.

A DeviceN colour space whose component colorant names are all None shall always discard its output, just
the same as a Separation colour space for None; it shall never revert to the alternate colour space. Reversion
shall occur only if at least one colour component (other than None) is specified and is not available on the
device.

The optional attributes parameter shall be a dictionary (see Table 71) containing additional information about
the components of colour space that conforming readers may use. Conforming readers need not use the
alternateSpace and tintTransform parameters, and may instead use custom blending algorithms, along with
other information provided in the attributes dictionary if present. (If the value of the Subtype entry in the
attributes dictionary is NChannel, such information shall be present.) However, alternateSpace and
tintTransform shall always be provided for conforming readers that want to use them or do not support PDF 1.6.

Table 71 – Entries in a DeviceN Colour Space Attributes Dictionary

Key Type Value

Subtype name (Optional; PDF 1.6) A name specifying the preferred treatment for the
colour space. Values shall be DeviceN or NChannel. Default value:
DeviceN.

PDF 32000-1:2008

162 © Adobe Systems Incorporated 2008 – All rights reserved

A value of NChannel for the Subtype entry indicates that some of the other entries in this dictionary are
required rather than optional. The Colorants entry specifies a colorants dictionary that contains entries for all
the spot colorants in the colour space; they shall be defined using individual Separation colour spaces. The
Process entry specifies a process dictionary (see Table 72) that identifies the process colour space that is
used by this colour space and the names of its components. It shall be present if Subtype is NChannel and the
colour space has process colour components. An NChannel colour space shall contain components from at
most one process colour space.

For colour spaces that have a value of NChannel for the Subtype entry in the attributes dictionary (see
Table 71), the following restrictions apply to process colours:

• There may be colour components from at most one process colour space, which may be any device or
CIE-based colour space.

• For a non-CMYK colour space, the names of the process components shall appear sequentially in the
names array, in the normal colour space order (for example, Red, Green, and Blue). However, the names
in the names array need not match the actual colour space names (for example, a Red component need
not be named Red).The mapping of names is specified in the process dictionary (see Table 72 and
discussion below), which shall be present.

• Definitions for process colorants should not appear in the colorants dictionary. Any such definition shall be
ignored if the colorant is also present in the process dictionary. Any component not specified in the process
dictionary shall be considered to be a spot colorant.

• For a CMYK colour space, a subset of the components may be present, and they may appear in any order
in the names array. The reserved names Cyan, Magenta, Yellow, and Black shall always be considered
to be process colours, which do not necessarily correspond to the colorants of a specific device; they need
not have entries in the process dictionary.

• The values associated with the process components shall be stored in their natural form (that is,
subtractive colour values for CMYK and additive colour values for RGB), since they shall be interpreted

Colorants dictionary (Required if Subtype is NChannel and the colour space includes spot
colorants; otherwise optional) A dictionary describing the individual
colorants that shall be used in the DeviceN colour space. For each entry in
this dictionary, the key shall be a colorant name and the value shall be an
array defining a Separation colour space for that colorant (see 8.6.6.4,
"Separation Colour Spaces"). The key shall match the colorant name
given in that colour space.
This dictionary provides information about the individual colorants that
may be useful to some conforming readers. In particular, the alternate
colour space and tint transformation function of a Separation colour space
describe the appearance of that colorant alone, whereas those of a
DeviceN colour space describe only the appearance of its colorants in
combination.
If Subtype is NChannel, this dictionary shall have entries for all spot
colorants in this colour space. This dictionary may also include additional
colorants not used by this colour space.

Process dictionary (Required if Subtype is NChannel and the colour space includes
components of a process colour space, otherwise optional; PDF 1.6) A
dictionary (see Table 72) that describes the process colour space whose
components are included in this colour space.

MixingHints dictionary (Optional; PDF 1.6) A dictionary (see Table 73) that specifies optional
attributes of the inks that shall be used in blending calculations when used
as an alternative to the tint transformation function.

Table 71 – Entries in a DeviceN Colour Space Attributes Dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 163

PDF 32000-1:2008

directly as process values by consumers making use of the process dictionary. (For additive colour spaces,
this is the reverse of how colour values are specified for DeviceN, as described above in the discussion of
the names parameter.)

The MixingHints entry in the attributes dictionary specifies a mixing hints dictionary (see Table 73) that
provides information about the characteristics of colorants that may be used in blending calculations when the
actual colorants are not available on the target device. Conforming readers need not use this information.

Table 72 – Entries in a DeviceN Process Dictionary

KEY TYPE VALUE

ColorSpace name or
array

(Required) A name or array identifying the process colour space, which
may be any device or CIE-based colour space. If an ICCBased colour
space is specified, it shall provide calibration information appropriate for
the process colour components specified in the names array of the
DeviceN colour space.

Components array (Required) An array of component names that correspond, in order, to the
components of the process colour space specified in ColorSpace. For
example, an RGB colour space shall have three names corresponding to
red, green, and blue. The names may be arbitrary (that is, not the same as
the standard names for the colour space components) and shall match
those specified in the names array of the DeviceN colour space, even if all
components are not present in the names array.

Table 73 – Entries in a DeviceN Mixing Hints Dictionary

Key Type Value

Solidities dictionary (Optional) A dictionary specifying the solidity of inks that shall be used in
blending calculations when used as an alternative to the tint
transformation function. For each entry, the key shall be a colorant
name, and the value shall be a number between 0.0 and 1.0. This
dictionary need not contain entries for all colorants used in this colour
space; it may also include additional colorants not used by this colour
space.
A value of 1.0 simulates an ink that completely covers the inks beneath;
a value of 0.0 simulates a transparent ink that completely reveals the
inks beneath. An entry with a key of Default specifies a value that shall
be used by all components in the associated DeviceN colour space for
which a solidity value is not explicitly provided. If Default is not present,
the default value for unspecified colorants shall be 0.0; conforming
readers may choose to use other values.
If this entry is present, PrintingOrder shall also be present.

PrintingOrd
er

array (Required if Solidities is present) An array of colorant names,
specifying the order in which inks shall be laid down. Each component in
the names array of the DeviceN colour space shall appear in this array
(although the order is unrelated to the order specified in the names
array). This entry may also list colorants unused by this specific
DeviceN instance.

PDF 32000-1:2008

164 © Adobe Systems Incorporated 2008 – All rights reserved

Each entry in the mixing hints dictionary refers to colorant names, which include spot colorants referenced by
the Colorants dictionary. Under some circumstances, they may also refer to one or more individual process
components called Cyan, Magenta, Yellow, or Black when DeviceCMYK is specified as the process colour
space in the process dictionary. However, applications shall ignore these process component entries if they can
obtain the information from an ICC profile.

NOTE 5 The mixing hints subdictionaries (as well as the colorants dictionary) may specify colorants that are not used in
any given instance of a DeviceN colour space. This allows them to be referenced from multiple DeviceN
colour spaces, which can produce smaller file sizes as well as consistent colour definitions across instances.

For consistency of colour, conforming readers should follow these guidelines:

• The conforming reader shall apply either the specified tint transformation function or invoke the same
alternative blending algorithm for all DeviceN instances in the document.

NOTE 6 When the tint transformation function is used, the burden is on the conforming writer to guarantee that the
individual function definitions chosen for all DeviceN instances produce similar colour appearances throughout
the document.

• Blending algorithms should produce a similar appearance for colours when they are used as separation
colours or as a component of a DeviceN colour space.

EXAMPLE 3 This example shows a DeviceN colour space consisting of three colour components named Orange,
Green, and None. In this example, the DeviceN colour space, object 30, has an attributes dictionary
whose Colorants entry is an indirect reference to object 45 (which might also be referenced by attributes
dictionaries of other DeviceN colour spaces). tintTransform1, whose definition is not shown, maps three
colour components (tints of the colorants Orange, Green, and None) to four colour components in the
alternate colour space, DeviceCMYK. tintTransform2 maps a single colour component (an orange tint) to
four components in DeviceCMYK. Likewise, tintTransform3 maps a green tint to DeviceCMYK, and
tintTransform4 maps a tint of PANTONE 131 to DeviceCMYK.

30 0 obj % Colour space

[/DeviceN
[/Orange /Green /None]
/DeviceCMYK
tintTransform1
<< /Colorants 45 0 R >>

]
endobj

DotGain dictionary (Optional) A dictionary specifying the dot gain of inks that shall be used
in blending calculations when used as an alternative to the tint
transformation function. Dot gain (or loss) represents the amount by
which a printer’s halftone dots change as the ink spreads and is
absorbed by paper.
For each entry, the key shall be a colorant name, and the value shall be
a function that maps values in the range 0 to 1 to values in the range 0
to 1. The dictionary may list colorants unused by this specific DeviceN
instance and need not list all colorants. An entry with a key of Default
shall specify a function to be used by all colorants for which a dot gain
function is not explicitly specified.
Conforming readers may ignore values in this dictionary when other
sources of dot gain information are available, such as ICC profiles
associated with the process colour space or tint transformation functions
associated with individual colorants.

Table 73 – Entries in a DeviceN Mixing Hints Dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 165

PDF 32000-1:2008

EXAMPLE 4 45 0 obj % Colorants dictionary
<< /Orange [/Separation

/Orange
/DeviceCMYK
tintTransform2

]

 /Green [/Separation
 /Green
 /DeviceCMYK
 tintTransform3

]
/PANTONE#20131 [/Separation

/PANTONE#20131
/DeviceCMYK
tintTransform4

]
>>

endobj

NOTE 7 EXAMPLE 5 through EXAMPLE 8 show the use of NChannel colour spaces.

EXAMPLE 5 This example shows the use of calibrated CMYK process components. EXAMPLE 6 shows the use of
Lab process components.

10 0 obj % Colour space

[/DeviceN
[/Magenta /Spot1 /Yellow /Spot2]
alternateSpace
tintTransform1
<< % Attributes dictionary

/Subtype /NChannel
/Process

<< /ColorSpace [/ICCBased CMYK_ICC profile]
/Components [/Cyan /Magenta /Yellow /Black]

>>
/Colorants

<< /Spot1 [/Separation /Spot1 alternateSpace tintTransform2]
/Spot2 [/Separation /Spot2 alternateSpace tintTransform3]

>>
>>

]
endobj

EXAMPLE 6 10 0 obj %Colour space
[/DeviceN

[/L /a /b /Spot1 /Spot2]
alternateSpace
tintTransform1
<< % Attributes dictionary

/Subtype /NChannel
/Process

<< /ColorSpace [/Lab << /WhitePoint ... /Range ... >>]
/Components [/L /a /b]

>>
/Colorants

<< /Spot1 [/Separation /Spot1 alternateSpace tintTransform2]
/Spot2 [/Separation /Spot2 alternateSpace tintTransform3]

>>
>>

]

EXAMPLE 7 This example shows the recommended convention for dealing with situations where a spot colorant and a
process colour component have the same name. Since the names array may not have duplicate names,

PDF 32000-1:2008

166 © Adobe Systems Incorporated 2008 – All rights reserved

the process colours should be given different names, which are mapped to process components in the
Components entry of the process dictionary. In this case, Red refers to a spot colorant; ProcessRed,
ProcessGreen, and ProcessBlue are mapped to the components of an RGB colour space.

10 0 obj % Colour space
[/DeviceN

[/ProcessRed /ProcessGreen /ProcessBlue /Red]
alternateSpace
tintTransform1
<< % Attributes dictionary

/Subtype /NChannel
/Process

<< /ColorSpace [/ICCBased RGB_ICC profile]
/Components [/ProcessRed /ProcessGreen /ProcessBlue]

>>
/Colorants

<< /Red [/Separation /Red alternateSpace tintTransform2] >>
>>

]

EXAMPLE 8 This example shows the use of a mixing hints dictionary.

10 0 obj % Colour space

[/DeviceN
[/Magenta /Spot1 /Yellow /Spot2]
alternateSpace
tintTransform1
<<

/Subtype /NChannel
/Process

<< /ColorSpace [/ICCBased CMYK_ICC profile]
/Components [/Cyan /Magenta /Yellow /Black]

>>
/Colorants

<< /Spot1 [/Separation /Spot1 alternateSpace tintTransform2]
/Spot2 [/Separation /Spot2 alternateSpace tintTransform2]

>>
/MixingHints

<<
/Solidities

<< /Spot1 1.0
/Spot2 0.0

>>
/DotGain

<< /Spot1 function1
/Spot2 function2
/Magenta function3
/Yellow function4

>>
/PrintingOrder [/Magenta /Yellow /Spot1 /Spot2]

>>
>>
]

See 11.7.3, "Spot Colours and Transparency", for further discussion of the role of DeviceN colour spaces in the
transparent imaging model.

8.6.6.6 Multitone Examples

NOTE 1 The following examples illustrate various interesting and useful special cases of the use of Indexed and
DeviceN colour spaces in combination to produce multitone colours.

NOTE 2 EXAMPLE 1 and EXAMPLE 2 in this sub-clause illustrate the use of DeviceN to create duotone colour spaces.

© Adobe Systems Incorporated 2008 – All rights reserved 167

PDF 32000-1:2008

EXAMPLE 1 In this example, an Indexed colour space maps index values in the range 0 to 255 to a duotone DeviceN
space in cyan and black. In effect, the index values are treated as if they were tints of the duotone space,
which are then mapped into tints of the two underlying colorants. Only the beginning of the lookup table
string for the Indexed colour space is shown; the full table would contain 256 two-byte entries, each
specifying a tint value for cyan and black, for a total of 512 bytes. If the alternate colour space of the
DeviceN space is selected, the tint transformation function (object 15 in the example) maps the two tint
components for cyan and black to the four components for a DeviceCMYK colour space by supplying
zero values for the other two components.

10 0 obj %Colour space

[/Indexed
[/DeviceN

[/Cyan /Black]
/DeviceCMYK
15 0 R

]

255
< 6605 6806 6907 6B09 6C0A … >

]
endobj

15 0 obj % Tint transformation function

<< /FunctionType 4
 /Domain [0.0 1.0 0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 /Length 16
>>

stream

{ 0 0 3 -1 roll }
endstream
endobj

EXAMPLE 2 This example shows the definition of another duotone colour space, this time using black and gold
colorants (where gold is a spot colorant) and using a CalRGB space as the alternate colour space. This
could be defined in the same way as in the preceding example, with a tint transformation function that
converts from the two tint components to colours in the alternate CalRGB colour space.

30 0 obj % Colour space

[/Indexed
[/DeviceN

[/Black /Gold]
[/CalRGB

<< /WhitePoint [1.0 1.0 1.0]
 /Gamma [2.2 2.2 2.2]
>>

]
35 0 R % Tint transformation function

]

255
… Lookup table …

]
endobj

NOTE 3 Given a formula for converting any combination of black and gold tints to calibrated RGB, a 2-in, 3-out type 4
(PostScript calculator) function could be used for the tint transformation. Alternatively, a type 0 (sampled)
function could be used, but this would require a large number of sample points to represent the function
accurately; for example, sampling each input variable for 256 tint values between 0.0 and 1.0 would require
256 2 = 65,536 samples. But since the DeviceN colour space is being used as the base of an Indexed colour
space, there are actually only 256 possible combinations of black and gold tint values.

PDF 32000-1:2008

168 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE 3 This example shows a more compact way to represent this information is to put the alternate colour
values directly into the lookup table alongside the DeviceN colour values.

10 0 obj % Colour space

[/Indexed
[/DeviceN

[/Black /Gold /None /None /None]
[/CalRGB

<< /WhitePoint [1.0 1.0 1.0]
 /Gamma [2.2 2.2 2.2]
>>

]
20 0 R % Tint transformation function

]

255
… Lookup table …

]
endobj

NOTE 4 In EXAMPLE 3 in this sub-clause, each entry in the lookup table has five components: two for the black and
gold colorants and three more (specified as None) for the equivalent CalRGB colour components. If the black
and gold colorants are available on the output device, the None components are ignored; if black and gold are
not available, the tint transformation function is used to convert a five-component colour into a three-
component equivalent in the alternate CalRGB colour space. But because, by construction, the third, fourth,
and fifth components are the CalRGB components, the tint transformation function can merely discard the first
two components and return the last three. This can be readily expressed with a type 4 (PostScript calculator)
function (see EXAMPLE 4 in this sub-clause).

EXAMPLE 4 This example shows a type 4 (PostScript calculator) function.

20 0 obj % Tint transformation function

<< /FunctionType 4
 /Domain [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0]
 /Length 27
>>

stream

{ 5 3 roll pop pop }
endstream
endobj

EXAMPLE 5 This example uses an extension of the techniques described above to produce the quadtone (four-
component) image shown in Figure L.7 in Annex L.

5 0 obj % Image XObject

<< /Type /XObject
 /Subtype /Image
 /Width 288
 /Height 288
 /ColorSpace 10 0 R
 /BitsPerComponent 8
 /Length 105278
 /Filter /ASCII85Decode
>>

stream
… Data for grayscale image …
endstream
endobj

10 0 obj % Indexed colour space for image

[/Indexed
15 0 R % Base colour space

© Adobe Systems Incorporated 2008 – All rights reserved 169

PDF 32000-1:2008

255 % Table has 256 entries
30 0 R % Lookup table

]
endobj

15 0 obj % Base colour space (DeviceN) for Indexed space

[/DeviceN
[/Black % Four colorants (black plus three spot colours)

 /PANTONE#20216#20CVC
 /PANTONE#20409#20CVC
 /PANTONE#202985#20CVC
 /None % Three components for alternate space
 /None
 /None

]

16 0 R % Alternate colour space
20 0 R % Tint transformation function

]
endobj

16 0 obj % Alternate colour space for DeviceN space

[/CalRGB
<< /WhitePoint [1.0 1.0 1.0] >>

]
endobj

20 0 obj % Tint transformation function for DeviceN space

<< /FunctionType 4
 /Domain [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0]
 /Length 44
>>

stream

{ 7 3 roll % Just discard first four values
 pop pop pop pop

}
endstream
endobj

30 0 obj % Lookup table for Indexed colour space

<< /Length 1975
 /Filter [/ASCII85Decode /FlateDecode]
>>

stream
8;T1BB2"M7*!"psYBt1k\gY1T<D&tO]r*F7Hga*
… Additional data (seven components for each table entry) …
endstream
endobj

NOTE 5 As in the preceding examples, an Indexed colour space based on a DeviceN space is used to paint the
grayscale image shown on the left in the plate with four colorants: black and three PANTONE spot colours. The
alternate colour space is a simple calibrated RGB. Thus, the DeviceN colour space has seven components:
the four desired colorants plus the three components of the alternate space. The example shows the image
XObject (see 8.9.5, "Image Dictionaries") representing the quadtone image, followed by the colour space used
to interpret the image data.

8.6.7 Overprint Control

The graphics state contains an overprint parameter, controlled by the OP and op entries in a graphics state
parameter dictionary. Overprint control is useful mainly on devices that produce true physical separations, but it
is available on some composite devices as well. Although the operation of this parameter is device-dependent,

PDF 32000-1:2008

170 © Adobe Systems Incorporated 2008 – All rights reserved

it is described here rather than in the sub-clause on colour rendering, because it pertains to an aspect of
painting in device colour spaces that is important to many applications.

Any painting operation marks some specific set of device colorants, depending on the colour space in which
the painting takes place. In a Separation or DeviceN colour space, the colorants to be marked shall be
specified explicitly; in a device or CIE-based colour space, they shall be implied by the process colour model of
the output device (see clause 10, "Rendering"). The overprint parameter is a boolean flag that determines how
painting operations affect colorants other than those explicitly or implicitly specified by the current colour space.

If the overprint parameter is false (the default value), painting a colour in any colour space shall cause the
corresponding areas of unspecified colorants to be erased (painted with a tint value of 0.0). The effect is that
the colour at any position on the page is whatever was painted there last, which is consistent with the normal
painting behaviour of the opaque imaging model.

If the overprint parameter is true and the output device supports overprinting, erasing actions shall not be
performed; anything previously painted in other colorants is left undisturbed. Consequently, the colour at a
given position on the page may be a combined result of several painting operations in different colorants. The
effect produced by such overprinting is device-dependent and is not defined here.

NOTE 1 Not all devices support overprinting. Furthermore, many PostScript printers support it only when separations
are being produced, and not for composite output.

If overprinting is not supported, the value of the overprint parameter shall be ignored.

An additional graphics state parameter, the overprint mode (PDF 1.3), shall affect the interpretation of a tint
value of 0.0 for a colour component in a DeviceCMYK colour space when overprinting is enabled. This
parameter is controlled by the OPM entry in a graphics state parameter dictionary; it shall have an effect only
when the overprint parameter is true, as described above.

When colours are specified in a DeviceCMYK colour space and the native colour space of the output device is
also DeviceCMYK, each of the source colour components controls the corresponding device colorant directly.
Ordinarily, each source colour component value replaces the value previously painted for the corresponding
device colorant, no matter what the new value is; this is the default behaviour, specified by overprint mode 0.

When the overprint mode is 1 (also called nonzero overprint mode), a tint value of 0.0 for a source colour
component shall leave the corresponding component of the previously painted colour unchanged. The effect is
equivalent to painting in a DeviceN colour space that includes only those components whose values are
nonzero.

EXAMPLE If the overprint parameter is true and the overprint mode is 1, the operation

0. 2 0. 3 0.0 1.0 k

is equivalent to

0. 2 0. 3 1.0 scn

in the colour space shown in this example.

10 0 obj %Colour space

[/DeviceN
[/Cyan /Magenta /Black]
/DeviceCMYK
15 0 R

]
endobj

15 0 obj % Tint transformation function

<< /FunctionType 4
 /Domain [0.0 1.0 0.0 1.0 0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]

© Adobe Systems Incorporated 2008 – All rights reserved 171

PDF 32000-1:2008

 /Length 13
>>

stream

{ 0 exch }
endstream
endobj

Nonzero overprint mode shall apply only to painting operations that use the current colour in the graphics state
when the current colour space is DeviceCMYK (or is implicitly converted to DeviceCMYK; see 8.6.5.7, "Implicit
Conversion of CIE-Based Colour Spaces"). It shall not apply to the painting of images or to any colours that are
the result of a computation, such as those in a shading pattern or conversions from some other colour space. It
also shall not apply if the device’s native colour space is not DeviceCMYK; in that case, source colours shall be
converted to the device’s native colour space, and all components participate in the conversion, whatever their
values.

NOTE 2 This is shown explicitly in the alternate colour space and tint transformation function of the DeviceN colour
space (see EXAMPLE 3 in 8.6.6, "Special Colour Spaces").

See 11.7.4, "Overprinting and Transparency", for further discussion of the role of overprinting in the transparent
imaging model.

8.6.8 Colour Operators

Table 74 lists the PDF operators that control colour spaces and colour values. Also colour-related is the
graphics state operator ri, listed in Table 57 and discussed under 8.6.5.8, "Rendering Intents". Colour operators
may appear at the page description level or inside text objects (see Figure 9 in Annex L).

Table 74 – Colour Operators

Operands Operator Description

name CS (PDF 1.1) Set the current colour space to use for stroking operations. The
operand name shall be a name object. If the colour space is one that can
be specified by a name and no additional parameters (DeviceGray,
DeviceRGB, DeviceCMYK, and certain cases of Pattern), the name may
be specified directly. Otherwise, it shall be a name defined in the
ColorSpace subdictionary of the current resource dictionary (see 7.8.3,
"Resource Dictionaries"); the associated value shall be an array
describing the colour space (see 8.6.3, "Colour Space Families").
The names DeviceGray, DeviceRGB, DeviceCMYK, and Pattern
always identify the corresponding colour spaces directly; they never refer
to resources in the ColorSpace subdictionary.
The CS operator shall also set the current stroking colour to its initial
value, which depends on the colour space:
In a DeviceGray, DeviceRGB, CalGray, or CalRGB colour space, the
initial colour shall have all components equal to 0.0.
In a DeviceCMYK colour space, the initial colour shall be
[0.0 0.0 0.0 1.0].
In a Lab or ICCBased colour space, the initial colour shall have all
components equal to 0.0 unless that falls outside the intervals specified
by the space’s Range entry, in which case the nearest valid value shall be
substituted.
In an Indexed colour space, the initial colour value shall be 0.
In a Separation or DeviceN colour space, the initial tint value shall be 1.0
for all colorants.
In a Pattern colour space, the initial colour shall be a pattern object that
causes nothing to be painted.

name cs (PDF 1.1) Same as CS but used for nonstroking operations.

PDF 32000-1:2008

172 © Adobe Systems Incorporated 2008 – All rights reserved

Invoking operators that specify colours or other colour-related parameters in the graphics state is restricted in
certain circumstances. This restriction occurs when defining graphical figures whose colours shall be specified
separately each time they are used. Specifically, the restriction applies in these circumstances:

• In any glyph description that uses the d1 operator (see 9.6.5, "Type 3 Fonts")

• In the content stream of an uncoloured tiling pattern (see 8.7.3.3, "Uncoloured Tiling Patterns")

c1… cn SC (PDF 1.1) Set the colour to use for stroking operations in a device, CIE-
based (other than ICCBased), or Indexed colour space. The number of
operands required and their interpretation depends on the current
stroking colour space:
For DeviceGray, CalGray, and Indexed colour spaces, one operand
shall be required (n = 1).
For DeviceRGB, CalRGB, and Lab colour spaces, three operands shall
be required (n = 3).
For DeviceCMYK, four operands shall be required (n = 4).

c1… cn
c1… cn name

SCN
SCN

(PDF 1.2) Same as SC but also supports Pattern, Separation, DeviceN
and ICCBased colour spaces.
If the current stroking colour space is a Separation, DeviceN, or
ICCBased colour space, the operands c1… cn shall be numbers. The
number of operands and their interpretation depends on the colour space.
If the current stroking colour space is a Pattern colour space, name shall
be the name of an entry in the Pattern subdictionary of the current
resource dictionary (see 7.8.3, "Resource Dictionaries"). For an
uncoloured tiling pattern (PatternType = 1 and PaintType = 2), c1… cn
shall be component values specifying a colour in the pattern’s underlying
colour space. For other types of patterns, these operands shall not be
specified.

c1… cn sc (PDF 1.1) Same as SC but used for nonstroking operations.

c1… cn
c1… cn name

scn
scn

(PDF 1.2) Same as SCN but used for nonstroking operations.

gray G Set the stroking colour space to DeviceGray (or the DefaultGray colour
space; see 8.6.5.6, "Default Colour Spaces") and set the gray level to use
for stroking operations. gray shall be a number between 0.0 (black) and
1.0 (white).

gray g Same as G but used for nonstroking operations.

r g b RG Set the stroking colour space to DeviceRGB (or the DefaultRGB colour
space; see 8.6.5.6, "Default Colour Spaces") and set the colour to use for
stroking operations. Each operand shall be a number between 0.0
(minimum intensity) and 1.0 (maximum intensity).

r g b rg Same as RG but used for nonstroking operations.

c m y k K Set the stroking colour space to DeviceCMYK (or the DefaultCMYK
colour space; see 8.6.5.6, "Default Colour Spaces") and set the colour to
use for stroking operations. Each operand shall be a number between 0.0
(zero concentration) and 1.0 (maximum concentration). The behaviour of
this operator is affected by the overprint mode (see 8.6.7, "Overprint
Control").

c m y k k Same as K but used for nonstroking operations.

Table 74 – Colour Operators (continued)

Operands Operator Description

© Adobe Systems Incorporated 2008 – All rights reserved 173

PDF 32000-1:2008

In these circumstances, the following actions cause an error:

• Invoking any of the following operators:

CS scn K
cs G k
SC g ri
SCN RG sh
sc rg

• Invoking the gs operator with any of the following entries in the graphics state parameter dictionary:

TR BG UCR
TR2 BG2 UCR2
HT

• Painting an image. However, painting an image mask (see 8.9.6.2, "Stencil Masking") shall be permitted
because it does not specify colours; instead, it designates places where the current colour shall be
painted.

8.7 Patterns

8.7.1 General

Patterns come in two varieties:

• Tiling patterns consist of a small graphical figure (called a pattern cell) that is replicated at fixed horizontal
and vertical intervals to fill the area to be painted. The graphics objects to use for tiling shall be described
by a content stream.

• Shading patterns define a gradient fill that produces a smooth transition between colours across the area.
The colour to use shall be specified as a function of position using any of a variety of methods.

NOTE 1 When operators such as S (stroke), f (fill), and Tj (show text) paint an area of the page with the current colour,
they ordinarily apply a single colour that covers the area uniformly. However, it is also possible to apply “paint”
that consists of a repeating graphical figure or a smoothly varying colour gradient instead of a simple colour.
Such a repeating figure or smooth gradient is called a pattern. Patterns are quite general, and have many
uses; for example, they can be used to create various graphical textures, such as weaves, brick walls,
sunbursts, and similar geometrical and chromatic effects.

NOTE 2 Older techniques such as defining a pattern by using character glyphs in a special font and painting them
repeatedly with the Tj operator should not be used. Another technique, defining patterns as halftone screens,
should not be used because the effects produced are device-dependent.

Patterns shall be specified in a special family of colour spaces named Pattern. These spaces shall use pattern
objects as the equivalent of colour values instead of the numeric component values used with other spaces. A
pattern object shall be a dictionary or a stream, depending on the type of pattern; the term pattern dictionary is
used generically throughout this sub-clause to refer to either a dictionary object or the dictionary portion of a
stream object. (Those pattern objects that are streams are specifically identified as such in the descriptions of
particular pattern types; unless otherwise stated, they are understood to be simple dictionaries instead.) This
sub-clause describes Pattern colour spaces and the specification of colour values within them.

NOTE 3 See 8.6, "Colour Spaces", for information about colour spaces and colour values in general and 11.6.7,
"Patterns and Transparency", for further discussion of the treatment of patterns in the transparent imaging
model.

PDF 32000-1:2008

174 © Adobe Systems Incorporated 2008 – All rights reserved

8.7.2 General Properties of Patterns

A pattern dictionary contains descriptive information defining the appearance and properties of a pattern. All
pattern dictionaries shall contain an entry named PatternType, whose value identifies the kind of pattern the
dictionary describes: type 1 for a tiling pattern or type 2 for a shading pattern. The remaining contents of the
dictionary depend on the pattern type and are detailed in the sub-clauses on individual pattern types.

All patterns shall be treated as colours; a Pattern colour space shall be established with the CS or cs operator
just like other colour spaces, and a particular pattern shall be installed as the current colour with the SCN or
scn operator (see Table 74).

A pattern’s appearance is described with respect to its own internal coordinate system. Every pattern has a
pattern matrix, a transformation matrix that maps the pattern’s internal coordinate system to the default
coordinate system of the pattern’s parent content stream (the content stream in which the pattern is defined as
a resource). The concatenation of the pattern matrix with that of the parent content stream establishes the
pattern coordinate space, within which all graphics objects in the pattern shall be interpreted.

NOTE 1 If a pattern is used on a page, the pattern appears in the Pattern subdictionary of that page’s resource
dictionary, and the pattern matrix maps pattern space to the default (initial) coordinate space of the page.
Changes to the page’s transformation matrix that occur within the page’s content stream, such as rotation and
scaling, have no effect on the pattern; it maintains its original relationship to the page no matter where on the
page it is used. Similarly, if a pattern is used within a form XObject (see 8.10, "Form XObjects"), the pattern
matrix maps pattern space to the form’s default user space (that is, the form coordinate space at the time the
form is painted with the Do operator). A pattern may be used within another pattern; the inner pattern’s matrix
defines its relationship to the pattern space of the outer pattern.

NOTE 2 PostScript allows a pattern to be defined in one context but used in another. For example, a pattern might be
defined on a page (that is, its pattern matrix maps the pattern coordinate space to the user space of the page)
but be used in a form on that page, so that its relationship to the page is independent of each individual
placement of the form. PDF does not support this feature; in PDF, all patterns shall be local to the context in
which they are defined.

8.7.3 Tiling Patterns

8.7.3.1 General

A tiling pattern consists of a small graphical figure called a pattern cell. Painting with the pattern replicates the
cell at fixed horizontal and vertical intervals to fill an area. The effect is as if the figure were painted on the
surface of a clear glass tile, identical copies of which were then laid down in an array covering the area and
trimmed to its boundaries. This process is called tiling the area.

The pattern cell can include graphical elements such as filled areas, text, and sampled images. Its shape need
not be rectangular, and the spacing of tiles can differ from the dimensions of the cell itself. When performing
painting operations such as S (stroke) or f (fill), the conforming reader shall paint the cell on the current page as
many times as necessary to fill an area. The order in which individual tiles (instances of the cell) are painted is
unspecified and unpredictable; figures on adjacent tiles should not overlap.

The appearance of the pattern cell shall be defined by a content stream containing the painting operators
needed to paint one instance of the cell. Besides the usual entries common to all streams (see Table 5), this
stream’s dictionary may contain the additional entries listed in Table 75.

Table 75 – Additional Entries Specific to a Type 1 Pattern Dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Pattern for a pattern dictionary.

PatternType integer (Required) A code identifying the type of pattern that this dictionary
describes; shall be 1 for a tiling pattern.

© Adobe Systems Incorporated 2008 – All rights reserved 175

PDF 32000-1:2008

PaintType integer (Required) A code that determines how the colour of the pattern cell
shall be specified:
a) Coloured tiling pattern. The pattern’s content stream shall specify

the colours used to paint the pattern cell. When the content
stream begins execution, the current colour is the one that was
initially in effect in the pattern’s parent content stream. This is
similar to the definition of the pattern matrix; see 8.7.2, "General
Properties of Patterns".

b) Uncoloured tiling pattern. The pattern’s content stream shall not
specify any colour information. Instead, the entire pattern cell is
painted with a separately specified colour each time the pattern is
used. Essentially, the content stream describes a stencil through
which the current colour shall be poured. The content stream
shall not invoke operators that specify colours or other colour-
related parameters in the graphics state; otherwise, an error
occurs (see 8.6.8, "Colour Operators"). The content stream may
paint an image mask, however, since it does not specify any
colour information (see 8.9.6.2, "Stencil Masking").

TilingType integer (Required) A code that controls adjustments to the spacing of tiles
relative to the device pixel grid:
a) Constant spacing. Pattern cells shall be spaced

consistently—that is, by a multiple of a device pixel. To achieve
this, the conforming reader may need to distort the pattern cell
slightly by making small adjustments to XStep, YStep, and the
transformation matrix. The amount of distortion shall not exceed 1
device pixel.

b) No distortion. The pattern cell shall not be distorted, but the
spacing between pattern cells may vary by as much as 1 device
pixel, both horizontally and vertically, when the pattern is painted.
This achieves the spacing requested by XStep and YStep on
average but not necessarily for each individual pattern cell.

c) Constant spacing and faster tiling. Pattern cells shall be spaced
consistently as in tiling type 1 but with additional distortion
permitted to enable a more efficient implementation.

BBox rectangle (Required) An array of four numbers in the pattern coordinate system
giving the coordinates of the left, bottom, right, and top edges,
respectively, of the pattern cell’s bounding box. These boundaries
shall be used to clip the pattern cell.

XStep number (Required) The desired horizontal spacing between pattern cells,
measured in the pattern coordinate system.

YStep number (Required) The desired vertical spacing between pattern cells,
measured in the pattern coordinate system.
NOTE XStep and YStep may differ from the dimensions of the

pattern cell implied by the BBox entry. This allows tiling
with irregularly shaped figures.

XStep and YStep may be either positive or negative but shall not be
zero.

Resources dictionary (Required) A resource dictionary that shall contain all of the named
resources required by the pattern’s content stream (see 7.8.3,
"Resource Dictionaries").

Matrix array (Optional) An array of six numbers specifying the pattern matrix (see
8.7.2, "General Properties of Patterns"). Default value: the identity
matrix [1 0 0 1 0 0].

Table 75 – Additional Entries Specific to a Type 1 Pattern Dictionary (continued)

Key Type Value

PDF 32000-1:2008

176 © Adobe Systems Incorporated 2008 – All rights reserved

The pattern dictionary’s BBox, XStep, and YStep values shall be interpreted in the pattern coordinate system,
and the graphics objects in the pattern’s content stream shall be defined with respect to that coordinate system.
The placement of pattern cells in the tiling is based on the location of one key pattern cell, which is then
displaced by multiples of XStep and YStep to replicate the pattern. The origin of the key pattern cell coincides
with the origin of the pattern coordinate system. The phase of the tiling can be controlled by the translation
components of the Matrix entry in the pattern dictionary.

Prior to painting with a tiling pattern, the conforming writer shall establish the pattern as the current colour in the
graphics state. Subsequent painting operations tile the painted areas with the pattern cell described by the
pattern’s content stream. To obtain the pattern cell, the conforming reader shall perform these steps:

a) Saves the current graphics state (as if by invoking the q operator)

b) Installs the graphics state that was in effect at the beginning of the pattern’s parent content stream, with the current
transformation matrix altered by the pattern matrix as described in 8.7.2, "General Properties of Patterns"

c) Paints the graphics objects specified in the pattern’s content stream

d) Restores the saved graphics state (as if by invoking the Q operator)

NOTE The pattern’s content stream should not set any of the device-dependent parameters in the graphics state (see
Table 53) because it may result in incorrect output.

8.7.3.2 Coloured Tiling Patterns

A coloured tiling pattern is a pattern whose colour is self-contained. In the course of painting the pattern cell,
the pattern’s content stream explicitly sets the colour of each graphical element it paints. A single pattern cell
may contain elements that are painted different colours; it may also contain sampled grayscale or colour
images. This type of pattern is identified by a pattern type of 1 and a paint type of 1 in the pattern dictionary.

When the current colour space is a Pattern space, a coloured tiling pattern shall be selected as the current
colour by supplying its name as the single operand to the SCN or scn operator. This name shall be the key of
an entry in the Pattern subdictionary of the current resource dictionary (see 7.8.3, "Resource Dictionaries"),
whose value shall be the stream object representing the pattern. Since the pattern defines its own colour
information, no additional operands representing colour components shall be specified to SCN or scn.

EXAMPLE 1 If P1 is the name of a pattern resource in the current resource dictionary, the following code establishes it
as the current nonstroking colour:

/Pattern cs
/P1 scn

NOTE 1 Subsequent executions of nonstroking painting operators, such as f (fill), Tj (show text), or Do (paint external
object) with an image mask, use the designated pattern to tile the areas to be painted.

NOTE 2 The following defines a page (object 5) that paints three circles and a triangle using a coloured tiling pattern
(object 15) over a yellow background. The pattern consists of the symbols for the four suits of playing cards
(spades, hearts, diamonds, and clubs), which are character glyphs taken from the ZapfDingbats font (see D.6,
"ZapfDingbats Set and Encoding"); the pattern’s content stream specifies the colour of each glyph. Figure L.8
in Annex L shows the results.

EXAMPLE 2 5 0 obj % Page object
<< /Type /Page
 /Parent 2 0 R
 /Resources 10 0 R
 /Contents 30 0 R
 /CropBox [0 0 225 225]
>>

endobj

10 0 obj % Resource dictionary for page

<< /Pattern << /P1 15 0 R >>

© Adobe Systems Incorporated 2008 – All rights reserved 177

PDF 32000-1:2008

>>
endobj

15 0 obj % Pattern definition

<< /Type /Pattern
 /PatternType 1 % Tiling pattern
 /PaintType 1 % Coloured
 /TilingType 2
 /BBox [0 0 100 100]
 /XStep 100
 /YStep 100
 /Resources 16 0 R
 /Matrix [0.4 0.0 0.0 0.4 0.0 0.0]
 /Length 183
>>

stream
BT % Begin text object

/F1 1 Tf % Set text font and size
64 0 0 64 7.1771 2.4414 Tm % Set text matrix
0 Tc % Set character spacing
0 Tw % Set word spacing

1.0 0.0 0.0 rg % Set nonstroking colour to red
(\001) Tj % Show spade glyph

0.7478 -0.007 TD % Move text position
0.0 1.0 0.0 rg % Set nonstroking colour to green
(\002) Tj % Show heart glyph

-0.7323 0.7813 TD % Move text position
0.0 0.0 1.0 rg % Set nonstroking colour to blue
(\003) Tj % Show diamond glyph

0.6913 0.007 TD % Move text position
0.0 0.0 0.0 rg % Set nonstroking colour to black
(\004) Tj % Show club glyph

ET % End text object
endstream
endobj

16 0 obj % Resource dictionary for pattern

<< /Font << /F1 20 0 R >>
>>

endobj

20 0 obj % Font for pattern

<< /Type /Font
 /Subtype /Type1
 /Encoding 21 0 R
 /BaseFont /ZapfDingbats
>>

endobj

21 0 obj % Font encoding

<< /Type /Encoding
 /Differences [1 /a109 /a110 /a111 /a112]
>>

endobj

30 0 obj % Contents of page

<< /Length 1252 >>
stream

0.0 G % Set stroking colour to black

PDF 32000-1:2008

178 © Adobe Systems Incorporated 2008 – All rights reserved

1.0 1.0 0.0 rg % Set nonstroking colour to yellow
25 175 175 -150 re % Construct rectangular path
f % Fill path

/Pattern cs % Set pattern colour space
/P1 scn % Set pattern as nonstroking colour

99.92 49.92 m % Start new path
99.92 77.52 77.52 99.92 49.92 99.92 c % Construct lower-left circle
22.32 99.92 -0.08 77.52 -0.08 49.92 c
-0.08 22.32 22.32 -0.08 49.92 -0.08 c
77.52 -0.08 99.92 22.32 99.92 49.92 c
B % Fill and stroke path

224.96 49.92 m % Start new path
224.96 77.52 202.56 99.92 174.96 99.92 c % Construct lower-right circle
147.36 99.92 124.96 77.52 124.96 49.92 c
124.96 22.32 147.36 -0.08 174.96 -0.08 c
202.56 -0.08 224.96 22.32 224.96 49.92 c
B % Fill and stroke path

87.56 201.70 m % Start new path
63.66 187.90 55.46 157.32 69.26 133.40 c % Construct upper circle
83.06 109.50 113.66 101.30 137.56 115.10 c
161.46 128.90 169.66 159.50 155.86 183.40 c
142.06 207.30 111.46 215.50 87.56 201.70 c
B % Fill and stroke path

50 50 m % Start new path
175 50 l % Construct triangular path
112.5 158.253 l
b % Close, fill, and stroke path

endstream
endobj

NOTE 3 Several features of EXAMPLE 2 in this sub-clause are noteworthy:

The three circles and the triangle are painted with the same pattern. The pattern cells align, even though the
circles and triangle are not aligned with respect to the pattern cell. For example, the position of the blue
diamonds varies relative to the three circles.

The pattern cell does not completely cover the tile: it leaves the spaces between the glyphs unpainted. When
the tiling pattern is used as a colour, the existing background (the yellow rectangle) shows through these
unpainted areas.

8.7.3.3 Uncoloured Tiling Patterns

An uncoloured tiling pattern is a pattern that has no inherent colour: the colour shall be specified separately
whenever the pattern is used. It provides a way to tile different regions of the page with pattern cells having the
same shape but different colours. This type of pattern shall be identified by a pattern type of 1 and a paint type
of 2 in the pattern dictionary. The pattern’s content stream shall not explicitly specify any colours; it may paint
an image mask (see 8.9.6.2, "Stencil Masking") but no other kind of image.

A Pattern colour space representing an uncoloured tiling pattern shall have a parameter: an object identifying
the underlying colour space in which the actual colour of the pattern shall be specified. The underlying colour
space shall be given as the second element of the array that defines the Pattern colour space.

EXAMPLE 1 The array

[/Pattern /DeviceRGB]

defines a Pattern colour space with DeviceRGB as its underlying colour space.

© Adobe Systems Incorporated 2008 – All rights reserved 179

PDF 32000-1:2008

NOTE The underlying colour space cannot be another Pattern colour space.

Operands supplied to the SCN or scn operator in such a colour space shall include a colour value in the
underlying colour space, specified by one or more numeric colour components, as well as the name of a
pattern object representing an uncoloured tiling pattern.

EXAMPLE 2 If the current resource dictionary (see 7.8.3, "Resource Dictionaries") defines Cs3 as the name of a
ColorSpace resource whose value is the Pattern colour space shown above and P2 as a Pattern
resource denoting an uncoloured tiling pattern, the code

/Cs3 cs
0.30 0.75 0.21 /P2 scn

establishes Cs3 as the current nonstroking colour space and P2 as the current nonstroking colour, to be
painted in the colour represented by the specified components in the DeviceRGB colour space.
Subsequent executions of nonstroking painting operators, such as f (fill), Tj (show text), and Do (paint
external object) with an image mask, use the designated pattern and colour to tile the areas to be painted.
The same pattern can be used repeatedly with a different colour each time.

EXAMPLE 3 This example is similar to EXAMPLE 2 in 8.7.3.2, except that it uses an uncoloured tiling pattern to paint
the three circles and the triangle, each in a different colour (see Figure L.9 in Annex L). To do so, it
supplies four operands each time it invokes the scn operator: three numbers denoting the colour
components in the underlying DeviceRGB colour space, along with the name of the pattern.

5 0 obj % Page object

<< /Type /Page
 /Parent 2 0 R
 /Resources 10 0 R
 /Contents 30 0 R
 /CropBox [0 0 225 225]
>>

endobj

10 0 obj % Resource dictionary for page

<< /ColorSpace << /Cs12 12 0 R >>
 /Pattern << /P1 15 0 R >>
>>

endobj

12 0 obj %Colour space

[/Pattern /DeviceRGB]
endobj

15 0 obj % Pattern definition

<< /Type /Pattern
 /PatternType 1 % Tiling pattern
 /PaintType 2 % Uncoloured
 /TilingType 2
 /BBox [0 0 100 100]
 /XStep 100
 /YStep 100
 /Resources 16 0 R
 /Matrix [0.4 0.0 0.0 0.4 0.0 0.0]
 /Length 127
>>

stream

BT % Begin text object
/F1 1 Tf % Set text font and size
64 0 0 64 7.1771 2.4414 Tm % Set text matrix
0 Tc % Set character spacing
0 Tw % Set word spacing

(\001) Tj % Show spade glyph

PDF 32000-1:2008

180 © Adobe Systems Incorporated 2008 – All rights reserved

0.7478 -0.007 TD % Move text position
(\002) Tj % Show heart glyph

-0.7323 0.7813 TD % Move text position
(\003) Tj % Show diamond glyph

0.6913 0.007 TD % Move text position
(\004) Tj % Show club glyph

ET % End text object
endstream
endobj

16 0 obj % Resource dictionary for pattern

<< /Font << /F1 20 0 R >>
>>

endobj

20 0 obj % Font for pattern

<< /Type /Font
 /Subtype /Type1
 /Encoding 21 0 R
 /BaseFont /ZapfDingbats
>>

endobj

21 0 obj % Font encoding

<< /Type /Encoding
 /Differences [1 /a109 /a110 /a111 /a112]
>>

endobj

30 0 obj % Contents of page

<< /Length 1316 >>
stream

0.0 G % Set stroking colour to black
1.0 1.0 0.0 rg % Set nonstroking colour to yellow
25 175 175 -150 re % Construct rectangular path
f % Fill path

/Cs12 cs % Set pattern colour space
0.77 0.20 0.00 /P1 scn % Set nonstroking colour and pattern
99.92 49.92 m % Start new path
99.92 77.52 77.52 99.92 49.92 99.92 c % Construct lower-left circle
22.32 99.92 -0.08 77.52 -0.08 49.92 c
-0.08 22.32 22.32 -0.08 49.92 -0.08 c
77.52 -0.08 99.92 22.32 99.92 49.92 c

B % Fill and stroke path

0.2 0.8 0.4 /P1 scn % Change nonstroking colour
224.96 49.92 m % Start new path
224.96 77.52 202.56 99.92 174.96 99.92 c % Construct lower-right circle
147.36 99.92 124.96 77.52 124.96 49.92 c
124.96 22.32 147.36 -0.08 174.96 -0.08 c
202.56 -0.08 224.96 22.32 224.96 49.92 c
B % Fill and stroke path

0.3 0.7 1.0 /P1 scn % Change nonstroking colour
87.56 201.70 m % Start new path
63.66 187.90 55.46 157.30 69.26 133.40 c % Construct upper circle
83.06 109.50 113.66 101.30 137.56 115.10 c
161.46 128.90 169.66 159.50 155.86 183.40 c
142.06 207.30 111.46 215.50 87.56 201.70 c
B % Fill and stroke path

© Adobe Systems Incorporated 2008 – All rights reserved 181

PDF 32000-1:2008

0.5 0.2 1.0 /P1 scn % Change nonstroking colour
50 50 m % Start new path
175 50 l % Construct triangular path
112.5 158.253 l
b % Close, fill, and stroke path

endstream
endobj

8.7.4 Shading Patterns

8.7.4.1 General

Shading patterns (PDF 1.3) provide a smooth transition between colours across an area to be painted,
independent of the resolution of any particular output device and without specifying the number of steps in the
colour transition. Patterns of this type shall be described by pattern dictionaries with a pattern type of 2.
Table 76 shows the contents of this type of dictionary.

The most significant entry is Shading, whose value shall be a shading object defining the properties of the
shading pattern’s gradient fill. This is a complex “paint” that determines the type of colour transition the shading
pattern produces when painted across an area. A shading object shall be a dictionary or a stream, depending
on the type of shading; the term shading dictionary is used generically throughout this sub-clause to refer to
either a dictionary object or the dictionary portion of a stream object. (Those shading objects that are streams
are specifically identified as such in the descriptions of particular shading types; unless otherwise stated, they
are understood to be simple dictionaries instead.)

By setting a shading pattern as the current colour in the graphics state, a PDF content stream may use it with
painting operators such as f (fill), S (stroke), Tj (show text), or Do (paint external object) with an image mask to
paint a path, character glyph, or mask with a smooth colour transition. When a shading is used in this way, the
geometry of the gradient fill is independent of that of the object being painted.

8.7.4.2 Shading Operator

When the area to be painted is a relatively simple shape whose geometry is the same as that of the gradient fill
itself, the sh operator may be used instead of the usual painting operators. sh accepts a shading dictionary as
an operand and applies the corresponding gradient fill directly to current user space. This operator does not

Table 76 – Entries in a Type 2 Pattern Dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Pattern for a pattern dictionary.

PatternType integer (Required) A code identifying the type of pattern that this dictionary
describes; shall be 2 for a shading pattern.

Shading dictionary
or stream

(Required) A shading object (see below) defining the shading pattern’s
gradient fill. The contents of the dictionary shall consist of the entries in
Table 78 and those in one of Tables 79 to 84.

Matrix array (Optional) An array of six numbers specifying the pattern matrix (see
8.7.2, "General Properties of Patterns"). Default value: the identity
matrix [1 0 0 1 0 0].

ExtGState dictionary (Optional) A graphics state parameter dictionary (see 8.4.5, "Graphics
State Parameter Dictionaries") containing graphics state parameters to
be put into effect temporarily while the shading pattern is painted. Any
parameters that are so specified shall be inherited from the graphics
state that was in effect at the beginning of the content stream in which
the pattern is defined as a resource.

PDF 32000-1:2008

182 © Adobe Systems Incorporated 2008 – All rights reserved

require the creation of a pattern dictionary or a path and works without reference to the current colour in the
graphics state. Table 77 describes the sh operator.

NOTE Patterns defined by type 2 pattern dictionaries do not tile. To create a tiling pattern containing a gradient fill,
invoke the sh operator from within the content stream of a type 1 (tiling) pattern.

8.7.4.3 Shading Dictionaries

A shading dictionary specifies details of a particular gradient fill, including the type of shading to be used, the
geometry of the area to be shaded, and the geometry of the gradient fill. Various shading types are available,
depending on the value of the dictionary’s ShadingType entry:

• Function-based shadings (type 1) define the colour of every point in the domain using a mathematical
function (not necessarily smooth or continuous).

• Axial shadings (type 2) define a colour blend along a line between two points, optionally extended beyond
the boundary points by continuing the boundary colours.

• Radial shadings (type 3) define a blend between two circles, optionally extended beyond the boundary
circles by continuing the boundary colours. This type of shading is commonly used to represent three-
dimensional spheres and cones.

• Free-form Gouraud-shaded triangle meshes (type 4) define a common construct used by many three-
dimensional applications to represent complex coloured and shaded shapes. Vertices are specified in free-
form geometry.

• Lattice-form Gouraud-shaded triangle meshes (type 5) are based on the same geometrical construct as
type 4 but with vertices specified as a pseudorectangular lattice.

• Coons patch meshes (type 6) construct a shading from one or more colour patches, each bounded by four
cubic Bézier curves.

• Tensor-product patch meshes (type 7) are similar to type 6 but with additional control points in each patch,
affording greater control over colour mapping.

NOTE 1 Table 78 shows the entries that all shading dictionaries share in common; entries specific to particular shading
types are described in the relevant sub-clause.

NOTE 2 The term target coordinate space, used in many of the following descriptions, refers to the coordinate space
into which a shading is painted. For shadings used with a type 2 pattern dictionary, this is the pattern

Table 77 – Shading Operator

Operands Operator Description

name sh (PDF 1.3) Paint the shape and colour shading described by a shading
dictionary, subject to the current clipping path. The current colour in the
graphics state is neither used nor altered. The effect is different from that of
painting a path using a shading pattern as the current colour.
name is the name of a shading dictionary resource in the Shading
subdictionary of the current resource dictionary (see 7.8.3, "Resource
Dictionaries"). All coordinates in the shading dictionary are interpreted
relative to the current user space. (By contrast, when a shading dictionary is
used in a type 2 pattern, the coordinates are expressed in pattern space.) All
colours are interpreted in the colour space identified by the shading
dictionary’s ColorSpace entry (see Table 78). The Background entry, if
present, is ignored.
This operator should be applied only to bounded or geometrically defined
shadings. If applied to an unbounded shading, it paints the shading’s
gradient fill across the entire clipping region, which may be time-consuming.

© Adobe Systems Incorporated 2008 – All rights reserved 183

PDF 32000-1:2008

coordinate space, discussed in 8.7.2, "General Properties of Patterns". For shadings used directly with the sh
operator, it is the current user space.

Shading types 4 to 7 shall be defined by a stream containing descriptive data characterizing the shading’s
gradient fill. In these cases, the shading dictionary is also a stream dictionary and may contain any of the
standard entries common to all streams (see Table 5). In particular, shall include a Length entry.

In addition, some shading dictionaries also include a Function entry whose value shall be a function object
(dictionary or stream) defining how colours vary across the area to be shaded. In such cases, the shading

Table 78 – Entries Common to All Shading Dictionaries

Key Type Value

ShadingType integer (Required) The shading type:
1 Function-based shading
2 Axial shading
3 Radial shading
4 Free-form Gouraud-shaded triangle mesh
5 Lattice-form Gouraud-shaded triangle mesh
6 Coons patch mesh
7 Tensor-product patch mesh

ColorSpace name or
array

(Required) The colour space in which colour values shall be
expressed. This may be any device, CIE-based, or special colour
space except a Pattern space. See 8.7.4.4, "Colour Space: Special
Considerations" for further information.

Background array (Optional) An array of colour components appropriate to the colour
space, specifying a single background colour value. If present, this
colour shall be used, before any painting operation involving the
shading, to fill those portions of the area to be painted that lie outside
the bounds of the shading object.
NOTE In the opaque imaging model, the effect is as if the

painting operation were performed twice: first with the
background colour and then with the shading.

NOTE The background colour is applied only when the shading
is used as part of a shading pattern, not when it is painted
directly with the sh operator.

BBox rectangle (Optional) An array of four numbers giving the left, bottom, right, and
top coordinates, respectively, of the shading’s bounding box. The
coordinates shall be interpreted in the shading’s target coordinate
space. If present, this bounding box shall be applied as a temporary
clipping boundary when the shading is painted, in addition to the
current clipping path and any other clipping boundaries in effect at that
time.

AntiAlias boolean (Optional) A flag indicating whether to filter the shading function to
prevent aliasing artifacts.
NOTE The shading operators sample shading functions at a rate

determined by the resolution of the output device.
Aliasing can occur if the function is not smooth—that is, if
it has a high spatial frequency relative to the sampling
rate. Anti-aliasing can be computationally expensive and
is usually unnecessary, since most shading functions are
smooth enough or are sampled at a high enough
frequency to avoid aliasing effects. Anti-aliasing may not
be implemented on some output devices, in which case
this flag is ignored.

Default value: false.

PDF 32000-1:2008

184 © Adobe Systems Incorporated 2008 – All rights reserved

dictionary usually defines the geometry of the shading, and the function defines the colour transitions across
that geometry. The function is required for some types of shading and optional for others. Functions are
described in detail in 7.10, "Functions".

NOTE 3 Discontinuous colour transitions, or those with high spatial frequency, may exhibit aliasing effects when painted
at low effective resolutions.

8.7.4.4 Colour Space: Special Considerations

8.7.4.4.1 General

Conceptually, a shading determines a colour value for each individual point within the area to be painted. In
practice, however, the shading may actually be used to compute colour values only for some subset of the
points in the target area, with the colours of the intervening points determined by interpolation between the
ones computed. Conforming readers are free to use this strategy as long as the interpolated colour values
approximate those defined by the shading to within the smoothness tolerance specified in the graphics state
(see 10.6.3, "Smoothness Tolerance"). The ColorSpace entry common to all shading dictionaries not only
defines the colour space in which the shading specifies its colour values but also determines the colour space
in which colour interpolation is performed.

NOTE 1 Some types of shading (4 to 7) perform interpolation on a parametric value supplied as input to the shading’s
colour function, as described in the relevant sub-clause. This form of interpolation is conceptually distinct from
the interpolation described here, which operates on the output colour values produced by the colour function
and takes place within the shading’s target colour space.

Gradient fills between colours defined by most shadings may be implemented using a variety of interpolation
algorithms, and these algorithms may be sensitive to the characteristics of the colour space.

NOTE 2 Linear interpolation, for example, may have observably different results when applied in a DeviceCMYK colour
space than in a Lab colour space, even if the starting and ending colours are perceptually identical. The
difference arises because the two colour spaces are not linear relative to each other.

Shadings shall be rendered according to the following rules:

• If ColorSpace is a device colour space different from the native colour space of the output device, colour
values in the shading shall be converted to the native colour space using the standard conversion formulas
described in 10.3, "Conversions among Device Colour Spaces". To optimize performance, these
conversions may take place at any time (before or after any interpolation on the colour values in the
shading). Thus, shadings defined with device colour spaces may have colour gradient fills that are less
accurate and somewhat device-dependent. (This does not apply to axial and radial shadings—shading
types 2 and 3—because those shading types perform gradient fill calculations on a single variable and
then convert to parametric colours.)

• If ColorSpace is a CIE-based colour space, all gradient fill calculations shall be performed in that space.
Conversion to device colours shall occur only after all interpolation calculations have been performed.
Thus, the colour gradients are device-independent for the colours generated at each point.

• If ColorSpace is a Separation or DeviceN colour space, a colour conversion (to the alternate colour
space) occurs only if one or more of the specified colorants is not supported by the device. In that case,
gradient fill calculations shall be performed in the designated Separation or DeviceN colour space before
conversion to the alternate space. Thus, nonlinear tint transformation functions shall be accommodated for
the best possible representation of the shading.

• If ColorSpace is an Indexed colour space, all colour values specified in the shading shall be immediately
converted to the base colour space. Depending on whether the base colour space is a device or CIE-
based space, gradient fill calculations shall be performed as stated above. Interpolation shall never occur
in an Indexed colour space, which is quantized and therefore inappropriate for calculations that assume a

© Adobe Systems Incorporated 2008 – All rights reserved 185

PDF 32000-1:2008

continuous range of colours. For similar reasons, an Indexed colour space shall not be used in any
shading whose colour values are generated by a function; this rule applies to any shading dictionary that
contains a Function entry.

8.7.4.5 Shading Types

8.7.4.5.1 General

In addition to the entries listed in Table 78, all shading dictionaries have entries specific to the type of shading
they represent, as indicated by the value of their ShadingType entry. The following sub-clauses describe the
available shading types and the dictionary entries specific to each.

8.7.4.5.2 Type 1 (Function-Based) Shadings

In Type 1 (function-based) shadings, the colour at every point in the domain is defined by a specified
mathematical function. The function need not be smooth or continuous. This type is the most general of the
available shading types and is useful for shadings that cannot be adequately described with any of the other
types. Table 79 shows the shading dictionary entries specific to this type of shading, in addition to those
common to all shading dictionaries (see Table 78).

This type of shading shall not be used with an Indexed colour space.

The domain rectangle (Domain) establishes an internal coordinate space for the shading that is independent of
the target coordinate space in which it shall be painted. The colour function(s) (Function) specify the colour of
the shading at each point within this domain rectangle. The transformation matrix (Matrix) then maps the
domain rectangle into a corresponding rectangle or parallelogram in the target coordinate space. Points within
the shading’s bounding box (BBox) that fall outside this transformed domain rectangle shall be painted with the
shading’s background colour (Background); if the shading dictionary has no Background entry, such points
shall be left unpainted. If the function is undefined at any point within the declared domain rectangle, an error
may occur, even if the corresponding transformed point falls outside the shading’s bounding box.

8.7.4.5.3 Type 2 (Axial) Shadings

Type 2 (axial) shadings define a colour blend that varies along a linear axis between two endpoints and extends
indefinitely perpendicular to that axis. The shading may optionally be extended beyond either or both endpoints

Table 79 – Additional Entries Specific to a Type 1 Shading Dictionary

Key Type Value

Domain array (Optional) An array of four numbers [xmin xmax ymin ymax] specifying
the rectangular domain of coordinates over which the colour function(s)
are defined. Default value: [0.0 1.0 0.0 1.0].

Matrix array (Optional) An array of six numbers specifying a transformation matrix
mapping the coordinate space specified by the Domain entry into the
shading’s target coordinate space.
NOTE To map the domain rectangle [0.0 1.0 0.0 1.0] to a 1-inch

square with lower-left corner at coordinates (100, 100) in
default user space, the Matrix value would be
[72 0 0 72 100 100].

Default value: the identity matrix [1 0 0 1 0 0].

Function function (Required) A 2-in, n-out function or an array of n 2-in, 1-out functions
(where n is the number of colour components in the shading dictionary’s
colour space). Each function’s domain shall be a superset of that of the
shading dictionary. If the value returned by the function for a given colour
component is out of range, it shall be adjusted to the nearest valid value.

PDF 32000-1:2008

186 © Adobe Systems Incorporated 2008 – All rights reserved

by continuing the boundary colours indefinitely. Table 80 shows the shading dictionary entries specific to this
type of shading, in addition to those common to all shading dictionaries (see Table 78).

This type of shading shall not be used with an Indexed colour space.

The colour blend shall be accomplished by linearly mapping each point (x, y) along the axis between the
endpoints (x0 , y0) and (x1 , y1) to a corresponding point in the domain specified by the shading dictionary’s
Domain entry. The points (0, 0) and (1, 0) in the domain correspond respectively to (x0 , y0) and (x1 , y1) on the
axis. Since all points along a line in domain space perpendicular to the line from (0, 0) to (1, 0) have the same
colour, only the new value of x needs to be computed:

The value of the parametric variable t is then determined from x ¢ as follows:

• For 0 £ x ¢ £ 1, t = t0 + (t1 - t0) ¥ x ¢.

• For x ¢ < 0, if the first element of the Extend array is true, then t = t0 ; otherwise, t is undefined and the
point shall be left unpainted.

• For x ¢ > 1, if the second element of the Extend array is true, then t = t1 ; otherwise, t is undefined and the
point shall be left unpainted.

The resulting value of t shall be passed as input to the function(s) defined by the shading dictionary’s Function
entry, yielding the component values of the colour with which to paint the point (x, y).

NOTE Figure L.10 in Annex L shows three examples of the use of an axial shading to fill a rectangle and display text.
The area to be filled extends beyond the shading’s bounding box. The shading is the same in all three cases,
except for the values of the Background and Extend entries in the shading dictionary. In the first example, the
shading is not extended at either end and no background colour is specified; therefore, the shading is clipped
to its bounding box at both ends. The second example still has no background colour specified, but the
shading is extended at both ends; the result is to fill the remaining portions of the filled area with the colours

Table 80 – Additional Entries Specific to a Type 2 Shading Dictionary

Key Type Value

Coords array (Required) An array of four numbers [x0 y0 x1 y1] specifying the starting
and ending coordinates of the axis, expressed in the shading’s target
coordinate space.

Domain array (Optional) An array of two numbers [t0 t1] specifying the limiting values of
a parametric variable t. The variable is considered to vary linearly
between these two values as the colour gradient varies between the
starting and ending points of the axis. The variable t becomes the input
argument to the colour function(s). Default value: [0.0 1.0].

Function function (Required) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where n is the number of colour components in the shading dictionary’s
colour space). The function(s) shall be called with values of the
parametric variable t in the domain defined by the Domain entry. Each
function’s domain shall be a superset of that of the shading dictionary. If
the value returned by the function for a given colour component is out of
range, it shall be adjusted to the nearest valid value.

Extend array (Optional) An array of two boolean values specifying whether to extend
the shading beyond the starting and ending points of the axis,
respectively. Default value: [false false].

x′
x1 x0–() x x0–()× y1 y0–() y y0–()×+

x1 x0–()2 y1 y0–()2+
---=

© Adobe Systems Incorporated 2008 – All rights reserved 187

PDF 32000-1:2008

defined at the ends of the shading. In the third example, the shading is extended at both ends and a
background colour is specified; therefore, the background colour is used for the portions of the filled area
beyond the ends of the shading.

8.7.4.5.4 Type 3 (Radial) Shadings

Type 3 (radial) shadings define a colour blend that varies between two circles. Shadings of this type are
commonly used to depict three-dimensional spheres and cones. Shading dictionaries for this type of shading
contain the entries shown in Table 81, as well as those common to all shading dictionaries (see Table 78).

This type of shading shall not be used with an Indexed colour space.

The colour blend is based on a family of blend circles interpolated between the starting and ending circles that
shall be defined by the shading dictionary’s Coords entry. The blend circles shall be defined in terms of a
subsidiary parametric variable

which varies linearly between 0.0 and 1.0 as t varies across the domain from t0 to t1 , as specified by the
dictionary’s Domain entry. The centre and radius of each blend circle shall be given by the following parametric
equations:

Each value of s between 0.0 and 1.0 determines a corresponding value of t, which is passed as the input
argument to the function(s) defined by the shading dictionary’s Function entry. This yields the component
values of the colour with which to fill the corresponding blend circle. For values of s not lying between 0.0 and

Table 81 – Additional Entries Specific to a Type 3 Shading Dictionary

Key Type Value

Coords array (Required) An array of six numbers [x0 y0 r0 x1 y1 r1] specifying the
centres and radii of the starting and ending circles, expressed in the
shading’s target coordinate space. The radii r0 and r1 shall both be
greater than or equal to 0. If one radius is 0, the corresponding circle shall
be treated as a point; if both are 0, nothing shall be painted.

Domain array (Optional) An array of two numbers [t0 t1] specifying the limiting values of
a parametric variable t. The variable is considered to vary linearly
between these two values as the colour gradient varies between the
starting and ending circles. The variable t becomes the input argument to
the colour function(s). Default value: [0.0 1.0].

Function function (Required) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where n is the number of colour components in the shading dictionary’s
colour space). The function(s) shall be called with values of the
parametric variable t in the domain defined by the shading dictionary’s
Domain entry. Each function’s domain shall be a superset of that of the
shading dictionary. If the value returned by the function for a given colour
component is out of range, it shall be adjusted to the nearest valid value.

Extend array (Optional) An array of two boolean values specifying whether to extend
the shading beyond the starting and ending circles, respectively. Default
value: [false false].

s
t t0–

t1 t0–
--------------=

xc s() x0 s x1 x0–()×+=

yc s() y0 s y1 y0–()×+=

r s() r0 s r1 r0–()×+=

PDF 32000-1:2008

188 © Adobe Systems Incorporated 2008 – All rights reserved

1.0, the boolean elements of the shading dictionary’s Extend array determine whether and how the shading is
extended. If the first of the two elements is true, the shading shall be extended beyond the defined starting
circle to values of s less than 0.0; if the second element is true, the shading shall be extended beyond the
defined ending circle to s values greater than 1.0.

NOTE 1 Either of the starting and ending circles may be larger than the other. If the shading is extended at the smaller
end, the family of blend circles continues as far as that value of s for which the radius of the blend circle
r (s) = 0. If the shading is extended at the larger end, the blend circles continue as far as that s value for which
r (s) is large enough to encompass the shading’s entire bounding box (BBox). Extending the shading can thus
cause painting to extend beyond the areas defined by the two circles themselves. The two examples in the
rightmost column of Figure L.11 in Annex L depict the results of extending the shading at the smaller and larger
ends, respectively.

Conceptually, all of the blend circles shall be painted in order of increasing values of s, from smallest to largest.
Blend circles extending beyond the starting circle shall be painted in the same colour defined by the shading
dictionary’s Function entry for the starting circle (t = t0 , s = 0.0). Blend circles extending beyond the ending
circle shall be painted in the colour defined for the ending circle (t = t1 , s = 1.0). The painting is opaque, with
the colour of each circle completely overlaying those preceding it. Therefore, if a point lies within more than one
blend circle, its final colour shall be that of the last of the enclosing circles to be painted, corresponding to the
greatest value of s.

NOTE 2 If one of the starting and ending circles entirely contains the other, the shading depicts a sphere, as in Figure
L.12 and Figure L.13 in Annex L. In Figure L.12 in Annex L, the inner circle has zero radius; it is the starting
circle in the figure on the left and the ending circle in the figure on the right. Neither shading is extended at
either the smaller or larger end. In Figure L.13 in Annex L, the inner circle in both figures has a nonzero radius
and the shading is extended at the larger end. In each plate, a background colour is specified for the figure on
the right but not for the figure on the left.

NOTE 3 If neither circle contains the other, the shading depicts a cone. If the starting circle is larger, the cone appears
to point out of the page. If the ending circle is larger, the cone appears to point into the page (see Figure L.11 in
Annex L).

EXAMPLE 1 This example paints the leaf-covered branch shown in Figure L.14 in Annex L. Each leaf is filled with the
same radial shading (object number 5). The colour function (object 10) is a stitching function (described in
7.10.4, "Type 3 (Stitching) Functions") whose two subfunctions (objects 11 and 12) are both exponential
interpolation functions (see 7.10.3, "Type 2 (Exponential Interpolation) Functions").

5 0 obj % Shading dictionary

<< /ShadingType 3
 /ColorSpace /DeviceCMYK
 /Coords [0.0 0.0 0.096 0.0 0.0 1.0 00] % Concentric circles
 /Function 10 0 R
 /Extend [true true]
>>

endobj

10 0 obj %Colour function

<< /FunctionType 3
 /Domain [0.0 1.0]
 /Functions [11 0 R 12 0 R]
 /Bounds [0.708]
 /Encode [1.0 0.0 0.0 1.0]
>>

endobj

11 0 obj % First subfunction

<< /FunctionType 2
 /Domain [0.0 1.0]
 /C0 [0.929 0.357 1.000 0.298]
 /C1 [0.631 0.278 1.000 0.027]
 /N 1.048
>>

endobj

© Adobe Systems Incorporated 2008 – All rights reserved 189

PDF 32000-1:2008

12 0 obj % Second subfunction
<< /FunctionType 2
 /Domain [0.0 1.0]
 /C0 [0.929 0.357 1.000 0.298]
 /C1 [0.941 0.400 1.000 0.102]
 /N 1.374
>>

endobj

EXAMPLE 2 This example shows how each leaf shown in Figure L.14 in Annex L is drawn as a path and then filled
with the shading (where the name Sh1 is associated with object 5 by the Shading subdictionary of the
current resource dictionary; see 7.8.3, "Resource Dictionaries").

316.789 140.311 m % Move to start of leaf
303.222 146.388 282.966 136.518 279.122 121.983 c % Curved segment
277.322 120.182 l % Straight line
285.125 122.688 291.441 121.716 298.156 119.386 c % Curved segment
336.448 119.386 l % Straight line
331.072 128.643 323.346 137.376 316.789 140.311 c % Curved segment
W n % Set clipping path
q % Save graphics state
27.7843 0.0000 0.0000 -27.7843 310.2461 121.1521 cm % Set matrix
/Sh1 sh % Paint shading
Q % Restore graphics state

8.7.4.5.5 Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)

Type 4 shadings (free-form Gouraud-shaded triangle meshes) are commonly used to represent complex
coloured and shaded three-dimensional shapes. The area to be shaded is defined by a path composed entirely
of triangles. The colour at each vertex of the triangles is specified, and a technique known as Gouraud
interpolation is used to colour the interiors. The interpolation functions defining the shading may be linear or
nonlinear. Table 82 shows the entries specific to this type of shading dictionary, in addition to those common to
all shading dictionaries (see Table 78) and stream dictionaries (see Table 5).

Table 82 – Additional Entries Specific to a Type 4 Shading Dictionary

Key Type Value

BitsPerCoordinate integer (Required) The number of bits used to represent each vertex
coordinate. The value shall be 1, 2, 4, 8, 12, 16, 24, or 32.

BitsPerComponent integer (Required) The number of bits used to represent each colour
component. The value shall be 1, 2, 4, 8, 12, or 16.

BitsPerFlag integer (Required) The number of bits used to represent the edge flag for
each vertex (see below). The value of BitsPerFlag shall be 2, 4, or
8, but only the least significant 2 bits in each flag value shall be
used. The value for the edge flag shall be 0, 1, or 2.

Decode array (Required) An array of numbers specifying how to map vertex
coordinates and colour components into the appropriate ranges of
values. The decoding method is similar to that used in image
dictionaries (see 8.9.5.2, "Decode Arrays"). The ranges shall be
specified as follows:
[xmin xmax ymin ymax c1,min c1,max … cn,min cn,max]

Only one pair of c values shall be specified if a Function entry is
present.

PDF 32000-1:2008

190 © Adobe Systems Incorporated 2008 – All rights reserved

Unlike shading types 1 to 3, types 4 to 7 shall be represented as streams. Each stream contains a sequence of
vertex coordinates and colour data that defines the triangle mesh. In a type 4 shading, each vertex is specified
by the following values, in the order shown:

f x y c1 … cn

where

f is the vertex’s edge flag (discussed below)

x and y are its horizontal and vertical coordinates

c1 … cn are its colour components

All vertex coordinates shall be expressed in the shading’s target coordinate space. If the shading dictionary
includes a Function entry, only a single parametric value, t, shall be specified for each vertex in place of the
colour components c1 … cn .

The edge flag associated with each vertex determines the way it connects to the other vertices of the triangle
mesh. A vertex va with an edge flag value fa = 0 begins a new triangle, unconnected to any other. At least two
more vertices (vb and vc) shall be provided, but their edge flags shall be ignored. These three vertices define a
triangle (va , vb , vc), as shown in Figure 24.

Figure 24 – Starting a New Triangle in a Free-form Gouraud-shaded Triangle Mesh

Function function (Optional) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where n is the number of colour components in the shading
dictionary’s colour space). If this entry is present, the colour data for
each vertex shall be specified by a single parametric variable rather
than by n separate colour components. The designated function(s)
shall be called with each interpolated value of the parametric
variable to determine the actual colour at each point. Each input
value shall be forced into the range interval specified for the
corresponding colour component in the shading dictionary’s
Decode array. Each function’s domain shall be a superset of that
interval. If the value returned by the function for a given colour
component is out of range, it shall be adjusted to the nearest valid
value.
This entry shall not be used with an Indexed colour space.

Table 82 – Additional Entries Specific to a Type 4 Shading Dictionary (continued)

Key Type Value

fa=0
(Start new triangle)

Previous
triangle va

vcvb

© Adobe Systems Incorporated 2008 – All rights reserved 191

PDF 32000-1:2008

Subsequent triangles shall be defined by a single new vertex combined with two vertices of the preceding
triangle. Given triangle (va , vb , vc), where vertex va precedes vertex vb in the data stream and vb precedes vc ,
a new vertex vd can form a new triangle on side vbc or side vac , as shown in Figure 25. (Side vab is assumed to
be shared with a preceding triangle and therefore is not available for continuing the mesh.) If the edge flag is
fd = 1 (side vbc), the next vertex forms the triangle (vb , vc , vd); if the edge flag is fd = 2 (side vac), the next
vertex forms the triangle (va , vc , vd). An edge flag of fd = 0 starts a new triangle, as described above.

Figure 25 – Connecting Triangles in a Free-form Gouraud-shaded Triangle Mesh

Complex shapes can be created by using the edge flags to control the edge on which subsequent triangles are
formed.

EXAMPLE Figure 26 shows two simple examples. Mesh 1 begins with triangle 1 and uses the following edge flags to
draw each succeeding triangle:

Mesh 2 again begins with triangle 1 and uses the following edge flags:

The stream shall provide vertex data for a whole number of triangles with appropriate edge flags; otherwise, an
error occurs.

Three new
vertices

vd

vfve

fd =0 fd =1

va

vcvb

One new
vertexvd

va

vcvb

fd =2

One new
vertex

vdva

vcvb

1 fa fb fc 0= = =() 7 fi 2=()

2 fd 1=() 8 fj 2=()

3 fe 1=() 9 fk 2=()

4 ff 1=() 10 fl 1=()

5 fg 1=() 11 fm 1=()

6 fh 1=()

1 fa fb fc 0= = =() 4 ff 2=()

2 fd 1=() 5 fg 2=()

3 fe 2=() 6 fh 2=()

PDF 32000-1:2008

192 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 26 – Varying the Value of the Edge Flag to Create Different Shapes

The data for each vertex consists of the following items, reading in sequence from higher-order to lower-order
bit positions:

• An edge flag, expressed in BitsPerFlag bits

• A pair of horizontal and vertical coordinates, expressed in BitsPerCoordinate bits each

• A set of n colour components (where n is the number of components in the shading’s colour space),
expressed in BitsPerComponent bits each, in the order expected by the sc operator

Each set of vertex data shall occupy a whole number of bytes. If the total number of bits required is not divisible
by 8, the last data byte for each vertex is padded at the end with extra bits, which shall be ignored. The
coordinates and colour values shall be decoded according to the Decode array in the same way as in an image
dictionary (see 8.9.5.2, "Decode Arrays").

If the shading dictionary contains a Function entry, the colour data for each vertex shall be specified by a
single parametric value t rather than by n separate colour components. All linear interpolation within the triangle
mesh shall be done using the t values. After interpolation, the results shall be passed to the function(s)
specified in the Function entry to determine the colour at each point.

8.7.4.5.6 Type 5 Shadings (Lattice-Form Gouraud-Shaded Triangle Meshes)

Type 5 shadings (lattice-form Gouraud-shaded triangle meshes) are similar to type 4, but instead of using free-
form geometry, their vertices are arranged in a pseudorectangular lattice, which is topologically equivalent to a
rectangular grid. The vertices are organized into rows, which need not be geometrically linear (see Figure 27).

Figure 27 – Lattice-form Triangle Meshes

Mesh 1 Mesh 2

vl vj vi vf ve

vcva ve vg vavh
vc

vd

vk

vb vh vg vd
vm

vm = vb

vk = vd

vh = va

vf vb

1

4

5 3

6 2

5

8

9 7

4

31

10

11

2 6

Ideal lattice

(i, j) (i, j+1)

(i+1, j) (i+1, j+1)

Pseudorectangular lattice

© Adobe Systems Incorporated 2008 – All rights reserved 193

PDF 32000-1:2008

Table 83 shows the shading dictionary entries specific to this type of shading, in addition to those common to all
shading dictionaries (see Table 78) and stream dictionaries (see Table 5).

The data stream for a type 5 shading has the same format as for type 4, except that type 5 does not use edge
flags to define the geometry of the triangle mesh. The data for each vertex thus consists of the following values,
in the order shown:

x y c1 … cn

where

x and y shall be the vertex’s horizontal and vertical coordinates

c1 … cn shall be its colour components

All vertex coordinates are expressed in the shading’s target coordinate space. If the shading dictionary includes
a Function entry, only a single parametric value, t, shall be present for each vertex in place of the colour
components c1 … cn .

The VerticesPerRow entry in the shading dictionary gives the number of vertices in each row of the lattice. All
of the vertices in a row shall be specified sequentially, followed by those for the next row. Given m rows of k
vertices each, the triangles of the mesh shall be constructed using the following triplets of vertices, as shown in
Figure 27:

Table 83 – Additional Entries Specific to a Type 5 Shading Dictionary

Key Type Value

BitsPerCoordinate integer (Required) The number of bits used to represent each vertex
coordinate. The value shall be 1, 2, 4, 8, 12, 16, 24, or 32.

BitsPerComponent integer (Required) The number of bits used to represent each colour
component. The value shall be 1, 2, 4, 8, 12, or 16.

VerticesPerRow integer (Required) The number of vertices in each row of the lattice; the
value shall be greater than or equal to 2. The number of rows need
not be specified.

Decode array (Required) An array of numbers specifying how to map vertex
coordinates and colour components into the appropriate ranges of
values. The decoding method is similar to that used in image
dictionaries (see 8.9.5.2, "Decode Arrays"). The ranges shall be
specified as follows:
[xmin xmax ymin ymax c1,min c1,max … cn,min cn,max]

Only one pair of c values shall be specified if a Function entry is
present.

Function function (Optional) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where n is the number of colour components in the shading
dictionary’s colour space). If this entry is present, the colour data for
each vertex shall be specified by a single parametric variable rather
than by n separate colour components. The designated function(s)
shall be called with each interpolated value of the parametric
variable to determine the actual colour at each point. Each input
value shall be forced into the range interval specified for the
corresponding colour component in the shading dictionary’s
Decode array. Each function’s domain shall be a superset of that
interval. If the value returned by the function for a given colour
component is out of range, it shall be adjusted to the nearest valid
value.
This entry shall not be used with an Indexed colour space.

PDF 32000-1:2008

194 © Adobe Systems Incorporated 2008 – All rights reserved

See 8.7.4.5.5, "Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)" for further details on the
format of the vertex data.

8.7.4.5.7 Type 6 Shadings (Coons Patch Meshes)

Type 6 shadings (Coons patch meshes) are constructed from one or more colour patches, each bounded by
four cubic Bézier curves. Degenerate Bézier curves are allowed and are useful for certain graphical effects. At
least one complete patch shall be specified.

A Coons patch generally has two independent aspects:

• Colours are specified for each corner of the unit square, and bilinear interpolation is used to fill in colours
over the entire unit square (see the upper figure in Figure L.15 in Annex L).

• Coordinates are mapped from the unit square into a four-sided patch whose sides are not necessarily
linear (see the lower figure in Figure L.15 in Annex L). The mapping is continuous: the corners of the unit
square map to corners of the patch and the sides of the unit square map to sides of the patch, as shown in
Figure 28.

The sides of the patch are given by four cubic Bézier curves, C1 , C2 , D1 , and D2 , defined over a pair of
parametric variables, u and v, that vary horizontally and vertically across the unit square. The four corners of
the Coons patch satisfy the following equations:

Figure 28 – Coordinate Mapping from a Unit Square to a Four-sided Coons Patch

Two surfaces can be described that are linear interpolations between the boundary curves. Along the u axis,
the surface SC is defined by

Vi j, Vi j 1+, Vi 1+ j,, ,() for 0 i m 2–≤ ≤ 0 j k 2–≤ ≤,

Vi j 1+, Vi 1+ j, Vi 1+ j 1+,, ,)(

C1 0() D1 0()=

C1 1() D2 0()=

C2 0() D1 1()=

C2 1() D2 1()=

D1

C1

D2

C2

v

u

© Adobe Systems Incorporated 2008 – All rights reserved 195

PDF 32000-1:2008

Along the v axis, the surface SD is given by

A third surface is the bilinear interpolation of the four corners:

The coordinate mapping for the shading is given by the surface S, defined as

This defines the geometry of each patch. A patch mesh is constructed from a sequence of one or more such
coloured patches.

Patches can sometimes appear to fold over on themselves—for example, if a boundary curve intersects itself.
As the value of parameter u or v increases in parameter space, the location of the corresponding pixels in
device space may change direction so that new pixels are mapped onto previous pixels already mapped. If
more than one point (u, v) in parameter space is mapped to the same point in device space, the point selected
shall be the one with the largest value of v. If multiple points have the same v, the one with the largest value of
u shall be selected. If one patch overlaps another, the patch that appears later in the data stream shall paint
over the earlier one.

NOTE The patch is a control surface rather than a painting geometry. The outline of a projected square (that is, the
painted area) might not be the same as the patch boundary if, for example, the patch folds over on itself, as
shown in Figure 29.

Figure 29 – Painted Area and Boundary of a Coons Patch

SC u v,() 1 v–() C1 u()× v C2 u()×+=

SD u v,() 1 u–() D1 v() u D2 v()×+×=

SB u v,() 1 v–() 1 u–() C1 0()×[u C1 1()×+]×
v 1 u–() C2 0()×[u C2 1()×]+×+

=

S SC SD SB–+=

Appearance Painted area Patch boundary

PDF 32000-1:2008

196 © Adobe Systems Incorporated 2008 – All rights reserved

Table 84 shows the shading dictionary entries specific to this type of shading, in addition to those common to all
shading dictionaries (see Table 78) and stream dictionaries (see Table 5).

The data stream provides a sequence of Bézier control points and colour values that define the shape and
colours of each patch. All of a patch’s control points are given first, followed by the colour values for its corners.
This differs from a triangle mesh (shading types 4 and 5), in which the coordinates and colour of each vertex
are given together. All control point coordinates are expressed in the shading’s target coordinate space. See
8.7.4.5.5, "Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)" for further details on the format of
the data.

As in free-form triangle meshes (type 4), each patch has an edge flag that indicates which edge, if any, it
shares with the previous patch. An edge flag of 0 begins a new patch, unconnected to any other. This shall be
followed by 12 pairs of coordinates, x1 y1 x2 y2 … x12 y12 , which specify the Bézier control points that define
the four boundary curves. Figure 30 shows how these control points correspond to the cubic Bézier curves C1 ,
C2 , D1 , and D2 identified in Figure 28. Colour values shall be given for the four corners of the patch, in the
same order as the control points corresponding to the corners. Thus, c1 is the colour at coordinates (x1 , y1), c2
at (x4 , y4), c3 at (x7 , y7), and c4 at (x10 , y10), as shown in the figure.

Table 84 – Additional Entries Specific to a Type 6 Shading Dictionary

Key Type Value

BitsPerCoordinate integer (Required) The number of bits used to represent each geometric
coordinate. The value shall be 1, 2, 4, 8, 12, 16, 24, or 32.

BitsPerComponent integer (Required) The number of bits used to represent each colour
component. The value shall be 1, 2, 4, 8, 12, or 16.

BitsPerFlag integer (Required) The number of bits used to represent the edge flag for
each patch (see below). The value shall be 2, 4, or 8, but only the
least significant 2 bits in each flag value shall be used. Valid values
for the edge flag shall be 0, 1, 2, and 3.

Decode array (Required) An array of numbers specifying how to map coordinates
and colour components into the appropriate ranges of values. The
decoding method is similar to that used in image dictionaries (see
8.9.5.2, "Decode Arrays"). The ranges shall be specified as follows:
[xmin xmax ymin ymax c1,min c1,max … cn,min cn,max]

Only one pair of c values shall be specified if a Function entry is
present.

Function function (Optional) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where n is the number of colour components in the shading
dictionary’s colour space). If this entry is present, the colour data for
each vertex shall be specified by a single parametric variable rather
than by n separate colour components. The designated function(s)
shall be called with each interpolated value of the parametric
variable to determine the actual colour at each point. Each input
value shall be forced into the range interval specified for the
corresponding colour component in the shading dictionary’s
Decode array. Each function’s domain shall be a superset of that
interval. If the value returned by the function for a given colour
component is out of range, it shall be adjusted to the nearest valid
value.
This entry shall not be used with an Indexed colour space.

© Adobe Systems Incorporated 2008 – All rights reserved 197

PDF 32000-1:2008

Figure 30 – Colour Values and Edge Flags in Coons Patch Meshes

Figure 30 also shows how nonzero values of the edge flag (f = 1, 2, or 3) connect a new patch to one of the
edges of the previous patch. In this case, some of the previous patch’s control points serve implicitly as control
points for the new patch as well (see Figure 31), and therefore shall not be explicitly repeated in the data
stream. Table 85 summarizes the required data values for various values of the edge flag.

Figure 31 – Edge Connections in a Coons Patch Mesh

5

3 8

6
7

9

11

12
2

1

4

10

Use this side when next f = 3.

Use this side when next f = 1.

Use this side when next f = 2.
This side already attached
to previous patch. Start a
new patch when next f = 0.

c1

c2

c3

c4C1

C2

D2D1

When fB = 0, start a new patch.

Patch B
fB = 1

Patch A

Patch B
fB = 3

Patch B
fB = 2

2

1

4
5

3

c1

c2

12 9 3

41

1

2

2
4

3
11

c1

c1

c2 c4

1

4

7
6
8 2

3
c3 c1

c2

c2

10

PDF 32000-1:2008

198 © Adobe Systems Incorporated 2008 – All rights reserved

If the shading dictionary contains a Function entry, the colour data for each corner of a patch shall be specified
by a single parametric value t rather than by n separate colour components c1 … cn . All linear interpolation
within the mesh shall be done using the t values. After interpolation, the results shall be passed to the
function(s) specified in the Function entry to determine the colour at each point.

8.7.4.5.8 Type 7 Shadings (Tensor-Product Patch Meshes)

Type 7 shadings (tensor-product patch meshes) are identical to type 6, except that they are based on a bicubic
tensor-product patch defined by 16 control points instead of the 12 control points that define a Coons patch.
The shading dictionaries representing the two patch types differ only in the value of the ShadingType entry and
in the number of control points specified for each patch in the data stream.

NOTE Although the Coons patch is more concise and easier to use, the tensor-product patch affords greater control
over colour mapping.

Table 85 – Data Values in a Coons Patch Mesh

Edge Flag Next Set of Data Values

f = 0 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6
x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12
c1 c2 c3 c4

New patch; no implicit values

f = 1 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12
c3 c4

Implicit values:

(x1 , y1) = (x4 , y4) previous c1 = c2 previous
(x2 , y2) = (x5 , y5) previous c2 = c3 previous
(x3 , y3) = (x6 , y6) previous
(x4 , y4) = (x7 , y7) previous

f = 2 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12
c3 c4

Implicit values:

(x1 , y1) = (x7 , y7) previous c1 = c3 previous
(x2 , y2) = (x8 , y8) previous c2 = c4 previous
(x3 , y3) = (x9 , y9) previous
(x4 , y4) = (x10 , y10) previous

f = 3 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12
c3 c4

Implicit values:

(x1 , y1) = (x10 , y10) previous c1 = c4 previous
(x2 , y2) = (x11 , y11) previous c2 = c1 previous
(x3 , y3) = (x12 , y12) previous
(x4 , y4) = (x1 , y1) previous

© Adobe Systems Incorporated 2008 – All rights reserved 199

PDF 32000-1:2008

Like the Coons patch mapping, the tensor-product patch mapping is controlled by the location and shape of
four cubic Bézier curves marking the boundaries of the patch. However, the tensor-product patch has four
additional, “internal” control points to adjust the mapping. The 16 control points can be arranged in a 4-by-4
array indexed by row and column, as follows (see Figure 32):

p03 p13 p23 p33
p02 p12 p22 p32
p01 p11 p21 p31
p00 p10 p20 p30

Figure 32 – Control Points in a Tensor-product Patch

As in a Coons patch mesh, the geometry of the tensor-product patch is described by a surface defined over a
pair of parametric variables, u and v, which vary horizontally and vertically across the unit square. The surface
is defined by the equation

where pij is the control point in column i and row j of the tensor, and Bi and Bj are the Bernstein polynomials

Since each point pij is actually a pair of coordinates (xij , yij), the surface can also be expressed as

p02

p00

p01

p12 p22

p21p11

p10

p20

p30

p31

p32

p33

p23

p13

p03

S u v,() pij Bi u() Bj v()××

j 0=

3

∑
i 0=

3

∑=

B0 t() 1 t–()3
=

B1 t() 3t 1 t–()2×=

B2 t() 3t2 1 t–()×=

B3 t() t3=

PDF 32000-1:2008

200 © Adobe Systems Incorporated 2008 – All rights reserved

The geometry of the tensor-product patch can be visualized in terms of a cubic Bézier curve moving from the
bottom boundary of the patch to the top. At the bottom and top, the control points of this curve coincide with
those of the patch’s bottom (p00 … p30) and top (p03 … p33) boundary curves, respectively. As the curve moves
from the bottom edge of the patch to the top, each of its four control points follows a trajectory that is in turn a
cubic Bézier curve defined by the four control points in the corresponding column of the array. That is, the
starting point of the moving curve follows the trajectory defined by control points p00 … p03 , the trajectory of the
ending point is defined by points p30 … p33 , and those of the two intermediate control points by p10 … p13 and
p20 … p23 . Equivalently, the patch can be considered to be traced by a cubic Bézier curve moving from the left
edge to the right, with its control points following the trajectories defined by the rows of the coordinate array
instead of the columns.

The Coons patch (type 6) is actually a special case of the tensor-product patch (type 7) in which the four
internal control points (p11 , p12 , p21 , p22) are implicitly defined by the boundary curves. The values of the
internal control points are given by these equations:

In the more general tensor-product patch, the values of these four points are unrestricted.

The coordinates of the control points in a tensor-product patch shall be specified in the shading’s data stream in
the following order:

4 5 6 7
3 14 15 8
2 13 16 9
1 12 11 10

All control point coordinates shall be expressed in the shading’s target coordinate space. These shall be
followed by the colour values for the four corners of the patch, in the same order as the corners themselves. If
the patch’s edge flag f is 0, all 16 control points and four corner colours shall be explicitly specified in the data
stream. If f is 1, 2, or 3, the control points and colours for the patch’s shared edge are implicitly understood to
be the same as those along the specified edge of the previous patch and shall not be repeated in the data
stream. Table 86 summarizes the data values for various values of the edge flag f, expressed in terms of the

x u v,() xij Bi u() Bj v()××

j 0=

3

∑
i 0=

3

∑=

y u v,() yij Bi u() Bj v()××

j 0=

3

∑
i 0=

3

∑=

p11 1 9⁄
4– p00× 6 p01 p10+()× 2 p03 p30+()×– 3 p31 p13+()× 1 p33×–+ +[]

×=

p12 1 9⁄
4– p03× 6 p02 p13+()× 2 p00 p33+()×– 3 p32 p10+()× 1 p× 30–+ +[]

×=

p21 1 9⁄
4– p30× 6 p31 p20+()× 2 p33 p00+()×– 3 p01 p23+()× 1 p03×–+ +[]

×=

p22 1 9⁄
4– p33× 6 p32 p23+()× 2 p30 p03+()×– 3 p02 p20+()× 1 p00×–+ +[]

×=

© Adobe Systems Incorporated 2008 – All rights reserved 201

PDF 32000-1:2008

row and column indices used in Figure 32. See 8.7.4.5.5, "Type 4 Shadings (Free-Form Gouraud-Shaded
Triangle Meshes)" for further details on the format of the data.

8.8 External Objects

8.8.1 General

An external object (commonly called an XObject) is a graphics object whose contents are defined by a self-
contained stream, separate from the content stream in which it is used. There are three types of external
objects:

• An image XObject (8.9.5, "Image Dictionaries") represents a sampled visual image such as a photograph.

• A form XObject (8.10, "Form XObjects") is a self-contained description of an arbitrary sequence of
graphics objects.

• A PostScript XObject (8.8.2, "PostScript XObjects") contains a fragment of code expressed in the
PostScript page description language. PostScript XObjects should not be used.

Table 86 – Data values in a tensor-product patch mesh

Edge Flag Next Set of Data Values

f = 0 x00 y00 x01 y01 x02 y02 x03 y03 x13 y13 x23 y23 x33 y33 x32 y32
x31 y31 x30 y30 x20 y20 x10 y10 x11 y11 x12 y12 x22 y22 x21 y21
c00 c03 c33 c30

New patch; no implicit values

f = 1 x13 y13 x23 y23 x33 y33 x32 y32 x31 y31 x30 y30
x20 y20 x10 y10 x11 y11 x12 y12 x22 y22 x21 y21
c33 c30

Implicit values:

(x00 , y00) = (x03 , y03) previous c00 = c03 previous
(x01 , y01) = (x13 , y13) previous c03 = c33 previous
(x02 , y02) = (x23 , y23) previous
(x03 , y03) = (x33 , y33) previous

f = 2 x13 y13 x23 y23 x33 y33 x32 y32 x31 y31 x30 y30
x20 y20 x10 y10 x11 y11 x12 y12 x22 y22 x21 y21
c33 c30

Implicit values:

(x00 , y00) = (x33 , y33) previous c00 = c33 previous
(x01 , y01) = (x32 , y32) previous c03 = c30 previous
(x02 , y02) = (x31 , y31) previous
(x03 , y03) = (x30 , y30) previous

f = 3 x13 y13 x23 y23 x33 y33 x32 y32 x31 y31 x30 y30
x20 y20 x10 y10 x11 y11 x12 y12 x22 y22 x21 y21
c33 c30

Implicit values:

(x00 , y00) = (x30 , y30) previous c00 = c30 previous
(x01 , y01) = (x20 , y20) previous c03 = c00 previous
(x02 , y02) = (x10 , y10) previous
(x03 , y03) = (x00 , y00) previous

PDF 32000-1:2008

202 © Adobe Systems Incorporated 2008 – All rights reserved

Two further categories of external objects, group XObjects and reference XObjects (both PDF 1.4), are actually
specialized types of form XObjects with additional properties. See 8.10.3, "Group XObjects" and 8.10.4,
"Reference XObjects" for additional information.

Any XObject can be painted as part of another content stream by means of the Do operator (see Table 87).
This operator applies to any type of XObject—image, form, or PostScript. The syntax is the same in all cases,
although details of the operator’s behaviour differ depending on the type.

8.8.2 PostScript XObjects

Beginning with PDF 1.1, a content stream may include PostScript language fragments. These fragments may
be used only when printing to a PostScript output device; they shall have no effect either when viewing the
document on-screen or when printing it to a non-PostScript device. In addition, conforming readers may not be
able to interpret the PostScript fragments. Hence, this capability should be used with extreme caution and only
if there is no other way to achieve the same result. Inappropriate use of PostScript XObjects can cause PDF
files to print incorrectly.

A PostScript XObject is an XObject stream whose Subtype entry has the value PS. A PostScript XObject
dictionary may contain the entries shown in Table 88 in addition to the usual entries common to all streams
(see Table 5).

If a PDF content stream is translated by a conforming reader into the PostScript language, any Do operation
that references a PostScript XObject may be replaced by the contents of the XObject stream itself. The stream
shall be copied without interpretation. The PostScript fragment may use Type 1 and TrueType fonts listed in the
Font subdictionary of the current resource dictionary (see 7.8.3, "Resource Dictionaries"), accessing them by
their BaseFont names using the PostScript findfont operator. The fragment shall not use other types of fonts
listed in the Font subdictionary. It should not reference the PostScript definitions corresponding to PDF
procedure sets (see 14.2, "Procedure Sets"), which are subject to change.

Table 87 – XObject Operator

Operands Operator Description

name Do Paint the specified XObject. The operand name shall appear as a key in
the XObject subdictionary of the current resource dictionary (see 7.8.3,
"Resource Dictionaries"). The associated value shall be a stream whose
Type entry, if present, is XObject. The effect of Do depends on the value
of the XObject’s Subtype entry, which may be Image (see 8.9.5, "Image
Dictionaries"), Form (see 8.10, "Form XObjects"), or PS (see 8.8.2,
"PostScript XObjects").

Table 88 – Additional Entries Specific to a PostScript XObject Dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be XObject for a PostScript XObject.

Subtype name (Required) The type of XObject that this dictionary describes; shall be PS for
a PostScript XObject.
Alternatively, the value of this entry may be Form, with an additional
Subtype2 entry whose value shall be PS.

Level1 stream (Optional) A stream whose contents shall be used in place of the PostScript
XObject’s stream when the target PostScript interpreter is known to support
only LanguageLevel 1.

© Adobe Systems Incorporated 2008 – All rights reserved 203

PDF 32000-1:2008

8.9 Images

8.9.1 General

PDF’s painting operators include general facilities for dealing with sampled images. A sampled image (or just
image for short) is a rectangular array of sample values, each representing a colour. The image may
approximate the appearance of some natural scene obtained through an input scanner or a video camera, or it
may be generated synthetically.

Figure 33 – Typical Sampled Image

NOTE 1 An image is defined by a sequence of samples obtained by scanning the image array in row or column order.
Each sample in the array consists of as many colour components as are needed for the colour space in which
they are specified—for example, one component for DeviceGray, three for DeviceRGB, four for
DeviceCMYK, or whatever number is required by a particular DeviceN space. Each component is a 1-, 2-, 4-,
8-, or (PDF 1.5) 16-bit integer, permitting the representation of 2, 4, 16, 256, or (PDF 1.5) 65536 distinct values
for each component. Other component sizes can be accommodated when a JPXDecode filter is used; see
7.4.9, "JPXDecode Filter".

NOTE 2 PDF provides two means for specifying images:

An image XObject (described in 8.9.5, "Image Dictionaries") is a stream object whose dictionary specifies
attributes of the image and whose data contains the image samples. Like all external objects, it is painted on
the page by invoking the Do operator in a content stream (see 8.8, "External Objects"). Image XObjects have
other uses as well, such as for alternate images (see 8.9.5.4, "Alternate Images"), image masks (8.9.6,
"Masked Images"), and thumbnail images (12.3.4, "Thumbnail Images").

An inline image is a small image that is completely defined—both attributes and data—directly inline within a
content stream. The kinds of images that can be represented in this way are limited; see 8.9.7, "Inline Images"
for details.

8.9.2 Image Parameters

The properties of an image—resolution, orientation, scanning order, and so forth—are entirely independent of
the characteristics of the raster output device on which the image is to be rendered. A conforming reader
usually renders images by a sampling technique that attempts to approximate the colour values of the source
as accurately as possible. The actual accuracy achieved depends on the resolution and other properties of the
output device.

To paint an image, four interrelated items shall be specified:

• The format of the image: number of columns (width), number of rows (height), number of colour
components per sample, and number of bits per colour component

• The sample data constituting the image’s visual content

PDF 32000-1:2008

204 © Adobe Systems Incorporated 2008 – All rights reserved

• The correspondence between coordinates in user space and those in the image’s own internal coordinate
space, defining the region of user space that will receive the image

• The mapping from colour component values in the image data to component values in the image’s colour
space

All of these items shall be specified explicitly or implicitly by an image XObject or an inline image.

NOTE For convenience, the following sub-clauses refer consistently to the object defining an image as an image
dictionary. Although this term properly refers only to the dictionary portion of the stream object representing an
image XObject, it should be understood to apply equally to the stream’s data portion or to the parameters and
data of an inline image.

8.9.3 Sample Representation

The source format for an image shall be described by four parameters:

• The width of the image in samples

• The height of the image in samples

• The number of colour components per sample

• The number of bits per colour component

The image dictionary shall specify the width, height, and number of bits per component explicitly. The number
of colour components shall be inferred from the colour space specified in the dictionary.

NOTE For images using the JPXDecode filter (see 7.4.9, "JPXDecode Filter"), the number of bits per component is
determined from the image data and not specified in the image dictionary. The colour space may or may not be
specified in the dictionary.

Sample data shall be represented as a stream of bytes, interpreted as 8-bit unsigned integers in the range 0 to
255. The bytes constitute a continuous bit stream, with the high-order bit of each byte first. This bit stream, in
turn, is divided into units of n bits each, where n is the number of bits per component. Each unit encodes a
colour component value, given with high-order bit first; units of 16 bits shall be given with the most significant
byte first. Byte boundaries shall be ignored, except that each row of sample data shall begin on a byte
boundary. If the number of data bits per row is not a multiple of 8, the end of the row is padded with extra bits to
fill out the last byte. A conforming reader shall ignore these padding bits.

Each n-bit unit within the bit stream shall be interpreted as an unsigned integer in the range 0 to 2n- 1, with the
high-order bit first. The image dictionary’s Decode entry maps this integer to a colour component value,
equivalent to what could be used with colour operators such as sc or g. Colour components shall be
interleaved sample by sample; for example, in a three-component RGB image, the red, green, and blue
components for one sample are followed by the red, green, and blue components for the next.

If the image dictionary's ImageMask entry is false or absent, the colour samples in an image shall be
interpreted according to the colour space specified in the image dictionary (see 8.6, "Colour Spaces"), without
reference to the colour parameters in the graphics state. However, if the image dictionary’s ImageMask entry is
true, the sample data shall be interpreted as a stencil mask for applying the graphics state’s nonstroking colour
parameters (see 8.9.6.2, "Stencil Masking").

8.9.4 Image Coordinate System

Each image has its own internal coordinate system, or image space. The image occupies a rectangle in image
space w units wide and h units high, where w and h are the width and height of the image in samples. Each
sample occupies one square unit. The coordinate origin (0, 0) is at the upper-left corner of the image, with
coordinates ranging from 0 to w horizontally and 0 to h vertically.

© Adobe Systems Incorporated 2008 – All rights reserved 205

PDF 32000-1:2008

The image’s sample data is ordered by row, with the horizontal coordinate varying most rapidly. This is shown
in Figure 34, where the numbers inside the squares indicate the order of the samples, counting from 0. The
upper-left corner of the first sample is at coordinates (0, 0), the second at (1, 0), and so on through the last
sample of the first row, whose upper-left corner is at (w - 1, 0) and whose upper-right corner is at (w, 0). The
next samples after that are at coordinates (0, 1), (1, 1), and so on to the final sample of the image, whose
upper-left corner is at (w - 1, h - 1) and whose lower-right corner is at (w, h).

NOTE The image coordinate system and scanning order imposed by PDF do not preclude using different conventions
in the actual image. Coordinate transformations can be used to map from other conventions to the PDF
convention.

The correspondence between image space and user space is constant: the unit square of user space, bounded
by user coordinates (0, 0) and (1, 1), corresponds to the boundary of the image in image space (see Figure
35). Following the normal convention for user space, the coordinate (0, 0) is at the lower-left corner of this
square, corresponding to coordinates (0, h) in image space. The implicit transformation from image space to
user space, if specified explicitly, would be described by the matrix [1 ⁄ w 0 0 -1 ⁄ h 0 1].

Figure 34 – Source Image Coordinate System

Figure 35 – Mapping the Source Image

An image can be placed on the output page in any position, orientation, and size by using the cm operator to
modify the current transformation matrix (CTM) so as to map the unit square of user space to the rectangle or
parallelogram in which the image shall be painted. Typically, this is done within a pair of q and Q operators to

0

1

h-1

2

h

0 1 2 w-1 w

0 1 w-1

w w+1 2w-1

(h-1)w (h-1)w+1 hw-1

h

0 w
0

(0, 1) (1, 1)

(0, 0) (1, 0)

Unit square
in user space Current pageSource image

CTM

PDF 32000-1:2008

206 © Adobe Systems Incorporated 2008 – All rights reserved

isolate the effect of the transformation, which can include translation, rotation, reflection, and skew (see 8.3,
"Coordinate Systems").

EXAMPLE If the XObject subdictionary of the current resource dictionary defines the name Image1 to denote an
image XObject, the code shown in this example paints the image in a rectangle whose lower-left corner is
at coordinates (100, 200), that is rotated 45 degrees counter clockwise, and that is 150 units wide and 80
units high.

q % Save graphics state

1 0 0 1 100 200 cm % Translate
0. 7071 0. 7071 -0. 7071 0. 7071 0 0 cm % Rotate
150 0 0 80 0 0 cm % Scale
/Image1 Do % Paint image

Q % Restore graphics state

As discussed in 8.3.4, "Transformation Matrices", these three transformations could be combined into
one. Of course, if the aspect ratio (width to height) of the original image in this example is different from
150:80, the result will be distorted.

8.9.5 Image Dictionaries

8.9.5.1 General

An image dictionary—that is, the dictionary portion of a stream representing an image XObject—may contain
the entries listed in Table 89 in addition to the usual entries common to all streams (see Table 5). There are
many relationships among these entries, and the current colour space may limit the choices for some of them.
Attempting to use an image dictionary whose entries are inconsistent with each other or with the current colour
space shall cause an error.

The entries described here are appropriate for a base image—one that is invoked directly with the Do operator.
Some of the entries should not be used for images used in other ways, such as for alternate images (see
8.9.5.4, "Alternate Images"), image masks (see 8.9.6, "Masked Images"), or thumbnail images (see 12.3.4,
"Thumbnail Images"). Except as noted, such irrelevant entries are simply ignored by a conforming reader

Table 89 – Additional Entries Specific to an Image Dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be XObject for an image XObject.

Subtype name (Required) The type of XObject that this dictionary describes; shall
be Image for an image XObject.

Width integer (Required) The width of the image, in samples.

Height integer (Required) The height of the image, in samples.

ColorSpace name or
array

(Required for images, except those that use the JPXDecode filter;
not allowed forbidden for image masks) The colour space in which
image samples shall be specified; it can be any type of colour
space except Pattern.
If the image uses the JPXDecode filter, this entry may be present:
• If ColorSpace is present, any colour space specifications in

the JPEG2000 data shall be ignored.

• If ColorSpace is absent, the colour space specifications in the
JPEG2000 data shall be used. The Decode array shall also be
ignored unless ImageMask is true.

© Adobe Systems Incorporated 2008 – All rights reserved 207

PDF 32000-1:2008

BitsPerComponent integer (Required except for image masks and images that use the
JPXDecode filter) The number of bits used to represent each
colour component. Only a single value shall be specified; the
number of bits shall be the same for all colour components. The
value shall be 1, 2, 4, 8, or (in PDF 1.5) 16. If ImageMask is true,
this entry is optional, but if specified, its value shall be 1.
If the image stream uses a filter, the value of BitsPerComponent
shall be consistent with the size of the data samples that the filter
delivers. In particular, a CCITTFaxDecode or JBIG2Decode filter
shall always deliver 1-bit samples, a RunLengthDecode or
DCTDecode filter shall always deliver 8-bit samples, and an
LZWDecode or FlateDecode filter shall deliver samples of a
specified size if a predictor function is used.
If the image stream uses the JPXDecode filter, this entry is optional
and shall be ignored if present. The bit depth is determined by the
conforming reader in the process of decoding the JPEG2000
image.

Intent name (Optional; PDF 1.1) The name of a colour rendering intent to be
used in rendering the image (see 8.6.5.8, "Rendering Intents").
Default value: the current rendering intent in the graphics state.

ImageMask boolean (Optional) A flag indicating whether the image shall be treated as
an image mask (see 8.9.6, "Masked Images"). If this flag is true,
the value of BitsPerComponent shall be 1 and Mask and
ColorSpace shall not be specified; unmasked areas shall be
painted using the current nonstroking colour. Default value: false.

Mask stream
or array

(Optional except for image masks; not allowed for image masks;
PDF 1.3) An image XObject defining an image mask to be applied
to this image (see 8.9.6.3, "Explicit Masking"), or an array
specifying a range of colours to be applied to it as a colour key
mask (see 8.9.6.4, "Colour Key Masking"). If ImageMask is true,
this entry shall not be present.

Decode array (Optional) An array of numbers describing how to map image
samples into the range of values appropriate for the image’s colour
space (see 8.9.5.2, "Decode Arrays"). If ImageMask is true, the
array shall be either [0 1] or [1 0]; otherwise, its length shall be
twice the number of colour components required by ColorSpace. If
the image uses the JPXDecode filter and ImageMask is false,
Decode shall be ignored by a conforming reader.
Default value: see 8.9.5.2, "Decode Arrays".

Interpolate boolean (Optional) A flag indicating whether image interpolation shall be
performed by a conforming reader (see 8.9.5.3, "Image
Interpolation"). Default value: false.

Alternates array (Optional; PDF 1.3) An array of alternate image dictionaries for this
image (see 8.9.5.4, "Alternate Images"). The order of elements
within the array shall have no significance. This entry shall not be
present in an image XObject that is itself an alternate image.

Table 89 – Additional Entries Specific to an Image Dictionary (continued)

Key Type Value

PDF 32000-1:2008

208 © Adobe Systems Incorporated 2008 – All rights reserved

SMask stream (Optional; PDF 1.4) A subsidiary image XObject defining a soft-
mask image (see 11.6.5.3, "Soft-Mask Images") that shall be used
as a source of mask shape or mask opacity values in the
transparent imaging model. The alpha source parameter in the
graphics state determines whether the mask values shall be
interpreted as shape or opacity.
If present, this entry shall override the current soft mask in the
graphics state, as well as the image’s Mask entry, if any. However,
the other transparency-related graphics state parameters—blend
mode and alpha constant—shall remain in effect. If SMask is
absent, the image shall have no associated soft mask (although the
current soft mask in the graphics state may still apply).

SMaskInData integer (Optional for images that use the JPXDecode filter, meaningless
otherwise; PDF 1.5) A code specifying how soft-mask information
(see 11.6.5.3, "Soft-Mask Images") encoded with image samples
shall be used:
0 If present, encoded soft-mask image information shall be

ignored.
1 The image’s data stream includes encoded soft-mask values. A

conforming reader may create a soft-mask image from the
information to be used as a source of mask shape or mask
opacity in the transparency imaging model.

2 The image’s data stream includes colour channels that have
been preblended with a background; the image data also
includes an opacity channel. A conforming reader may create a
soft-mask image with a Matte entry from the opacity channel
information to be used as a source of mask shape or mask
opacity in the transparency model.

If this entry has a nonzero value, SMask shall not be specified. See
also 7.4.9, "JPXDecode Filter".
Default value: 0.

Name name (Required in PDF 1.0; optional otherwise) The name by which this
image XObject is referenced in the XObject subdictionary of the
current resource dictionary (see 7.8.3, "Resource Dictionaries").
This entry is obsolescent and shall no longer be used.

StructParent integer (Required if the image is a structural content item; PDF 1.3) The
integer key of the image’s entry in the structural parent tree (see
14.7.4.4, "Finding Structure Elements from Content Items").

ID byte string (Optional; PDF 1.3; indirect reference preferred) The digital
identifier of the image’s parent Web Capture content set (see
14.10.6, "Object Attributes Related to Web Capture").

OPI dictionary (Optional; PDF 1.2) An OPI version dictionary for the image; see
14.11.7, "Open Prepress Interface (OPI)". If ImageMask is true,
this entry shall be ignored.

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the
image (see 14.3.2, "Metadata Streams").

OC dictionary (Optional; PDF 1.5) An optional content group or optional content
membership dictionary (see 8.11, "Optional Content"), specifying
the optional content properties for this image XObject. Before the
image is processed by a conforming reader, its visibility shall be
determined based on this entry. If it is determined to be invisible,
the entire image shall be skipped, as if there were no Do operator
to invoke it.

Table 89 – Additional Entries Specific to an Image Dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 209

PDF 32000-1:2008

EXAMPLE This example defines an image 256 samples wide by 256 high, with 8 bits per sample in the DeviceGray
colour space. It paints the image on a page with its lower-left corner positioned at coordinates (45, 140) in
current user space and scaled to a width and height of 132 user space units.

20 0 obj % Page object

<< /Type /Page
 /Parent 1 0 R
 /Resources 21 0 R
 /MediaBox [0 0 612 792]
 /Contents 23 0 R
>>

endobj

21 0 obj % Resource dictionary for page

<< /ProcSet [/PDF /ImageB]
 /XObject << /Im1 22 0 R >>
>>

endobj

22 0 obj % Image XObject

<< /Type /XObject
 /Subtype /Image
 /Width 256
 /Height 256
 /ColorSpace /DeviceGray
 /BitsPerComponent 8
 /Length 83183
 /Filter /ASCII85Decode
>>

stream
9LhZI9h\GY9i+bb;,p:e;G9SP92/)X9MJ>^:f14d;,U(X8P;cO;G9e];c$=k9Mn\]
… Image data representing 65,536 samples …
8P;cO;G9e];c$=k9Mn\]~>
endstream
endobj

23 0 obj % Contents of page

<< /Length 56 >>
stream

q % Save graphics state
132 0 0 132 45 140 cm % Translate to (45,140) and scale by 132
/Im1 Do % Paint image

Q % Restore graphics state
endstream
endobj

8.9.5.2 Decode Arrays

An image’s data stream is initially decomposed into integers in the domain 0 to 2n -1, where n is the value of
the image dictionary’s BitsPerComponent entry. The image’s Decode array specifies a linear mapping of
each integer component value to a number that would be appropriate as a component value in the image’s
colour space.

Each pair of numbers in a Decode array specifies the lower and upper values to which the domain of sample
values in the image is mapped. A Decode array shall contain one pair of numbers for each component in the
colour space specified by the image’s ColorSpace entry. The mapping for each colour component, by a
conforming reader shall be a linear transformation; that is, it shall use the following formula for linear
interpolation:

PDF 32000-1:2008

210 © Adobe Systems Incorporated 2008 – All rights reserved

This formula is used to convert a value x between xmin and xmax to a corresponding value y between ymin and
ymax , projecting along the line defined by the points (xmin , ymin) and (xmax , ymax).

NOTE 1 While this formula applies to values outside the domain xmin to xmax and does not require that xmin < xmax , note
that interpolation used for colour conversion, such as the Decode array, does require that xmin < xmax and clips
x values to this domain so that y = ymin for all x £ xmin , and y = ymax for all x Š xmax .

For a Decode array of the form [Dmin Dmax], this can be written as

where

n shall be the value of BitsPerComponent

x shall be the input value, in the domain 0 to 2n - 1

Dmin and Dmax shall be the values specified in the Decode array

y is the output value, which shall be interpreted in the image’s colour space

Samples with a value of 0 shall be mapped to Dmin , those with a value of 2n - 1 shall be mapped to Dmax , and
those with intermediate values shall be mapped linearly between Dmin and Dmax. Table 90 lists the default
Decode arrays which shall be used with the various colour spaces by a conforming reader.

NOTE 2 For most colour spaces, the Decode arrays listed in the table map into the full range of allowed component
values. For an Indexed colour space, the default Decode array ensures that component values that index a
colour table are passed through unchanged.

Table 90 – Default Decode Arrays

Colour Space Decode Array

DeviceGray [0.0 1.0]

DeviceRGB [0.0 1.0 0.0 1.0 0.0 1.0]

DeviceCMYK [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]

CalGray [0.0 1.0]

CalRGB [0.0 1.0 0.0 1.0 0.0 1.0]

Lab [0 100 amin amax bmin bmax] where amin , amax , bmin , and
bmax correspond to the values in the Range array of the
image’s colour space

y Interpolate x xmin xmax ymin ymax, , , ,)(=

ymin x xmin–)(
ymax ymin–

xmax xmin–
----------------------------×

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

y Interpolate x 0 2n 1– Dmin Dmax, , , ,)(=

Dmin x
Dmax Dmin–

2n 1–
-------------------------------×

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

© Adobe Systems Incorporated 2008 – All rights reserved 211

PDF 32000-1:2008

NOTE 3 It is possible to specify a mapping that inverts sample colour intensities by specifying a Dmin value greater than
Dmax . For example, if the image’s colour space is DeviceGray and the Decode array is [1.0 0.0], an input

value of 0 is mapped to 1.0 (white); an input value of 2n - 1 is mapped to 0.0 (black).

The Dmin and Dmax parameters for a colour component need not fall within the range of values allowed for that
component.

NOTE 4 For instance, if an application uses 6-bit numbers as its native image sample format, it can represent those
samples in PDF in 8-bit form, setting the two unused high-order bits of each sample to 0. The image dictionary
should then specify a Decode array of [0.00000 4.04762], which maps input values from 0 to 63 into the
range 0.0 to 1.0 (4.04762 being approximately equal to 255 ³ 63).

If an output value falls outside the range allowed for a component, it shall be automatically adjusted to the
nearest allowed value.

8.9.5.3 Image Interpolation

When the resolution of a source image is significantly lower than that of the output device, each source sample
covers many device pixels. As a result, images can appear jaggy or blocky. These visual artifacts can be
reduced by applying an image interpolation algorithm during rendering. Instead of painting all pixels covered by
a source sample with the same colour, image interpolation attempts to produce a smooth transition between
adjacent sample values.

Image interpolation is enabled by setting the Interpolate entry in the image dictionary to true. It shall be
disabled by default because it may increase the time required to render the image.

NOTE A conforming Reader may choose to not implement this feature of PDF, or may use any specific
implementation of interpolation that it wishes.

8.9.5.4 Alternate Images

Alternate images (PDF 1.3) provide a straightforward and backward-compatible way to include multiple
versions of an image in a PDF file for different purposes. These variant representations of the image may differ,
for example, in resolution or in colour space. The primary goal is to reduce the need to maintain separate
versions of a PDF document for low-resolution on-screen viewing and high-resolution printing.

A base image (that is, the image XObject referred to in a resource dictionary) may contain an Alternates entry.
The value of this entry shall be an array of alternate image dictionaries specifying variant representations of the
base image. Each alternate image dictionary shall contain an image XObject for one variant and shall specify
its properties. Table 91 shows the contents of an alternate image dictionary.

ICCBased Same as the value of Range in the ICC profile of the image’s
colour space

Indexed [0 N], where N = 2n − 1

Pattern (Not permitted with images)

Separation [0.0 1.0]

DeviceN [0.0 1.0 0.0 1.0 … 0.0 1.0] (one pair of elements for
each colour component)

Table 90 – Default Decode Arrays (continued)

Colour Space Decode Array

PDF 32000-1:2008

212 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE The following shows an image with a single alternate. The base image is a grayscale image, and the
alternate is a high-resolution RGB image stored on a Web server.

10 0 obj % Image XObject

<< /Type /XObject
 /Subtype /Image
 /Width 100
 /Height 200
 /ColorSpace /DeviceGray
 /BitsPerComponent 8
 /Alternates 15 0 R
 /Length 2167
 /Filter /DCTDecode
>>

stream
… Image data …
endstream
endobj

15 0 obj % Alternate images array

[<< /Image 16 0 R
/DefaultForPrinting true

 >>
]

endobj

16 0 obj % Alternate image

<< /Type /XObject
 /Subtype /Image
 /Width 1000
 /Height 2000
 /ColorSpace /DeviceRGB
 /BitsPerComponent 8
 /Length 0 % This is an external stream

 /F << /FS /URL

 /F (http : / / www . myserver . mycorp . com / images / exttest . jpg)
 >>

 /FFilter /DCTDecode
>>

stream
endstream
endobj

Table 91 – Entries in an Alternate Image Dictionary

Key Type Value

Image stream (Required) The image XObject for the alternate image.

DefaultForPrinting boolean (Optional) A flag indicating whether this alternate image shall be the
default version to be used for printing. At most one alternate for a
given base image shall be so designated. If no alternate has this entry
set to true, the base image shall be used for printing by a conforming
reader.

OC dictionary (Optional; PDF 1.5) An optional content group (see 8.11.2, "Optional
Content Groups") or optional content membership dictionary (see
8.11.2.2, "Optional Content Membership Dictionaries") that facilitates
the selection of which alternate image to use.

© Adobe Systems Incorporated 2008 – All rights reserved 213

PDF 32000-1:2008

In PDF 1.5, optional content (see 8.11, "Optional Content") may be used to facilitate selection between
alternate images. If an image XObject contains both an Alternates entry and an OC entry, the choice of which
image to use shall be determined as follows:

a) If the image’s OC entry specifies that the base image is visible, that image shall be displayed.

b) Otherwise, the list of alternates specified by the Alternates entry is examined, and the first alternate containing an OC
entry specifying that its content should be visible shall be shown. (Alternate images that have no OC entry shall not be
shown.)

8.9.6 Masked Images

8.9.6.1 General

Ordinarily, in the opaque imaging model, images mark all areas they occupy on the page as if with opaque
paint. All portions of the image, whether black, white, gray, or colour, completely obscure any marks that may
previously have existed in the same place on the page. In the graphic arts industry and page layout
applications, however, it is common to crop or mask out the background of an image and then place the
masked image on a different background so that the existing background shows through the masked areas. A
number of PDF features are available for achieving such masking effects:

• The ImageMask entry in the image dictionary, specifies that the image data shall be used as a stencil
mask for painting in the current colour.

• The Mask entry in the image dictionary (PDF 1.3) specifies a separate image XObject which shall be used
as an explicit mask specifying which areas of the image to paint and which to mask out.

• Alternatively, the Mask entry (PDF 1.3) specifies a range of colours which shall be masked out wherever
they occur within the image. This technique is known as colour key masking.

NOTE 5 Earlier versions of PDF commonly simulated masking by defining a clipping path enclosing only those of an
image’s samples that are to be painted. However, if the clipping path is very complex (or if there is more than
one clipping path) not all conforming Readers will render the results in the same way. An alternative way to
achieve the effect of an explicit mask is to define the image being clipped as a pattern, make it the current
colour, and then paint the explicit mask as an image whose ImageMask entry is true.

In the transparent imaging model, a fourth type of masking effect, soft masking, is available through the SMask
entry (PDF 1.4) or the SMaskInData entry (PDF 1.5) in the image dictionary; see 11.6.5, "Specifying Soft
Masks", for further discussion.

8.9.6.2 Stencil Masking

An image mask (an image XObject whose ImageMask entry is true) is a monochrome image in which each
sample is specified by a single bit. However, instead of being painted in opaque black and white, the image
mask is treated as a stencil mask that is partly opaque and partly transparent. Sample values in the image do
not represent black and white pixels; rather, they designate places on the page that should either be marked
with the current colour or masked out (not marked at all). Areas that are masked out retain their former
contents. The effect is like applying paint in the current colour through a cut-out stencil, which lets the paint
reach the page in some places and masks it out in others.

An image mask differs from an ordinary image in the following significant ways:

• The image dictionary shall not contain a ColorSpace entry because sample values represent masking
properties (1 bit per sample) rather than colours.

• The value of the BitsPerComponent entry shall be 1.

• The Decode entry determines how the source samples shall be interpreted. If the Decode array is [0 1]
(the default for an image mask), a sample value of 0 shall mark the page with the current colour, and a 1

PDF 32000-1:2008

214 © Adobe Systems Incorporated 2008 – All rights reserved

shall leave the previous contents unchanged. If the Decode array is [1 0], these meanings shall be
reversed.

NOTE 6 One of the most important uses of stencil masking is for painting character glyphs represented as bitmaps.
Using such a glyph as a stencil mask transfers only its “black” bits to the page, leaving the “white” bits (which
are really just background) unchanged. For reasons discussed in 9.6.5, "Type 3 Fonts", an image mask, rather
than an image, should almost always be used to paint glyph bitmaps.

If image interpolation (see 8.9.5.3, "Image Interpolation") is requested during stencil masking, the effect shall
be to smooth the edges of the mask, not to interpolate the painted colour values. This effect can minimize the
jaggy appearance of a low-resolution stencil mask.

8.9.6.3 Explicit Masking

In PDF 1.3, the Mask entry in an image dictionary may be an image mask, as described in sub-clause 8.9.6.2,
"Stencil Masking", which serves as an explicit mask for the primary (base) image. The base image and the
image mask need not have the same resolution (Width and Height values), but since all images shall be
defined on the unit square in user space, their boundaries on the page will coincide; that is, they will overlay
each other. The image mask indicates which places on the page shall be painted and which shall be masked
out (left unchanged). Unmasked areas shall be painted with the corresponding portions of the base image;
masked areas shall not be.

8.9.6.4 Colour Key Masking

In PDF 1.3, the Mask entry in an image dictionary may be an array specifying a range of colours to be masked
out. Samples in the image that fall within this range shall not be painted, allowing the existing background to
show through.

NOTE 1 The effect is similar to that of the video technique known as chroma-key.

For colour key masking, the value of the Mask entry shall be an array of 2 ¥ n integers,
[min1 max1 … minn maxn], where n is the number of colour components in the image’s colour space. Each

integer shall be in the range 0 to 2BitsPerComponent - 1, representing colour values before decoding with the
Decode array. An image sample shall be masked (not painted) if all of its colour components before decoding,
c1 … cn , fall within the specified ranges (that is, if mini £ ci £ maxi for all 1 £ i £ n).

When colour key masking is specified, the use of a DCTDecode or lossy JPXDecode filter for the stream can
produce unexpected results.

NOTE 2 DCTDecode is always a lossy filter while JPXDecode has a lossy filter option. The use of a lossy filter mean
that the output is only an approximation of the original input data. Therefore, the use of this filter may lead to
slight changes in the colour values of image samples, possibly causing samples that were intended to be
masked to be unexpectedly painted instead, in colours slightly different from the mask colour.

8.9.7 Inline Images

As an alternative to the image XObjects described in 8.9.5, "Image Dictionaries", a sampled image may be
specified in the form of an inline image. This type of image shall be defined directly within the content stream in
which it will be painted rather than as a separate object. Because the inline format gives the reader less
flexibility in managing the image data, it shall be used only for small images (4 KB or less).

An inline image object shall be delimited in the content stream by the operators BI (begin image), ID (image
data), and EI (end image). These operators are summarized in Table 92. BI and ID shall bracket a series of
key-value pairs specifying the characteristics of the image, such as its dimensions and colour space; the image
data shall follow between the ID and EI operators. The format is thus analogous to that of a stream object such
as an image XObject:

© Adobe Systems Incorporated 2008 – All rights reserved 215

PDF 32000-1:2008

BI
… Key-value pairs …
ID
… Image data …
EI

Inline image objects shall not be nested; that is, two BI operators shall not appear without an intervening EI to
close the first object. Similarly, an ID operator shall only appear between a BI and its balancing EI. Unless the
image uses ASCIIHexDecode or ASCII85Decode as one of its filters, the ID operator shall be followed by a
single white-space character, and the next character shall be interpreted as the first byte of image data.

The key-value pairs appearing between the BI and ID operators are analogous to those in the dictionary portion
of an image XObject (though the syntax is different). Table 93 shows the entries that are valid for an inline
image, all of which shall have the same meanings as in a stream dictionary (see Table 5) or an image dictionary
(see Table 89). Entries other than those listed shall be ignored; in particular, the Type, Subtype, and Length
entries normally found in a stream or image dictionary are unnecessary. For convenience, the abbreviations
shown in the table may be used in place of the fully spelled-out keys. Table 94 shows additional abbreviations
that can be used for the names of colour spaces and filters.

These abbreviations are valid only in inline images; they shall not be used in image XObjects. JBIG2Decode
and JPXDecode are not listed in Table 94 because those filters shall not be used with inline images.

Table 92 – Inline Image Operators

Operands Operator Description

— BI Begin an inline image object.

— ID Begin the image data for an inline image object.

— EI End an inline image object.

Table 93 – Entries in an Inline Image Object

Full Name Abbreviation

BitsPerComponent BPC

ColorSpace CS

Decode D

DecodeParms DP

Filter F

Height H

ImageMask IM

Intent (PDF 1.1) No abbreviation

Interpolate I (uppercase I)

Width W

Table 94 – Additional Abbreviations in an Inline Image Object

Full Name Abbreviation

DeviceGray G

DeviceRGB RGB

PDF 32000-1:2008

216 © Adobe Systems Incorporated 2008 – All rights reserved

The colour space specified by the ColorSpace (or CS) entry shall be one of the standard device colour spaces
(DeviceGray, DeviceRGB, or DeviceCMYK). It shall not be a CIE-based colour space or a special colour
space, with the exception of a limited form of Indexed colour space whose base colour space is a device space
and whose colour table is specified by a byte string (see 8.6.6.3, "Indexed Colour Spaces"). Beginning with
PDF 1.2, the value of the ColorSpace entry may also be the name of a colour space in the ColorSpace
subdictionary of the current resource dictionary (see 7.8.3, "Resource Dictionaries"). In this case, the name
may designate any colour space that can be used with an image XObject.

NOTE 1 The names DeviceGray, DeviceRGB, and DeviceCMYK (as well as their abbreviations G, RGB, and CMYK)
always identify the corresponding colour spaces directly; they never refer to resources in the ColorSpace
subdictionary.

The image data in an inline image may be encoded by using any of the standard PDF filters except JPXDecode
and JBIG2Decode. The bytes between the ID and EI operators shall be treated the same as a stream object’s
data (see 7.3.8, "Stream Objects"), even though they do not follow the standard stream syntax.

NOTE 2 This is an exception to the usual rule that the data in a content stream shall be interpreted according to the
standard PDF syntax for objects.

EXAMPLE This example shows an inline image 17 samples wide by 17 high with 8 bits per component in the
DeviceRGB colour space. The image has been encoded using LZW and ASCII base-85 encoding. The
cm operator is used to scale it to a width and height of 17 units in user space and position it at
coordinates (298, 388). The q and Q operators encapsulate the cm operation to limit its effect to resizing
the image.

q % Save graphics state
17 0 0 17 298 388 cm % Scale and translate coordinate space

BI % Begin inline image object

/W 17 % Width in samples
/H 17 % Height in samples
/CS /RGB % Colour space
/BPC 8 % Bits per component
/F [/A85 /LZW] % Filters

ID % Begin image data
J1/gKA>.]AN&J?]-<HW]aRVcg*bb.\eKAdVV%/PcZ
… Omitted data …
R.s(4KE3&d&7hb*7[%Ct2HCqC~>
EI % End inline image object
Q % Restore graphics state

DeviceCMYK CMYK

Indexed I (uppercase I)

ASCIIHexDecode AHx

ASCII85Decode A85

LZWDecode LZW

FlateDecode (PDF 1.2) Fl (uppercase F, lowercase L)

RunLengthDecode RL

CCITTFaxDecode CCF

DCTDecode DCT

Table 94 – Additional Abbreviations in an Inline Image Object (continued)

Full Name Abbreviation

© Adobe Systems Incorporated 2008 – All rights reserved 217

PDF 32000-1:2008

8.10 Form XObjects

8.10.1 General

A form XObject is a PDF content stream that is a self-contained description of any sequence of graphics
objects (including path objects, text objects, and sampled images). A form XObject may be painted multiple
times—either on several pages or at several locations on the same page—and produces the same results each
time, subject only to the graphics state at the time it is invoked. Not only is this shared definition economical to
represent in the PDF file, but under suitable circumstances the conforming reader can optimize execution by
caching the results of rendering the form XObject for repeated reuse.

NOTE 1 The term form also refers to a completely different kind of object, an interactive form (sometimes called an
AcroForm), discussed in 12.7, "Interactive Forms". Whereas the form XObjects described in this sub-clause
correspond to the notion of forms in the PostScript language, interactive forms are the PDF equivalent of the
familiar paper instrument. Any unqualified use of the word form is understood to refer to an interactive form; the
type of form described here is always referred to explicitly as a form XObject.

Form XObjects have various uses:

• As its name suggests, a form XObject may serve as the template for an entire page.

EXAMPLE A program that prints filled-in tax forms can first paint the fixed template as a form XObject and then paint
the variable information on top of it.

• Any graphical element that is to be used repeatedly, such as a company logo or a standard component in
the output from a computer-aided design system, may be defined as a form XObject.

• Certain document elements that are not part of a page’s contents, such as annotation appearances (see
12.5.5, "Appearance Streams"), shall be represented as form XObjects.

• A specialized type of form XObject, called a group XObject (PDF 1.4), can be used to group graphical
elements together as a unit for various purposes (see 8.10.3, "Group XObjects"). In particular, group
XObjects shall be used to define transparency groups and soft masks for use in the transparent imaging
model (see 11.6.5.2, "Soft-Mask Dictionaries" and 11.6.6, "Transparency Group XObjects").

• Another specialized type of form XObject, a reference XObject (PDF 1.4), may be used to import content
from one PDF document into another (see 8.10.4, "Reference XObjects").

A writer shall perform the following two specific operations in order to use a form XObject:

a) Define the appearance of the form XObject. A form XObject is a PDF content stream. The dictionary portion of the
stream (called the form dictionary) shall contain descriptive information about the form XObject; the body of the stream
shall describe the graphics objects that produce its appearance. The contents of the form dictionary are described in
8.10.2, "Form Dictionaries".

b) Paint the form XObject. The Do operator (see 8.8, "External Objects") shall paint a form XObject whose name is
supplied as an operand. The name shall be defined in the XObject subdictionary of the current resource dictionary.
Before invoking this operator, the content stream in which it appears should set appropriate parameters in the graphics
state. In particular, it should alter the current transformation matrix to control the position, size, and orientation of the
form XObject in user space.

Each form XObject is defined in its own coordinate system, called form space. The BBox entry in the form
dictionary shall be expressed in form space, as shall be any coordinates used in the form XObject’s content
stream, such as path coordinates. The Matrix entry in the form dictionary shall specify the mapping from form
space to the current user space. Each time the form XObject is painted by the Do operator, this matrix shall be
concatenated with the current transformation matrix to define the mapping from form space to device space.

NOTE 2 This differs from the Matrix entry in a pattern dictionary, which maps pattern space to the initial user space of
the content stream in which the pattern is used.

PDF 32000-1:2008

218 © Adobe Systems Incorporated 2008 – All rights reserved

When the Do operator is applied to a form XObject, a conforming reader shall perform the following tasks:

a) Saves the current graphics state, as if by invoking the q operator (see 8.4.4, "Graphics State Operators")

b) Concatenates the matrix from the form dictionary’s Matrix entry with the current transformation matrix (CTM)

c) Clips according to the form dictionary’s BBox entry

d) Paints the graphics objects specified in the form’s content stream

e) Restores the saved graphics state, as if by invoking the Q operator (see 8.4.4, "Graphics State Operators")

Except as described above, the initial graphics state for the form shall be inherited from the graphics state that
is in effect at the time Do is invoked.

8.10.2 Form Dictionaries

Every form XObject shall have a form type, which determines the format and meaning of the entries in its form
dictionary. This specification only defines one form type, Type 1. Form XObject dictionaries may contain the
entries shown in Table 95, in addition to the usual entries common to all streams (see Table 5).

Table 95 – Additional Entries Specific to a Type 1 Form Dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be XObject for a form XObject.

Subtype name (Required) The type of XObject that this dictionary describes; shall be
Form for a form XObject.

FormType integer (Optional) A code identifying the type of form XObject that this
dictionary describes. The only valid value is 1. Default value: 1.

BBox rectangle (Required) An array of four numbers in the form coordinate system
(see above), giving the coordinates of the left, bottom, right, and top
edges, respectively, of the form XObject’s bounding box. These
boundaries shall be used to clip the form XObject and to determine its
size for caching.

Matrix array (Optional) An array of six numbers specifying the form matrix, which
maps form space into user space (see 8.3.4, "Transformation
Matrices"). Default value: the identity matrix [1 0 0 1 0 0].

Resources dictionary (Optional but strongly recommended; PDF 1.2) A dictionary specifying
any resources (such as fonts and images) required by the form
XObject (see 7.8, "Content Streams and Resources").
In a PDF whose version is 1.1 and earlier, all named resources used in
the form XObject shall be included in the resource dictionary of each
page object on which the form XObject appears, regardless of whether
they also appear in the resource dictionary of the form XObject. These
resources should also be specified in the form XObject’s resource
dictionary as well, to determine which resources are used inside the
form XObject. If a resource is included in both dictionaries, it shall
have the same name in both locations.
In PDF 1.2 and later versions, form XObjects may be independent of
the content streams in which they appear, and this is strongly
recommended although not required. In an independent form XObject,
the resource dictionary of the form XObject is required and shall
contain all named resources used by the form XObject. These
resources shall not be promoted to the outer content stream’s
resource dictionary, although that stream’s resource dictionary refers
to the form XObject.

© Adobe Systems Incorporated 2008 – All rights reserved 219

PDF 32000-1:2008

EXAMPLE The following shows a simple form XObject that paints a filled square 1000 units on each side.

6 0 obj % Form XObject

<< /Type /XObject
 /Subtype /Form
 /FormType 1
 /BBox [0 0 1000 1000]
 /Matrix [1 0 0 1 0 0]
 /Resources << /ProcSet [/PDF] >>

Group dictionary (Optional; PDF 1.4) A group attributes dictionary indicating that the
contents of the form XObject shall be treated as a group and
specifying the attributes of that group (see 8.10.3, "Group XObjects").
If a Ref entry (see below) is present, the group attributes shall also
apply to the external page imported by that entry, which allows such an
imported page to be treated as a group without further modification.

Ref dictionary (Optional; PDF 1.4) A reference dictionary identifying a page to be
imported from another PDF file, and for which the form XObject serves
as a proxy (see 8.10.4, "Reference XObjects").

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the
form XObject (see 14.3.2, "Metadata Streams").

PieceInfo dictionary (Optional; PDF 1.3) A page-piece dictionary associated with the form
XObject (see 14.5, "Page-Piece Dictionaries").

LastModified date (Required if PieceInfo is present; optional otherwise; PDF 1.3) The
date and time (see 7.9.4, "Dates") when the form XObject’s contents
were most recently modified. If a page-piece dictionary (PieceInfo) is
present, the modification date shall be used to ascertain which of the
application data dictionaries it contains correspond to the current
content of the form (see 14.5, "Page-Piece Dictionaries").

StructParent integer (Required if the form XObject is a structural content item; PDF 1.3)
The integer key of the form XObject’s entry in the structural parent tree
(see 14.7.4.4, "Finding Structure Elements from Content Items").

StructParents integer (Required if the form XObject contains marked-content sequences that
are structural content items; PDF 1.3) The integer key of the form
XObject’s entry in the structural parent tree (see 14.7.4.4, "Finding
Structure Elements from Content Items").
At most one of the entries StructParent or StructParents shall be
present. A form XObject shall be either a content item in its entirety or
a container for marked-content sequences that are content items, but
not both.

OPI dictionary (Optional; PDF 1.2) An OPI version dictionary for the form XObject
(see 14.11.7, "Open Prepress Interface (OPI)").

OC dictionary (Optional; PDF 1.5) An optional content group or optional content
membership dictionary (see 8.11, "Optional Content") specifying the
optional content properties for the form XObject. Before the form is
processed, its visibility shall be determined based on this entry. If it is
determined to be invisible, the entire form shall be skipped, as if there
were no Do operator to invoke it.

Name name (Required in PDF 1.0; optional otherwise) The name by which this
form XObject is referenced in the XObject subdictionary of the current
resource dictionary (see 7.8.3, "Resource Dictionaries").
NOTE This entry is obsolescent and its use is no longer

recommended.

Table 95 – Additional Entries Specific to a Type 1 Form Dictionary (continued)

Key Type Value

PDF 32000-1:2008

220 © Adobe Systems Incorporated 2008 – All rights reserved

 /Length 58
>>

stream

0 0 m
0 1000 l
1000 1000 l
1000 0 l
f

endstream
endobj

8.10.3 Group XObjects

A group XObject (PDF 1.4) is a special type of form XObject that can be used to group graphical elements
together as a unit for various purposes. It shall be distinguished by the presence of the optional Group entry in
the form dictionary (see 8.10.2, "Form Dictionaries"). The value of this entry shall be a subsidiary group
attributes dictionary describing the properties of the group.

As shown in Table 96, every group XObject shall have a group subtype (specified by the S entry in the group
attributes dictionary) that determines the format and meaning of the dictionary’s remaining entries. This
specification only defines one subtype, a transparency group XObject (subtype Transparency) representing a
transparency group for use in the transparent imaging model (see 11.4, "Transparency Groups"). The
remaining contents of this type of dictionary are described in 11.6.6, "Transparency Group XObjects".

8.10.4 Reference XObjects

8.10.4.1 General

Reference XObjects (PDF 1.4) enable one PDF document to import content from another. The document in
which the reference occurs is called the containing document; the one whose content is being imported is the
target document. The target document may reside in a file external to the containing document or may be
included within it as an embedded file stream (see 7.11.4, "Embedded File Streams").

The reference XObject in the containing document shall be a form XObject containing the Ref entry in its form
dictionary, as described below. This form XObject shall serve as a proxy that shall be displayed or printed by a
conforming reader in place of the imported content.

NOTE 3 The proxy might consist of a low-resolution image of the imported content, a piece of descriptive text referring
to it, a gray box to be displayed in its place, or any other similar placeholder.

Conforming readers that do not recognize the Ref entry shall simply display or print the proxy as an ordinary
form XObject. Those readers that do implement reference XObjects shall use the proxy in place of the imported
content if the latter is unavailable. A conforming reader may also provide a user interface to allow editing and
updating of imported content links.

Table 96 – Entries Common to all Group Attributes Dictionaries

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Group for a group attributes dictionary.

S name (Required) The group subtype, which identifies the type of group whose
attributes this dictionary describes and determines the format and
meaning of the dictionary’s remaining entries. The only group subtype
defined is Transparency; see 11.6.6, "Transparency Group XObjects",
for the remaining contents of this type of dictionary.

© Adobe Systems Incorporated 2008 – All rights reserved 221

PDF 32000-1:2008

The imported content shall consist of a single, complete PDF page in the target document. It shall be
designated by a reference dictionary, which in turn shall be the value of the Ref entry in the reference XObject’s
form dictionary (see 8.10.2, "Form Dictionaries"). The presence of the Ref entry shall distinguish reference
XObjects from other types of form XObjects. Table 97 shows the contents of the reference dictionary.

When the imported content replaces the proxy, it shall be transformed according to the proxy object’s
transformation matrix and clipped to the boundaries of its bounding box, as specified by the Matrix and BBox
entries in the proxy’s form dictionary (see 8.10.2, "Form Dictionaries"). The combination of the proxy object’s
matrix and bounding box thus implicitly defines the bounding box of the imported page. This bounding box
typically coincides with the imported page’s crop box or art box (see 14.11.2, "Page Boundaries"), but may not
correspond to any of the defined page boundaries. If the proxy object’s form dictionary contains a Group entry,
the specified group attributes shall apply to the imported page as well, which allows the imported page to be
treated as a group without further modification.

8.10.4.2 Printing Reference XObjects

When printing a page containing reference XObjects, an application may emit any of the following items,
depending on the capabilities of the conforming reader, the user’s preferences, and the nature of the print job:

• The imported content designated by the reference XObject

• The reference XObject as a proxy for the imported content

• An OPI proxy or substitute image taken from the reference XObject’s OPI dictionary, if any (see 14.11.7,
"Open Prepress Interface (OPI)")

The imported content or the reference XObject may also be emitted, by a conforming reader, in place of an OPI
proxy when generating OPI comments in a PostScript output stream.

8.10.4.3 Special Considerations

Certain special considerations arise when reference XObjects interact with other PDF features:

• When the page imported by a reference XObject contains annotations (see 12.5, "Annotations"), all
annotations that contain a printable, unhidden, visible appearance stream (12.5.5, "Appearance Streams")
shall be included in the rendering of the imported page. If the proxy is a snapshot image of the imported
page, it shall also include the annotation appearances. These appearances shall therefore be converted
into part of the proxy’s content stream, either as subsidiary form XObjects or by flattening them directly into
the content stream.

• Logical structure information associated with a page (see 14.7, "Logical Structure") may be ignored when
importing the page into another document with a reference XObject. In a target document with multiple

Table 97 – Entries in a Reference Dictionary

Key Type Value

F file specification (Required) The file containing the target document.

Page integer or
text string

(Required) A page index or page label (see 12.4.2, "Page Labels")
identifying the page of the target document containing the content to
be imported. This reference is a weak one and may be inadvertently
invalidated if the referenced page is changed or replaced in the target
document after the reference is created.

ID array (Optional) An array of two byte strings constituting a file identifier (see
14.4, "File Identifiers") for the file containing the target document. The
use of this entry improves an reader’s chances of finding the intended
file and allows it to warn the user if the file has changed since the
reference was created.

PDF 32000-1:2008

222 © Adobe Systems Incorporated 2008 – All rights reserved

pages, structure elements occurring on the imported page are typically part of a larger structure pertaining
to the document as a whole; such elements cannot meaningfully be incorporated into the structure of the
containing document. In a one-page target document or one made up of independent, structurally
unrelated pages, the logical structure for the imported page may be wholly self-contained; in this case, it
may be possible to incorporate this structure information into that of the containing document. However,
PDF provides no mechanism for the logical structure hierarchy of one document to refer indirectly to that of
another.

8.11 Optional Content

8.11.1 General

Optional content (PDF 1.5) refers to sub-clauses of content in a PDF document that can be selectively viewed
or hidden by document authors or consumers. This capability is useful in items such as CAD drawings, layered
artwork, maps, and multi-language documents.

NOTE The following sub-clauses describe the PDF structures used to implement optional content:

8.11.2, "Optional Content Groups", describes the primary structures used to control the visibility of content.

8.11.3, "Making Graphical Content Optional", describes how individual pieces of content in a document may
declare themselves as belonging to one or more optional content groups.

8.11.4, "Configuring Optional Content", describes how the states of optional content groups are set.

8.11.2 Optional Content Groups

8.11.2.1 General

An optional content group is a dictionary representing a collection of graphics that can be made visible or
invisible dynamically by users of conforming readers. The graphics belonging to such a group may reside
anywhere in the document: they need not be consecutive in drawing order, nor even belong to the same
content stream. Table 98 shows the entries in an optional content group dictionary.

In its simplest form, each dictionary shall contain a Type entry and a Name for presentation in a user interface.
It may also have an Intent entry that may describe its intended use (see 8.11.2.3, "Intent") and a Usage entry
that shall describe the nature of its content (see 8.11.4.4, "Usage and Usage Application Dictionaries").

Table 98 – Entries in an Optional Content Group Dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall be
OCG for an optional content group dictionary.

Name text string (Required) The name of the optional content group, suitable for
presentation in a reader’s user interface.

Intent name or
array

(Optional) A single intent name or an array containing any combination of
names. PDF defines two names, View and Design, that may indicate the
intended use of the graphics in the group. A conforming reader may
choose to use only groups that have a specific intent and ignore others.
Default value: View. See 8.11.2.3, "Intent" for more information.

Usage dictionary (Optional) A usage dictionary describing the nature of the content
controlled by the group. It may be used by features that automatically
control the state of the group based on outside factors. See 8.11.4.4,
"Usage and Usage Application Dictionaries" for more information.

© Adobe Systems Incorporated 2008 – All rights reserved 223

PDF 32000-1:2008

Individual content elements in a document may specify the optional content group or groups that affect their
visibility (see 8.11.3, "Making Graphical Content Optional"). Any content whose visibility shall be affected by a
given optional content group is said to belong to that group.

A group shall be assigned a state, which is either ON or OFF. States themselves are not part of the PDF
document but may be set programmatically or through the reader’s user interface to change the visibility of
content. When a document is first opened by a conforming reader, the groups’ states shall be initialized based
on the document’s default configuration dictionary (see 8.11.4.3, "Optional Content Configuration
Dictionaries").

Content belonging to a group shall be visible when the group is ON and invisible when it is OFF. Content may
belong to multiple groups, which may have conflicting states. These cases shall be described by the use of
optional content membership dictionaries, described in the next sub-clause.

8.11.2.2 Optional Content Membership Dictionaries

As mentioned above, content may belong to a single optional content group and shall be visible when the
group is ON and invisible when it is OFF. To express more complex visibility policies, content shall not declare
itself to belong directly to an optional content group but rather to an optional content membership dictionary,
whose entries are shown in Table 99.

NOTE 1 8.11.3, "Making Graphical Content Optional" describes how content declares its membership in a group or
membership dictionary.

An optional content membership dictionary may express its visibility policy in two ways:

• The P entry may specify a simple boolean expression indicating how the optional content groups specified
by the OCGs entry determine the visibility of content controlled by the membership dictionary.

• PDF 1.6 introduced the VE entry, which is a visibility expression that may be used to specify an arbitrary
boolean expression for computing the visibility of content from the states of optional content groups.

Table 99 – Entries in an Optional Content Membership Dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall be
OCMD for an optional content membership dictionary.

OCGs dictionary or
array

(Optional) A dictionary or array of dictionaries specifying the optional
content groups whose states shall determine the visibility of content
controlled by this membership dictionary.
Null values or references to deleted objects shall be ignored. If this entry is
not present, is an empty array, or contains references only to null or deleted
objects, the membership dictionary shall have no effect on the visibility of
any content.

P name (Optional) A name specifying the visibility policy for content belonging to
this membership dictionary. Valid values shall be:
AllOn visible only if all of the entries in OCGs are ON
AnyOn visible if any of the entries in OCGs are ON
AnyOff visible if any of the entries in OCGs are OFF
AllOff visible only if all of the entries in OCGs are OFF
Default value: AnyOn

VE array (Optional; PDF 1.6) An array specifying a visibility expression, used to
compute visibility of content based on a set of optional content groups; see
discussion below.

PDF 32000-1:2008

224 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 2 Since the VE entry is more general, if it is present and supported by the conforming reader software, it should
be used in preference to OCGs and P. However, for compatibility purposes, conforming writers should use
OCGs and P entries where possible. When the use of VE is necessary to express the intended behaviour,
OCGs and P entries should also be provided to approximate the behaviour in non-conforming reader software.

A visibility expression is an array with the following characteristics:

• Its first element shall be a name representing a boolean operator (And, Or, or Not).

• Subsequent elements shall be either optional content groups or other visibility expressions.

• If the first element is Not, it shall have only one subsequent element. If the first element is And or Or, it
shall have one or more subsequent elements.

• In evaluating a visibility expression, the ON state of an optional content group shall be equated to the
boolean value true; OFF shall be equated to false.

Membership dictionaries are useful in cases such as these:

• Some content may choose to be invisible when a group is ON and visible when it is OFF. In this case, the
content would belong to a membership dictionary whose OCGs entry consists of a single optional content
group and whose P entry is AnyOff or AllOff.

NOTE 3 It is legal to have an OCGs entry consisting of a single group and a P entry that is AnyOn or AllOn. However,
in this case it is preferable to use an optional content group directly because it uses fewer objects.

• Some content may belong to more than one group and needs to specify its policy when the groups are in
conflicting states. In this case, the content would belong to a membership dictionary whose OCGs entry
consists of an array of optional content groups and whose P entry specifies the visibility policy, as
illustrated in EXAMPLE 1 in this sub-clause. EXAMPLE 2 in this sub-clause shows the equivalent policy
using visibility expressions.

EXAMPLE 1 This example shows content belonging to a membership dictionary whose OCGs entry consists of an
array of optional content groups and whose P entry specifies the visibility policy.

<< /Type /OCMD % Content belonging to this optional content

% membership dictionary is controlled by the states
/OCGs [12 0 R 13 0 R 14 0 R] % of three optional content groups.
/P /AllOn % Content is visible only if the state of all three

>> % groups is ON; otherwise it’s hidden.

EXAMPLE 2 This example shows a visibility expression equivalent to EXAMPLE 1 in this sub-clause

<< /Type /OCMD

/VE [/And 12 0 R 13 0 R 14 0 R] % Visibility expression equivalent to EXAMPLE 1.
>>

EXAMPLE 3 This example shows a more complicated visibility expression based on five optional content groups,
represented by objects 1 through 5. It is equivalent to

“OCG 1” OR (NOT “OCG 2”) OR (“OCG 3” AND “OCG 4” AND “OCG 5”)

<< /Type /OCMD

/VE [/Or % Visibility expression: OR
 1 0 R % OCG 1

[/Not 2 0 R] % NOT OCG 2
 [/And 3 0 R 4 0 R 5 0 R] % OCG 3 AND OCG 4 AND OCG 5
]

>>

© Adobe Systems Incorporated 2008 – All rights reserved 225

PDF 32000-1:2008

8.11.2.3 Intent

PDF defines two intents: Design, which may be used to represent a document designer’s structural
organization of artwork, and View, which may be used for interactive use by document consumers. A
conforming writer shall not use a value other than Design or View.

NOTE The Intent entry in Table 98 provides a way to distinguish between different intended uses of optional content.
For example, many document design applications, such as CAD packages, offer layering features for
collecting groups of graphics together and selectively hiding or viewing them for the convenience of the author.
However, this layering may be different (at a finer granularity, for example) than would be useful to consumers
of the document. Therefore, it is possible to specify different intents for optional content groups within a single
document. A conforming reader may decide to use only groups that are of a specific intent.

Configuration dictionaries (see 8.11.4.3, "Optional Content Configuration Dictionaries") may also contain an
Intent entry. If one or more of a group’s intents is contained in the current configuration’s set of intents, the
group shall be used in determining visibility. If there is no match, the group shall have no effect on visibility.

If the configuration’s Intent is an empty array, no groups shall be used in determining visibility; therefore, all
content shall be considered visible.

8.11.3 Making Graphical Content Optional

8.11.3.1 General

Graphical content in a PDF file may be made optional by specifying membership in an optional content group
or optional content membership dictionary. Two primary mechanisms exist for defining membership:

• Sections of content streams delimited by marked-content operators may be made optional, as described in
8.11.3.2, "Optional Content in Content Streams".

• Form and image XObjects and annotations may be made optional in their entirety by means of a dictionary
entry, as described in 8.11.3.3, "Optional Content in XObjects and Annotations".

When a piece of optional content in a PDF file is determined that it shall be hidden, the following occurs:

• The content shall not be drawn.

• Graphics state operations, such as setting the colour, transformation matrix, and clipping, shall still be
applied. In addition, graphics state side effects that arise from drawing operators shall be applied; in
particular, the current text position shall be updated even for text wrapped in optional content. In other
words, graphics state parameters that persist past the end of a marked-content section shall be the same
whether the optional content is visible or not.

Hiding a section of optional content shall not change the colour of objects that do not belong to the same
optional content group.

• This rule shall also apply to operators that set state that is not strictly graphics state; for example, BX and
EX.

• Objects such as form XObjects and annotations that have been made optional may be skipped entirely,
because their contents are encapsulated such that no changes to the graphics state (or other state) persist
beyond the processing of their content stream.

Other features in conforming readers, such as searching and editing, may be affected by the ability to
selectively show or hide content. A conforming reader may choose whether to use the document’s current state
of optional content groups (and, correspondingly, the document’s visible graphics) or to supply their own states
of optional content groups to control the graphics they process.

NOTE 4 Tools to select and move annotations should honour the current on-screen visibility of annotations when
performing cursor tracking and mouse-click processing. A full text search engine, however, may need to

PDF 32000-1:2008

226 © Adobe Systems Incorporated 2008 – All rights reserved

process all content in a document, regardless of its current visibility on-screen. Export filters might choose the
current on-screen visibility, the full content, or present the user with a selection of OCGs to control visibility.

NOTE 5 A non-conforming reader that does not support optional content, such as one that only supports PDF 1.4
functionality, will draw and process all content in a document.

8.11.3.2 Optional Content in Content Streams

Sections of content in a content stream (including a page's Contents stream, a form or pattern’s content
stream, glyph descriptions a Type 3 font as specified by its CharProcs entry, or an annotation’s appearance)
may be made optional by enclosing them between the marked-content operators BDC and EMC (see 14.6,
"Marked Content") with a marked-content tag of OC. In addition, a DP marked-content operator may be placed
in a page’s content stream to force a reference to an optional content group or groups on the page, even when
the page has no current content in that layer.

The property list associated with the marked content shall specify either an optional content group or optional
content membership dictionary to which the content belongs. Because a group shall be an indirect object and a
membership dictionary contains references to indirect objects, the property list shall be a named resource listed
in the Properties subdictionary of the current resource dictionary (see 14.6.2, "Property Lists"), as shown in
EXAMPLE 1 and EXAMPLE 2 in this sub-clause.

Although the marked-content tag shall be OC, other applications of marked content are not precluded from
using OC as a tag. The marked content shall be considered to be for optional content only if the tag is OC and
the dictionary operand is a valid optional content group or optional content membership dictionary.

NOTE 1 To avoid conflict with other features that used marked content (such as logical structure; see 14.7, "Logical
Structure"), the following strategy is recommended:

Where content is to be tagged with optional content markers as well as other markers, the optional content
markers should be nested inside the other marked content.

Where optional content and the other markers would overlap but there is not strict containment, the optional
content should be broken up into two or more BDC/EMC sections, nesting the optional content sections inside
the others as necessary. Breaking up optional content spans does not damage the nature of the visibility of the
content, whereas the same guarantee cannot be made for all other uses of marked content.

NOTE 2 Any marked content tagged for optional content that is nested inside other marked content tagged for optional
content is visible only if all the levels indicate visibility. In other words, if the settings that apply to the outer level
indicate that the content should be hidden, the inner level is hidden regardless of its settings.

In the following example, the state of the Show Greeting optional content group directly controls the visibility of
the text string “Hello” on the page. When the group is ON, the text shall be visible; when the group is OFF, the
text shall be hidden.

EXAMPLE 1 % Within a content stream
...
/OC /oc1 BDC % Optional content follows

BT
/F1 1 Tf
12 0 0 12 100 600 Tm
(Hello) Tj

ET
EMC % End of optional content
...

<< % In the resources dictionary

/Properties << /oc1 5 0 R >> % This dictionary maps the name oc1 to an
... % optional content group (object 5)
>>

5 0 obj % The OCG controlling the visibility

© Adobe Systems Incorporated 2008 – All rights reserved 227

PDF 32000-1:2008

<< % of the text.
/Type /OCG
/Name (Show Greeting)

>>
endobj

The example above shows one piece of content associated with one optional content group. There are other
possibilities:

• More than one section of content may refer to the same group or membership dictionary, in which case the
visibility of both sections is always the same.

• Equivalently, although less space-efficient, different sections may have separate membership dictionaries
with the same OCGs and P entries. The sections shall have identical visibility behaviour.

• Two sections of content may belong to membership dictionaries that refer to the same group(s) but with
different P settings. For example, if one section has no P entry, and the other has a P entry of AllOff, the
visibility of the two sections of content shall be opposite. That is, the first section shall be visible when the
second is hidden, and vice versa.

The following example demonstrates both the direct use of optional content groups and the indirect use of
groups through a membership dictionary. The content (a black rectangle frame) is drawn if either of the images
controlled by the groups named Image A or Image B is shown. If both groups are hidden, the rectangle frame
shall be hidden.

EXAMPLE 2 % Within a content stream
...
/OC /OC2 BDC % Draws a black rectangle frame

0 g
4 w
100 100 412 592 re s

EMC

/OC /OC3 BDC % Draws an image XObject

q
412 0 0 592 100 100 cm
/Im3 Do
Q

EMC
/OC /OC4 BDC % Draws an image XObject

q
412 0 0 592 100 100 cm
/Im4 Do
Q

EMC
...

<< % The resource dictionary

/Properties << /OC2 20 0 R /OC3 30 0 R /OC4 40 0 R >>
/XObject << /lm3 50 0 R /lm4 /60 0 R >>

>>

20 0 obj
<< % Optional content membership dictionary

/Type /OCMD
/OCGs [30 0 R 40 0 R]
/P /AnyOn

>>
endobj
30 0 obj % Optional content group “Image A”
<<

/Type /OCG
/Name (Image A)

PDF 32000-1:2008

228 © Adobe Systems Incorporated 2008 – All rights reserved

>>
endobj
40 0 obj % Optional content group “Image B”
<<

/Type /OCG
/Name (Image B)

>>
endobj

8.11.3.3 Optional Content in XObjects and Annotations

In addition to marked content within content streams, form XObjects and image XObjects (see 8.8, "External
Objects") and annotations (see 12.5, "Annotations") may contain an OC entry, which shall be an optional
content group or an optional content membership dictionary.

A form or image XObject's visibility shall be determined by the state of the group or those of the groups
referenced by the membership dictionary in conjunction with its P (or VE) entry, along with the current visibility
state in the context in which the XObject is invoked (that is, whether objects are visible in the contents stream at
the place where the Do operation occurred).

Annotations have various flags controlling on-screen and print visibility (see 12.5.3, "Annotation Flags"). If an
annotation contains an OC entry, it shall be visible for screen or print only if the flags have the appropriate
settings and the group or membership dictionary indicates it shall be visible.

8.11.4 Configuring Optional Content

8.11.4.1 General

A PDF document containing optional content may specify the default states for the optional content groups in
the document and indicate which external factors shall be used to alter the states.

NOTE The following sub-clauses describe the PDF structures that are used to specify this information.

8.11.4.2, "Optional Content Properties Dictionary" describes the structure that lists all the optional content
groups in the document and their possible configurations.

8.11.4.3, "Optional Content Configuration Dictionaries" describes the structures that specify initial state
settings and other information about the groups in the document.

8.11.4.4, "Usage and Usage Application Dictionaries" and 8.11.4.5, "Determining the State of Optional Content
Groups" describe how the states of groups can be affected based on external factors.

8.11.4.2 Optional Content Properties Dictionary

The optional OCProperties entry in the document catalog (see 7.7.2, "Document Catalog") shall contain, when
present, the optional content properties dictionary, which contains a list of all the optional content groups in the
document, as well as information about the default and alternate configurations for optional content. This
dictionary shall be present if the file contains any optional content; if it is missing, a conforming reader shall
ignore any optional content structures in the document.

This dictionary contains the following entries:

Table 100 – Entries in the Optional Content Properties Dictionary

Key Type Value

OCGs array (Required) An array of indirect references to all the optional content
groups in the document (see 8.11.2, "Optional Content Groups"), in any
order. Every optional content group shall be included in this array.

© Adobe Systems Incorporated 2008 – All rights reserved 229

PDF 32000-1:2008

8.11.4.3 Optional Content Configuration Dictionaries

The D and Configs entries in Table 100 are configuration dictionaries, which represent different presentations
of a document’s optional content groups for use by conforming readers. The D configuration dictionary shall be
used to specify the initial state of the optional content groups when a document is first opened. Configs lists
other configurations that may be used under particular circumstances. The entries in a configuration dictionary
are shown in Table 101.

D dictionary (Required) The default viewing optional content configuration dictionary
(see 8.11.4.3, "Optional Content Configuration Dictionaries").

Configs array (Optional) An array of alternate optional content configuration
dictionaries (see 8.11.4.3, "Optional Content Configuration Dictionaries").

Table 101 – Entries in an Optional Content Configuration Dictionary

Key Type Value

Name text string (Optional) A name for the configuration, suitable for presentation in a
user interface.

Creator text string (Optional) Name of the application or feature that created this
configuration dictionary.

BaseState name (Optional) Used to initialize the states of all the optional content
groups in a document when this configuration is applied. The value of
this entry shall be one of the following names:
ON The states of all groups shall be turned ON.
OFF The states of all groups shall be turned OFF.
Unchanged The states of all groups shall be left unchanged.
After this initialization, the contents of the ON and OFF arrays shall be
processed, overriding the state of the groups included in the arrays.
Default value: ON.
If BaseState is present in the document’s default configuration
dictionary, its value shall be ON.

ON array (Optional) An array of optional content groups whose state shall be
set to ON when this configuration is applied.
If the BaseState entry is ON, this entry is redundant.

OFF array (Optional) An array of optional content groups whose state shall be
set to OFF when this configuration is applied.
If the BaseState entry is OFF, this entry is redundant.

Intent name or array (Optional) A single intent name or an array containing any
combination of names. it shall be used to determine which optional
content groups’ states to consider and which to ignore in calculating
the visibility of content (see 8.11.2.3, "Intent").
PDF defines two intent names, View and Design. In addition, the
name All shall indicate the set of all intents, including those not yet
defined. Default value: View. The value shall be View for the
document’s default configuration.

Table 100 – Entries in the Optional Content Properties Dictionary (continued)

Key Type Value

PDF 32000-1:2008

230 © Adobe Systems Incorporated 2008 – All rights reserved

AS array (Optional) An array of usage application dictionaries (see Table 103)
specifying which usage dictionary categories (see Table 102) shall be
consulted by conforming readers to automatically set the states of
optional content groups based on external factors, such as the current
system language or viewing magnification, and when they shall be
applied.

Order array (Optional) An array specifying the order for presentation of optional
content groups in a conforming reader’s user interface. The array
elements may include the following objects:
Optional content group dictionaries, whose Name entry shall be
displayed in the user interface by the conforming reader.
Arrays of optional content groups which may be displayed by a
conforming reader in a tree or outline structure. Each nested array
may optionally have as its first element a text string to be used as a
non-selectable label in a conforming reader’s user interface.
Text labels in nested arrays shall be used to present collections of
related optional content groups, and not to communicate actual
nesting of content inside multiple layers of groups (see EXAMPLE 1 in
8.11.4.3, "Optional Content Configuration Dictionaries"). To reflect
actual nesting of groups in the content, such as for layers with
sublayers, nested arrays of groups without a text label shall be used
(see EXAMPLE 2 in 8.11.4.3, "Optional Content Configuration
Dictionaries").
An empty array [] explicitly specifies that no groups shall be
presented.
In the default configuration dictionary, the default value shall be an
empty array; in other configuration dictionaries, the default shall be
the Order value from the default configuration dictionary.
Any groups not listed in this array shall not be presented in any user
interface that uses the configuration.

ListMode name (Optional) A name specifying which optional content groups in the
Order array shall be displayed to the user. Valid values shall be:
AllPages Display all groups in the Order array.
VisiblePages Display only those groups in the Order array that are

referenced by one or more visible pages.
Default value: AllPages.

RBGroups array (Optional) An array consisting of one or more arrays, each of which
represents a collection of optional content groups whose states shall
be intended to follow a radio button paradigm. That is, the state of at
most one optional content group in each array shall be ON at a time. If
one group is turned ON, all others shall be turned OFF. However,
turning a group from ON to OFF does not force any other group to be
turned ON.
An empty array [] explicitly indicates that no such collections exist.
In the default configuration dictionary, the default value shall be an
empty array; in other configuration dictionaries, the default is the
RBGroups value from the default configuration dictionary.

Table 101 – Entries in an Optional Content Configuration Dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 231

PDF 32000-1:2008

NOTE EXAMPLE 1 and EXAMPLE 2 in this sub-clause illustrate the use of the Order entry to control the display of
groups in a user interface.

EXAMPLE 1 Given the following PDF objects:

1 0 obj <</Type /OCG /Name (Skin)>> endobj % Optional content groups
2 0 obj <</Type /OCG /Name (Bones)>> endobj
3 0 obj <</Type /OCG /Name (Bark)>> endobj
4 0 obj <</Type /OCG /Name (Wood)>> endobj

5 0 obj % Configuration dictionary

<< /Order [[(Frog Anatomy) 1 0 R 2 0 R] [(Tree Anatomy) 3 0 R 4 0 R]] >>

A conforming reader should display the optional content groups as follows:

Frog Anatomy

Skin
Bones

Tree Anatomy
Bark
Wood

EXAMPLE 2 Given the following PDF objects:
% Page contents

/OC /L1 BDC % Layer 1
/OC /L1a BDC % Sublayer A of layer 1

0 0 100 100 re f
EMC
/OC /L1b BDC % Sublayer B of layer 1

0 100 100 100 re f
EMC

EMC
...
<< /L1 1 0 R % Resource names

/L1a 2 0 R
/L1b 3 0 R

>>
... %Optional content groups
1 0 obj <</Type /OCG /Name (Layer 1)>> endobj
2 0 obj <</Type /OCG /Name (Sublayer A)>> endobj
3 0 obj <</Type /OCG /Name (Sublayer B)>> endobj
...
4 0 obj % Configuration dictionary

<< /Order [1 0 R [2 0 R 3 0 R]] >>

A conforming reader should display the OCGs as follows:

Layer 1

Sublayer A
Sublayer B

Locked array (Optional; PDF 1.6) An array of optional content groups that shall be
locked when this configuration is applied. The state of a locked group
cannot be changed through the user interface of a conforming reader.
Conforming writers can use this entry to prevent the visibility of
content that depends on these groups from being changed by users.
Default value: an empty array.
A conforming reader may allow the states of optional content groups
from being changed by means other than the user interface, such as
JavaScript or items in the AS entry of a configuration dictionary.

Table 101 – Entries in an Optional Content Configuration Dictionary (continued)

Key Type Value

PDF 32000-1:2008

232 © Adobe Systems Incorporated 2008 – All rights reserved

The AS entry is an auto state array consisting of one or more usage application dictionaries that specify how
conforming readers shall automatically set the state of optional content groups based on external factors, as
discussed in the following sub-clause.

8.11.4.4 Usage and Usage Application Dictionaries

Optional content groups are typically constructed to control the visibility of graphic objects that are related in
some way. Objects can be related in several ways; for example, a group may contain content in a particular
language or content suitable for viewing at a particular magnification.

An optional content group’s usage dictionary (the value of the Usage entry in an optional content group
dictionary; see Table 98) shall contain information describing the nature of the content controlled by the group.
This dictionary can contain any combination of the entries shown in Table 102.

Table 102 – Entries in an Optional Content Usage Dictionary

Key Type Value

CreatorInfo dictionary (Optional) A dictionary used by the creating application to store
application-specific data associated with this optional content group. It
shall contain two required entries:
Creator A text string specifying the application that created the group.
Subtype A name defining the type of content controlled by the group.

Suggested values include but shall not be limited to Artwork,
for graphic-design or publishing applications, and Technical,
for technical designs such as building plans or schematics.

Additional entries may be included to present information relevant to the
creating application or related applications.
Groups whose Intent entry contains Design typically include a
CreatorInfo entry.

Language dictionary (Optional) A dictionary specifying the language of the content controlled by
this optional content group. It may contain the following two entries:
Lang (required) A text string that specifies a language and possibly

a locale (see 14.9.2, "Natural Language Specification"). For
example, es-MX represents Mexican Spanish.

Preferred (optional) A name whose values shall be either ON or OFF.
Default value: OFF. it shall be used by conforming readers
when there is a partial match but no exact match between the
system language and the language strings in all usage
dictionaries. See 8.11.4.4, "Usage and Usage Application
Dictionaries" for more information.

Export dictionary (Optional) A dictionary containing one entry, ExportState, a name whose
value shall be either ON or OFF. This value shall indicate the
recommended state for content in this group when the document (or part of
it) is saved by a conforming reader to a format that does not support
optional content (for example, a raster image format).

Zoom dictionary (Optional) A dictionary specifying a range of magnifications at which the
content in this optional content group is best viewed. It shall contain one or
both of the following entries:
min The minimum recommended magnification factor at which the

group shall be ON. Default value: 0.
max The magnification factor below which the group shall be ON.

Default value: infinity.

© Adobe Systems Incorporated 2008 – All rights reserved 233

PDF 32000-1:2008

While the data in the usage dictionary serves as information for a document user to examine, it may also be
used by conforming readers to automatically manipulate the state of optional content groups based on external
factors such as current system language settings or zoom level. Document authors may use usage application
dictionaries to specify which entries in the usage dictionary shall be consulted to automatically set the state of
optional content groups based on such factors. Usage application dictionaries shall be listed in the AS entry in
an optional content configuration dictionary (see Table 101). If no AS entry is present, states shall not be
automatically adjusted based on usage information.

A usage application dictionary specifies the rules for which usage entries shall be used by conforming readers
to automatically manipulate the state of optional content groups, which groups shall be affected, and under
which circumstances. Table 103 shows the entries in a usage application dictionary.

Usage application dictionaries shall only be used by interactive conforming readers, and shall not be used by
applications that use PDF as final form output (see 8.11.4.5, "Determining the State of Optional Content
Groups" for more information).

Print dictionary (Optional) A dictionary specifying that the content in this group is shall be
used when printing. It may contain the following optional entries:
Subtype A name object specifying the kind of content controlled by the

group; for example, Trapping, PrintersMarks and
Watermark.

PrintState A name that shall be either ON or OFF, indicating that the
group shall be set to that state when the document is printed
from a conforming reader.

View dictionary (Optional) A dictionary that shall have a single entry, ViewState, a name
that shall have a value of either ON or OFF, indicating that the group shall
be set to that state when the document is opened in a conforming reader.

User dictionary (Optional) A dictionary specifying one or more users for whom this optional
content group is primarily intended. Each dictionary shall have two
required entries:
Type A name object that shall be either Ind (individual), Ttl (title),

or Org (organization).
Name A text string or array of text strings representing the name(s)

of the individual, position or organization.

PageElement dictionary (Optional) A dictionary declaring that the group contains a pagination
artifact. It shall contain one entry, Subtype, whose value shall be a name
that is either HF (header/footer), FG (foreground image or graphic), BG
(background image or graphic), or L (logo).

Table 103 – Entries in a Usage Application Dictionary

Key Type Value

Event name (Required) A name defining the situation in which this usage application
dictionary should be used. Shall be one of View, Print, or Export.

OCGs array (Optional) An array listing the optional content groups that shall have their
states automatically managed based on information in their usage
dictionary (see 8.11.4.4, "Usage and Usage Application Dictionaries").
Default value: an empty array, indicating that no groups shall be affected.

Category array (Required) An array of names, each of which corresponds to a usage
dictionary entry (see Table 102). When managing the states of the
optional content groups in the OCGs array, each of the corresponding
categories in the group’s usage dictionary shall be considered.

Table 102 – Entries in an Optional Content Usage Dictionary (continued)

Key Type Value

PDF 32000-1:2008

234 © Adobe Systems Incorporated 2008 – All rights reserved

The Event entry specifies whether the usage settings shall be applied during viewing, printing, or exporting the
document. The OCGs entry specifies the set of optional content groups to which usage settings shall be
applied. For each of the groups in OCGs, the entries in its usage dictionary (see Table 102) specified by
Category shall be examined to yield a recommended state for the group. If all the entries yield a recommended
state of ON, the group’s state shall be set to ON; otherwise, its state shall be set to OFF.

The entries in the usage dictionary shall be used as follows:

• View: The state shall be the value of the ViewState entry. This entry allows a document to contain content
that is relevant only when the document is viewed interactively, such as instructions for how to interact with
the document.

• Print: The state shall be the value of the PrintState entry. If PrintState is not present, the state of the
optional content group shall be left unchanged.

• Export: The state shall be the value of the ExportState entry.

• Zoom: If the current magnification level of the document is greater than or equal to min and less than max,
the ON state shall be used; otherwise, OFF shall be used.

• User: The Name entry shall specify a name or names to match with the user’s identification. The Type
entry determines how the Name entry shall be interpreted (name, title, or organization). If there is an exact
match, the ON state shall be used; otherwise OFF shall be used.

• Language: This category shall allow the selection of content based on the language and locale of the
application. If an exact match to the language and locale is found among the Lang entries of the optional
content groups in the usage application dictionary’s OCGs list, all groups that have exact matches shall
receive an ON recommendation. If no exact match is found, but a partial match is found (that is, the
language matches but not the locale), all partially matching groups that have Preferred entries with a value
of ON shall receive an ON recommendation. All other groups shall receive an OFF recommendation.

There shall be no restriction on multiple entries with the same value of Event, in order to allow documents with
incompatible usage application dictionaries to be combined into larger documents and have their behaviour
preserved. If a given optional content group appears in more than one OCGs array, its state shall be ON only if
all categories in all the usage application dictionaries it appears in shall have a state of ON.

EXAMPLE This example shows the use of an auto state array with usage application dictionaries. The AS entry in
the default configuration dictionary is an array of three usage application dictionaries, one for each of the
Event values View, Print, and Export.

/OCProperties % OCProperties dictionary in document catalog

<< /OCGs [1 0 R 2 0 R 3 0 R 4 0 R]
/D << /BaseState /OFF % The default configuration

/ON [1 0 R]
/AS [% Auto state array of usage application dictionaries

<< /Event /View /Category [/Zoom] /OCGs [1 0 R 2 0 R 3 0 R 4 0 R] >>
<< /Event /Print /Category [/Print] /OCGs [4 0 R] >>
<< /Event /Export /Category [/Export] /OCGs [3 0 R 4 0 R] >>
]

>>
>>

...

1 0 obj

<< /Type /OCG
/Name (20000 foot view)
/Usage << /Zoom << /max 1.0 >> >>

>>
endobj
2 0 obj

<< /Type /OCG

© Adobe Systems Incorporated 2008 – All rights reserved 235

PDF 32000-1:2008

/Name (10000 foot view)
/Usage << /Zoom << /min 1.0 /max 2.0 >> >>

>>
endobj
3 0 obj

<< /Type /OCG
/Name (1000 foot view)
/Usage << /Zoom << /min 2.0 /max 20.0 >>

/Export << /ExportState /OFF >> >>
>>

endobj
4 0 obj

<< /Type /OCG
/Name (Copyright notice)
/Usage << /Print << /PrintState /ON >>

/Export << /ExportState /ON>> >>
>>

endobj

In the example, the usage application dictionary with event type View specifies that all optional content groups
shall have their states managed based on zoom level when viewing. Three groups (objects 1, 2, and 3) contain
Zoom usage information. Object 4 has none; therefore, it shall not be affected by zoom level changes. Object 3
shall receive an OFF recommendation when exporting. When printing or exporting, object 4 shall receive an
ON recommendation.

8.11.4.5 Determining the State of Optional Content Groups

This sub-clause summarizes the rules by which conforming readers make use of the configuration and usage
application dictionaries to set the state of optional content groups. For purposes of this discussion, it is useful to
distinguish the following types of conforming readers:

• Viewer applications which allow users to interact with the document in various ways.

• Design applications, which offer layering features for collecting groups of graphics together and selectively
hiding or viewing them.

NOTE 1 The following rules are not meant to apply to design applications; they may manage their states in an entirely
different manner if they choose.

• Aggregating applications, which import PDF files as graphics.

• Printing applications, which print PDF files.

When a document is first opened, its optional content groups shall be assigned a state based on the D (default)
configuration dictionary in the OCProperties dictionary:

a) The value of BaseState shall be applied to all the groups.

b) The groups listed in either the ON or OFF array (depending on which one is opposite to BaseState) shall
have their states adjusted.

This state shall be the state used by printing and aggregating application. Such applications shall not apply the
changes based on usage application dictionaries described below. However, for more advanced functionality,
they may provide user control for manipulating the individual states of optional content groups.

NOTE 2 Viewer applications may also provide users with an option to view documents in this state (that is, to disable
the automatic adjustments discussed below). This option permits an accurate preview of the content as it will
appear when placed into an aggregating application or sent to a stand-alone printing system.

The remaining discussion in this sub-clause applies only to viewer applications. Such applications shall
examine the AS array for usage application dictionaries that have an Event of type View. For each one found,

PDF 32000-1:2008

236 © Adobe Systems Incorporated 2008 – All rights reserved

the groups listed in its OCGs array shall be adjusted as described in 8.11.4.4, "Usage and Usage Application
Dictionaries".

Subsequently, the document is ready for interactive viewing by a user. Whenever there is a change to a factor
that the usage application dictionaries with event type View depend on (such as zoom level), the
corresponding dictionaries shall be reapplied.

The user may manipulate optional content group states manually or by triggering SetOCGState actions (see
12.6.4.12, "Set-OCG-State Actions") by, for example, clicking links or bookmarks. Manual changes shall
override the states that were set automatically. The states of these groups remain overridden and shall not be
readjusted based on usage application dictionaries with event type View as long as the document is open (or
until the user reverts the document to its original state).

When a document is printed by a viewer application, usage application dictionaries with an event type Print
shall be applied over the current states of optional content groups. These changes shall persist only for the
duration of the print operation; then all groups shall revert to their prior states.

Similarly, when a document is exported to a format that does not support optional content, usage application
dictionaries with an event type Export shall be applied over the current states of optional content groups.
Changes shall persist only for the duration of the export operation; then all groups shall revert to their prior
states.

NOTE 3 Although the event types Print and Export have identically named counterparts that are usage categories, the
corresponding usage application dictionaries are permitted to specify that other categories may be applied.

© Adobe Systems Incorporated 2008 – All rights reserved 237

PDF 32000-1:2008

9 Text

9.1 General

This clause describes the special facilities in PDF for dealing with text—specifically, for representing characters
with glyphs from fonts. A glyph is a graphical shape and is subject to all graphical manipulations, such as
coordinate transformation. Because of the importance of text in most page descriptions, PDF provides higher-
level facilities to describe, select, and render glyphs conveniently and efficiently.

The first sub-clause is a general description of how glyphs from fonts are painted on the page. Subsequent
sub-clauses cover these topics in detail:

• Text state. A subset of the graphics state parameters pertain to text, including parameters that select the
font, scale the glyphs to an appropriate size, and accomplish other graphical effects.

• Text objects and operators. The text operators specify the glyphs to be painted, represented by string
objects whose values shall be interpreted as sequences of character codes. A text object encloses a
sequence of text operators and associated parameters.

• Font data structures. Font dictionaries and associated data structures provide information that a
conforming reader needs to interpret the text and position the glyphs properly. The definitions of the glyphs
themselves shall be contained in font programs, which may be embedded in the PDF file, built into a
conforming reader, or obtained from an external font file.

9.2 Organization and Use of Fonts

9.2.1 General

A character is an abstract symbol, whereas a glyph is a specific graphical rendering of a character.

EXAMPLE 1 The glyphs A, A, and A are renderings of the abstract “A” character.

NOTE 1 Historically these two terms have often been used interchangeably in computer typography (as evidenced by
the names chosen for some PDF dictionary keys and PostScript operators), but advances in this area have
made the distinction more meaningful. Consequently, this standard distinguishes between characters and
glyphs, though with some residual names that are inconsistent.

Glyphs are organized into fonts. A font defines glyphs for a particular character set.

EXAMPLE 2 The Helvetica and Times fonts define glyphs for a set of standard Latin characters.

A font for use with a conforming reader is prepared in the form of a program. Such a font program shall be
written in a special-purpose language, such as the Type 1, TrueType, or OpenType font format, that is
understood by a specialized font interpreter.

In PDF, the term font refers to a font dictionary, a PDF object that identifies the font program and contains
additional information about it. There are several different font types, identified by the Subtype entry of the font
dictionary.

For most font types, the font program shall be defined in a separate font file, which may be either embedded in
a PDF stream object or obtained from an external source. The font program contains glyph descriptions that
generate glyphs.

A content stream paints glyphs on the page by specifying a font dictionary and a string object that shall be
interpreted as a sequence of one or more character codes identifying glyphs in the font. This operation is called
showing the text string; the text strings drawn in this way are called show strings. The glyph description
consists of a sequence of graphics operators that produce the specific shape for that character in this font. To
render a glyph, the conforming reader executes the glyph description.

PDF 32000-1:2008

238 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 2 Programmers who have experience with scan conversion of general shapes may be concerned about the
amount of computation that this description seems to imply. However, this is only the abstract behaviour of
glyph descriptions and font programs, not how they are implemented. In fact, an efficient implementation can
be achieved through careful caching and reuse of previously rendered glyphs.

9.2.2 Basics of Showing Text

EXAMPLE 1 This example illustrates the most straightforward use of a font. The text ABC is placed 10 inches from the
bottom of the page and 4 inches from the left edge, using 12-point Helvetica.

BT

/F13 12 Tf
288 720 Td
(ABC) Tj

ET

The five lines of this example perform these steps:

a) Begin a text object.

b) Set the font and font size to use, installing them as parameters in the text state. In this case, the font
resource identified by the name F13 specifies the font externally known as Helvetica.

c) Specify a starting position on the page, setting parameters in the text object.

d) Paint the glyphs for a string of characters at that position.

e) End the text object.

These paragraphs explain these operations in more detail.

To paint glyphs, a content stream shall first identify the font to be used. The Tf operator shall specify the name
of a font resource—that is, an entry in the Font subdictionary of the current resource dictionary. The value of
that entry shall be a font dictionary. The font dictionary shall identify the font’s externally known name, such as
Helvetica, and shall supply some additional information that the conforming reader needs to paint glyphs from
that font. The font dictionary may provide the definition of the font program itself.

NOTE 1 The font resource name presented to the Tf operator is arbitrary, as are the names for all kinds of resources. It
bears no relationship to an actual font name, such as Helvetica.

EXAMPLE 2 This Example illustrates an excerpt from the current page’s resource dictionary, which defines the font
dictionary that is referenced as F13 (see EXAMPLE 1 in this sub-clause).

/Resources

<< /Font << /F13 23 0 R >>
>>

23 0 obj

<< /Type /Font
 /Subtype /Type1
 /BaseFont /Helvetica

>>
endobj

A font defines the glyphs at one standard size. This standard is arranged so that the nominal height of tightly
spaced lines of text is 1 unit. In the default user coordinate system, this means the standard glyph size is 1 unit
in user space, or 1 ⁄ 72 inch. Starting with PDF 1.6, the size of this unit may be specified as greater than 1 ⁄ 72
inch by means of the UserUnit entry of the page dictionary; see Table 30. The standard-size font shall then be
scaled to be usable. The scale factor is specified as the second operand of the Tf operator, thereby setting the
text font size parameter in the graphics state. EXAMPLE 1 in this sub-clause establishes the Helvetica font with
a 12-unit size in the graphics state.

© Adobe Systems Incorporated 2008 – All rights reserved 239

PDF 32000-1:2008

Once the font has been selected and scaled, it may be used to paint glyphs. The Td operator shall adjust the
translation components of the text matrix, as described in 9.4.2, "Text-Positioning Operators". When executed
for the first time after BT, Td shall establish the text position in the current user coordinate system. This
determines the position on the page at which to begin painting glyphs.

The Tj operator shall take a string operand and shall paint the corresponding glyphs, using the current font and
other text-related parameters in the graphics state.

NOTE 2 The Tj operator treats each element of the string (an integer in the range 0 to 255) as a character code (see
EXAMPLE 1 in this sub-clause).

Each byte shall select a glyph description in the font, and the glyph description shall be executed to paint that
glyph on the page. This is the behaviour of Tj for simple fonts, such as ordinary Latin text fonts. Interpretation of
the string as a sequence of character codes is more complex for composite fonts, described in 9.7, "Composite
Fonts".

What these steps produce on the page is not a 12-point glyph, but rather a 12-unit glyph, where the unit size
shall be that of the text space at the time the glyphs are rendered on the page. The actual size of the glyph shall
be determined by the text matrix (Tm) in the text object, several text state parameters, and the current
transformation matrix (CTM) in the graphics state; see 9.4.4, "Text Space Details".

EXAMPLE 3 If the text space is later scaled to make the unit size 1 centimeter, painting glyphs from the same 12-unit
font generates results that are 12 centimeters high.

9.2.3 Achieving Special Graphical Effects

Normal uses of Tj and other glyph-painting operators cause black-filled glyphs to be painted. Other effects may
be obtained by combining font operators with general graphics operators.

The colour used for painting glyphs shall be the current colour in the graphics state: either the nonstroking
colour or the stroking colour (or both), depending on the text rendering mode (see 9.3.6, "Text Rendering
Mode"). The default colour shall be black (in DeviceGray), but other colours may be obtained by executing an
appropriate colour-setting operator or operators (see 8.6.8, "Colour Operators") before painting the glyphs.

EXAMPLE 1 This example uses text rendering mode 0 and the g operator to fill glyphs in 50 percent gray, as shown in
Figure 36.

BT

/F13 48 Tf
20 40 Td
0 Tr
0.5 g
(ABC) Tj

ET

Figure 36 – Glyphs painted in 50% gray

ABC

PDF 32000-1:2008

240 © Adobe Systems Incorporated 2008 – All rights reserved

Other graphical effects may be achieved by treating the glyph outline as a path instead of filling it. The text
rendering mode parameter in the graphics state specifies whether glyph outlines shall be filled, stroked, used
as a clipping boundary, or some combination of these effects. Only a subset of the possible rendering modes
apply to Type 3 fonts.

EXAMPLE 2 This example treats glyph outlines as a path to be stroked. The Tr operator sets the text rendering mode
to 1 (stroke). The w operator sets the line width to 2 units in user space. Given those graphics state
parameters, the Tj operator strokes the glyph outlines with a line 2 points thick (see Figure 37).

BT

/F13 48 Tf
20 38 Td
1 Tr
2 w
(ABC) Tj

ET

Figure 37 – Glyph outlines treated as a stroked path

EXAMPLE 3 This example illustrates how the glyphs’ outlines may be used as a clipping boundary. The Tr operator
sets the text rendering mode to 7 (clip), causing the subsequent Tj operator to impose the glyph outlines
as the current clipping path. All subsequent painting operations mark the page only within this path, as
illustrated in Figure 38. This state persists until an earlier clipping path is reinstated by the Q operator.

BT

/F13 48 Tf
20 38 Td
7 Tr
(ABC) Tj

ET
… Graphics operators to draw a starburst …

Figure 38 – Graphics clipped by a glyph path

ABC

ABC

© Adobe Systems Incorporated 2008 – All rights reserved 241

PDF 32000-1:2008

9.2.4 Glyph Positioning and Metrics

A glyph’s width—formally, its horizontal displacement—is the amount of space it occupies along the baseline of
a line of text that is written horizontally. In other words, it is the distance the current text position shall move (by
translating text space) when the glyph is painted.

NOTE 1 The width is distinct from the dimensions of the glyph outline.

In some fonts, the width is constant; it does not vary from glyph to glyph. Such fonts are called fixed-pitch or
monospaced. They are used mainly for typewriter-style printing. However, most fonts used for high-quality
typography associate a different width with each glyph. Such fonts are called proportional or variable-pitch
fonts. In either case, the Tj operator shall position the consecutive glyphs of a string according to their widths.

The width information for each glyph shall be stored both in the font dictionary and in the font program itself.
The two sets of widths shall be identical.

NOTE 2 Storing this information in the font dictionary, although redundant, enables a conforming reader to determine
glyph positioning without having to look inside the font program.

NOTE 3 The operators for showing text are designed on the assumption that glyphs are ordinarily positioned according
to their standard widths. However, means are provided to vary the positioning in certain limited ways. For
example, the TJ operator enables the text position to be adjusted between any consecutive pair of glyphs
corresponding to characters in a text string. There are graphics state parameters to adjust character and word
spacing systematically.

In addition to width, a glyph has several other metrics that influence glyph positioning and painting. For most
font types, this information is largely internal to the font program and is not specified explicitly in the PDF font
dictionary. However, in a Type 3 font, all metrics are specified explicitly (see 9.6.5, "Type 3 Fonts").

The glyph coordinate system is the space in which an individual character’s glyph is defined. All path
coordinates and metrics shall be interpreted in glyph space. For all font types except Type 3, the units of glyph
space are one-thousandth of a unit of text space; for a Type 3 font, the transformation from glyph space to text
space shall be defined by a font matrix specified in an explicit FontMatrix entry in the font. Figure 39 shows a
typical glyph outline and its metrics.

Figure 39 – Glyph metrics

The glyph origin is the point (0, 0) in the glyph coordinate system. Tj and other text-showing operators shall
position the origin of the first glyph to be painted at the origin of text space.

EXAMPLE 1 This code adjusts the origin of text space to (40, 50) in the user coordinate system and then places the
origin of the A glyph at that point:

BT

40 50 Td
(ABC) Tj

ET

Glyph
bounding

box

Next
glyph
origin

Glyph
origin

Glyph width

PDF 32000-1:2008

242 © Adobe Systems Incorporated 2008 – All rights reserved

The glyph displacement is the distance from the glyph’s origin to the point at which the origin of the next glyph
should normally be placed when painting the consecutive glyphs of a line of text. This distance is a vector
(called the displacement vector) in the glyph coordinate system; it has horizontal and vertical components.

NOTE 4 Most Western writing systems, including those based on the Latin alphabet, have a positive horizontal
displacement and a zero vertical displacement. Some Asian writing systems have a nonzero vertical
displacement. In all cases, the text-showing operators transform the displacement vector into text space and
then translate text space by that amount.

The glyph bounding box shall be the smallest rectangle (oriented with the axes of the glyph coordinate system)
that just encloses the entire glyph shape. The bounding box shall be expressed in terms of its left, bottom, right,
and top coordinates relative to the glyph origin in the glyph coordinate system.

In some writing systems, text is frequently aligned in two different directions.

NOTE 5 It is common to write Japanese and Chinese glyphs either horizontally or vertically.

To handle this, a font may contain a second set of metrics for each glyph. Which set of metrics to use shall be
selected according to a writing mode, where 0 shall specify horizontal writing and 1 shall specify vertical writing.
This feature is available only for composite fonts, discussed in 9.7, "Composite Fonts".

When a glyph has two sets of metrics, each set shall specify a glyph origin and a displacement vector for that
writing mode. In vertical writing, the glyph position shall be described by a position vector from the origin used
for horizontal writing (origin 0) to the origin used for vertical writing (origin 1). Figure 40 illustrates the metrics for
the two writing modes:

• The left diagram illustrates the glyph metrics associated with writing mode 0, horizontal writing. The
coordinates ll and ur specify the bounding box of the glyph relative to origin 0. w0 is the displacement
vector that specifies how the text position shall be changed after the glyph is painted in writing mode 0; its
vertical component shall be 0.

• The center diagram illustrates writing mode 1, vertical writing. w1 shall be the displacement vector for
writing mode 1; its horizontal component shall be 0.

• In the right diagram, v is a position vector defining the position of origin 1 relative to origin 0.

Figure 40 – Metrics for horizontal and vertical writing modes

New text
position

ur

w0Origin
0

ll
New text position

Writing mode 0
(horizontal)

Writing mode 1
(vertical)

Mode 1 relative to mode 0

w1

Origin
0

v

Origin 1 Origin 1

© Adobe Systems Incorporated 2008 – All rights reserved 243

PDF 32000-1:2008

9.3 Text State Parameters and Operators

9.3.1 General

The text state comprises those graphics state parameters that only affect text. There are nine parameters in the
text state (see Table 104).

Except for the previously described Tf and Tfs , these parameters are discussed further in subsequent sub-
clauses. (As described in 9.4, "Text Objects", three additional text-related parameters may occur only within a
text object: Tm , the text matrix; Tlm , the text line matrix; and Trm , the text rendering matrix.) The values of the
text state parameters shall be consulted when text is positioned and shown (using the operators described in
9.4.2, "Text-Positioning Operators" and 9.4.3, "Text-Showing Operators"). In particular, the spacing and scaling
parameters shall be used in a computation described in 9.4.4, "Text Space Details". The text state parameters
may be set using the operators listed in Table 105.

The text knockout parameter, Tk , shall be set through the TK entry in a graphics state parameter dictionary by
using the gs operator (see 8.4.5, "Graphics State Parameter Dictionaries"). There is no specific operator for
setting this parameter.

The text state operators may appear outside text objects, and the values they set are retained across text
objects in a single content stream. Like other graphics state parameters, these parameters shall be initialized to
their default values at the beginning of each page.

Table 104 – Text state parameters

Parameter Description

Tc Character spacing

Tw Word spacing

Th Horizontal scaling

Tl Leading

Tf Text font

Tfs Text font size

Tmode Text rendering mode

Trise Text rise

Tk Text knockout

Table 105 – Text state operators

Operands Operator Description

charSpace Tc Set the character spacing, Tc , to charSpace, which shall be a number
expressed in unscaled text space units. Character spacing shall be used
by the Tj, TJ, and ' operators. Initial value: 0.

wordSpace Tw Set the word spacing, Tw , to wordSpace, which shall be a number
expressed in unscaled text space units. Word spacing shall be used by
the Tj, TJ, and ' operators. Initial value: 0.

scale Tz Set the horizontal scaling, Th , to (scale ÷ 100). scale shall be a number
specifying the percentage of the normal width. Initial value: 100 (normal
width).

PDF 32000-1:2008

244 © Adobe Systems Incorporated 2008 – All rights reserved

Some of these parameters are expressed in unscaled text space units. This means that they shall be specified
in a coordinate system that shall be defined by the text matrix, Tm but shall not be scaled by the font size
parameter, Tfs .

9.3.2 Character Spacing

The character-spacing parameter, Tc , shall be a number specified in unscaled text space units (although it shall
be subject to scaling by the Th parameter if the writing mode is horizontal). When the glyph for each character
in the string is rendered, Tc shall be added to the horizontal or vertical component of the glyph’s displacement,
depending on the writing mode. See 9.2.4, "Glyph Positioning and Metrics", for a discussion of glyph
displacements. In the default coordinate system, horizontal coordinates increase from left to right and vertical
coordinates from bottom to top. Therefore, for horizontal writing, a positive value of Tc has the effect of
expanding the distance between glyphs (see Figure 41), whereas for vertical writing, a negative value of Tc has
this effect.

Figure 41 – Character spacing in horizontal writing

9.3.3 Word Spacing

Word spacing works the same way as character spacing but shall apply only to the ASCII SPACE character
(20h). The word-spacing parameter, Tw , shall be added to the glyph’s horizontal or vertical displacement
(depending on the writing mode). For horizontal writing, a positive value for Tw has the effect of increasing the
spacing between words. For vertical writing, a positive value for Tw decreases the spacing between words (and
a negative value increases it), since vertical coordinates increase from bottom to top. Figure 42 illustrates the
effect of word spacing in horizontal writing.

leading TL Set the text leading, Tl , to leading, which shall be a number expressed in
unscaled text space units. Text leading shall be used only by the T*, ', and
" operators. Initial value: 0.

font size Tf Set the text font, Tf , to font and the text font size, Tfs , to size. font shall be
the name of a font resource in the Font subdictionary of the current
resource dictionary; size shall be a number representing a scale factor.
There is no initial value for either font or size; they shall be specified
explicitly by using Tf before any text is shown.

render Tr Set the text rendering mode, Tmode , to render, which shall be an integer.
Initial value: 0.

rise Ts Set the text rise, Trise , to rise, which shall be a number expressed in
unscaled text space units. Initial value: 0.

Table 105 – Text state operators (continued)

Operands Operator Description

Character
C h a r a c t e r

Tc = 0 (default)

Tc = 0.25

© Adobe Systems Incorporated 2008 – All rights reserved 245

PDF 32000-1:2008

Figure 42 – Word spacing in horizontal writing

Word spacing shall be applied to every occurrence of the single-byte character code 32 in a string when using
a simple font or a composite font that defines code 32 as a single-byte code. It shall not apply to occurrences of
the byte value 32 in multiple-byte codes.

9.3.4 Horizontal Scaling

The horizontal scaling parameter, Th , adjusts the width of glyphs by stretching or compressing them in the
horizontal direction. Its value shall be specified as a percentage of the normal width of the glyphs, with 100
being the normal width. The scaling shall apply to the horizontal coordinate in text space, independently of the
writing mode. It shall affect both the glyph’s shape and its horizontal displacement (that is, its displacement
vector). If the writing mode is horizontal, it shall also effect the spacing parameters Tc and Tw , as well as any
positioning adjustments performed by the TJ operator. Figure 43 shows the effect of horizontal scaling.

Figure 43 – Horizontal scaling

9.3.5 Leading

The leading parameter, Tl , shall be specified in unscaled text space units . It specifies the vertical distance
between the baselines of adjacent lines of text, as shown in Figure 44.

Figure 44 – Leading

The leading parameter shall be used by the TD, T*, ', and " operators; see Table 108 for a precise description
of its effects. This parameter shall apply to the vertical coordinate in text space, independently of the writing
mode.

Tw = 0 (default)

Tw = 2.5

Word Space
Word Space

Word
WordWord

Th = 100 (default)

Th = 50

This is 12-point text with
14.5-point leading

Leading

PDF 32000-1:2008

246 © Adobe Systems Incorporated 2008 – All rights reserved

9.3.6 Text Rendering Mode

The text rendering mode, Tmode , determines whether showing text shall cause glyph outlines to be stroked,
filled, used as a clipping boundary, or some combination of the three. Stroking, filling, and clipping shall have
the same effects for a text object as they do for a path object (see 8.5.3, "Path-Painting Operators" and 8.5.4,
"Clipping Path Operators"), although they are specified in an entirely different way. The graphics state
parameters affecting those operations, such as line width, shall be interpreted in user space rather than in text
space.

NOTE The text rendering modes are shown in Table 106. In the examples, a stroke colour of black and a fill colour of
light gray are used. For the clipping modes (4 to 7), a series of lines has been drawn through the glyphs to
show where the clipping occurs.

Only a value of 3 for text rendering mode shall have any effect on text displayed in a Type 3 font (see 9.6.5,
"Type 3 Fonts").

If the text rendering mode calls for filling, the current nonstroking colour in the graphics state shall be used; if it
calls for stroking, the current stroking colour shall be used. In modes that perform both filling and stroking, the
effect shall be as if each glyph outline were filled and then stroked in separate operations. If any of the glyphs
overlap, the result shall be equivalent to filling and stroking them one at a time, producing the appearance of
stacked opaque glyphs, rather than first filling and then stroking them all at once. In the transparent imaging
model, these combined filling and stroking modes shall be subject to further considerations; see 11.7.4.4,
"Special Path-Painting Considerations".

The behaviour of the clipping modes requires further explanation. Glyph outlines shall begin accumulating if a
BT operator is executed while the text rendering mode is set to a clipping mode or if it is set to a clipping mode
within a text object. Glyphs shall accumulate until the text object is ended by an ET operator; the text rendering
mode shall not be changed back to a nonclipping mode before that point.

Table 106 – Text rendering modes

Mode Example Description

0 Fill text.

1 Stroke text.

2 Fill, then stroke text.

3 Neither fill nor stroke text (invisible).

4 Fill text and add to path for clipping (see 9.3.6,
"Text Rendering Mode,").

5 Stroke text and add to path for clipping.

R

R

R

© Adobe Systems Incorporated 2008 – All rights reserved 247

PDF 32000-1:2008

At the end of the text object, the accumulated glyph outlines, if any, shall be combined into a single path,
treating the individual outlines as subpaths of that path and applying the nonzero winding number rule (see
8.5.3.3.2, "Nonzero Winding Number Rule"). The current clipping path in the graphics state shall be set to the
intersection of this path with the previous clipping path. As is the case for path objects, this clipping shall occur
after all filling and stroking operations for the text object have occurred. It remains in effect until a previous
clipping path is restored by an invocation of the Q operator.

If no glyphs are shown or if the only glyphs shown have no outlines (for example, if they are ASCII SPACE
characters (20h)), no clipping shall occur.

9.3.7 Text Rise

Text rise, Trise , shall specify the distance, in unscaled text space units, to move the baseline up or down from its
default location. Positive values of text rise shall move the baseline up. Figure 45 illustrates the effect of the text
rise. Text rise shall apply to the vertical coordinate in text space, regardless of the writing mode.

NOTE Adjustments to the baseline are useful for drawing superscripts or subscripts. The default location of the
baseline can be restored by setting the text rise to 0.

Figure 45 – Text rise

9.3.8 Text Knockout

The text knockout parameter, Tk (PDF 1.4), shall be a boolean value that determines what text elements shall
be considered elementary objects for purposes of colour compositing in the transparent imaging model. Unlike
other text state parameters, there is no specific operator for setting this parameter; it may be set only through
the TK entry in a graphics state parameter dictionary by using the gs operator (see 8.4.5, "Graphics State
Parameter Dictionaries"). The text knockout parameter shall apply only to entire text objects; it shall not be set
between the BT and ET operators delimiting a text object. Its initial value shall be true.

6 Fill, then stroke text and add to path for clipping.

7 Add text to path for clipping.

Table 106 – Text rendering modes (continued)

Mode Example Description

R

(This text is) Tj
5 Ts
(superscripted) Tj

(This) Tj
–5 Ts
(text) Tj
5 Ts
(moves) Tj
0 Ts
(around) Tj

(This text is) Tj
–5 Ts
(subscripted) Tj

This text is superscripted

This text moves around

This text is subscripted

PDF 32000-1:2008

248 © Adobe Systems Incorporated 2008 – All rights reserved

If the parameter is false, each glyph in a text object shall be treated as a separate elementary object; when
glyphs overlap, they shall composite with one another.

If the parameter is true, all glyphs in the text object shall be treated together as a single elementary object;
when glyphs overlap, later glyphs shall overwrite (“knock out”) earlier ones in the area of overlap. This
behaviour is equivalent to treating the entire text object as if it were a non-isolated knockout transparency
group; see 11.4.6, "Knockout Groups". Transparency parameters shall be applied to the glyphs individually
rather than to the implicit transparency group as a whole:

• Graphics state parameters, including transparency parameters, shall be inherited from the context in which
the text object appears. They shall not be saved and restored. The transparency parameters shall not be
reset at the beginning of the transparency group (as they are when a transparency group XObject is
explicitly invoked). Changes made to graphics state parameters within the text object shall persist beyond
the end of the text object.

• After the implicit transparency group for the text object has been completely evaluated, the group results
shall be composited with the backdrop, using the Normal blend mode and alpha and soft mask values of
1.0.

9.4 Text Objects

9.4.1 General

A PDF text object consists of operators that may show text strings, move the text position, and set text state
and certain other parameters. In addition, three parameters may be specified only within a text object and shall
not persist from one text object to the next:

• Tm , the text matrix

• Tlm , the text line matrix

• Trm , the text rendering matrix, which is actually just an intermediate result that combines the effects of text
state parameters, the text matrix (Tm), and the current transformation matrix

A text object begins with the BT operator and ends with the ET operator, as shown in the Example, and
described in Table 107.

EXAMPLE BT
… Zero or more text operators or other allowed operators …
ET

These specific categories of text-related operators may appear in a text object:

• Text state operators, described in 9.3, "Text State Parameters and Operators"

• Text-positioning operators, described in 9.4.2, "Text-Positioning Operators"

• Text-showing operators, described in 9.4.3, "Text-Showing Operators"

Table 107 – Text object operators

Operands Operator Description

— BT Begin a text object, initializing the text matrix, Tm , and the text line matrix,
Tlm , to the identity matrix. Text objects shall not be nested; a second BT shall
not appear before an ET.

— ET End a text object, discarding the text matrix.

© Adobe Systems Incorporated 2008 – All rights reserved 249

PDF 32000-1:2008

The latter two sub-clauses also provide further details about these text object parameters. The other operators
that may appear in a text object are those related to the general graphics state, colour, and marked content, as
shown in Figure 9.

If a content stream does not contain any text, the Text procedure set may be omitted (see 14.2, "Procedure
Sets"). In those circumstances, no text operators (including operators that merely set the text state) shall be
present in the content stream, since those operators are defined in the same procedure set.

NOTE Although text objects cannot be statically nested, text might be shown using a Type 3 font whose glyph
descriptions include any graphics objects, including another text object. Likewise, the current colour might be a
tiling pattern whose pattern cell includes a text object.

9.4.2 Text-Positioning Operators

Text space is the coordinate system in which text is shown. It shall be defined by the text matrix, Tm , and the
text state parameters Tfs , Th , and Trise , which together shall determine the transformation from text space to
user space. Specifically, the origin of the first glyph shown by a text-showing operator shall be placed at the
origin of text space. If text space has been translated, scaled, or rotated, then the position, size, or orientation
of the glyph in user space shall be correspondingly altered.

The text-positioning operators shall only appear within text objects.

Table 108 – Text-positioning operators

Operands Operator Description

tx ty Td Move to the start of the next line, offset from the start of the current line by
(tx , ty). tx and ty shall denote numbers expressed in unscaled text space
units. More precisely, this operator shall perform these assignments:

tx ty TD Move to the start of the next line, offset from the start of the current line by
(tx , ty). As a side effect, this operator shall set the leading parameter in
the text state. This operator shall have the same effect as this code:
−ty TL
tx ty Td

Tm Tlm

1 0 0
0 1 0
tx ty 1

Tlm×= =

PDF 32000-1:2008

250 © Adobe Systems Incorporated 2008 – All rights reserved

At the beginning of a text object, Tm shall be the identity matrix; therefore, the origin of text space shall be
initially the same as that of user space. The text-positioning operators, described in Table 108, alter Tm and
thereby control the placement of glyphs that are subsequently painted. Also, the text-showing operators,
described in Table 109, update Tm (by altering its e and f translation components) to take into account the
horizontal or vertical displacement of each glyph painted as well as any character or word-spacing parameters
in the text state.

Additionally, within a text object, a conforming reader shall keep track of a text line matrix, Tlm , which captures
the value of Tm at the beginning of a line of text. The text-positioning and text-showing operators shall read and
set Tlm on specific occasions mentioned in Tables 108 and 109.

NOTE This can be used to compactly represent evenly spaced lines of text.

9.4.3 Text-Showing Operators

The text-showing operators (Table 109) shall show text on the page, repositioning text space as they do so. All
of the operators shall interpret the text string and apply the text state parameters as described in Table 109.

The text-showing operators shall only appear within text objects.

a b c d e f Tm Set the text matrix, Tm , and the text line matrix, Tlm :

The operands shall all be numbers, and the initial value for Tm and Tlm
shall be the identity matrix, [1 0 0 1 0 0]. Although the operands
specify a matrix, they shall be passed to Tm as six separate numbers, not
as an array.
The matrix specified by the operands shall not be concatenated onto the
current text matrix, but shall replace it.

— T* Move to the start of the next line. This operator has the same effect as the
code
0 -Tl Td

where Tl denotes the current leading parameter in the text state. The
negative of Tl is used here because Tl is the text leading expressed as a
positive number. Going to the next line entails decreasing the
y coordinate.

Table 109 – Text-showing operators

Operands Operator Description

string Tj Show a text string.

string ' Move to the next line and show a text string. This operator shall have the
same effect as the code
T*
string Tj

Table 108 – Text-positioning operators (continued)

Operands Operator Description

Tm Tlm

a b 0
c d 0
e f 1

= =

© Adobe Systems Incorporated 2008 – All rights reserved 251

PDF 32000-1:2008

Figure 46 – Operation of the TJ operator in horizontal writing

A string operand of a text-showing operator shall be interpreted as a sequence of character codes identifying
the glyphs to be painted.

With a simple font, each byte of the string shall be treated as a separate character code. The character code
shall then be looked up in the font’s encoding to select the glyph, as described in 9.6.6, "Character Encoding".

With a composite font (PDF 1.2), multiple-byte codes may be used to select glyphs. In this instance, one or
more consecutive bytes of the string shall be treated as a single character code. The code lengths and the
mappings from codes to glyphs are defined in a data structure called a CMap, described in 9.7, "Composite
Fonts".

The strings shall conform to the syntax for string objects. When a string is written by enclosing the data in
parentheses, bytes whose values are equal to those of the ASCII characters LEFT PARENTHESIS (28h),
RIGHT PARENTHESIS (29h), and REVERSE SOLIDUS (5Ch) (backslash) shall be preceded by a REVERSE
SOLIDUS) character. All other byte values between 0 and 255 may be used in a string object. These rules
apply to each individual byte in a string object, whether the string is interpreted by the text-showing operators
as single-byte or multiple-byte character codes.

Strings presented to the text-showing operators may be of any length—even a single character code per
string—and may be placed on the page in any order. The grouping of glyphs into strings has no significance for
the display of text. Showing multiple glyphs with one invocation of a text-showing operator such as Tj shall
produce the same results as showing them with a separate invocation for each glyph.

aw ac string " Move to the next line and show a text string, using aw as the word spacing
and ac as the character spacing (setting the corresponding parameters in
the text state). aw and ac shall be numbers expressed in unscaled text
space units. This operator shall have the same effect as this code:
aw Tw
ac Tc
string '

array TJ Show one or more text strings, allowing individual glyph positioning. Each
element of array shall be either a string or a number. If the element is a
string, this operator shall show the string. If it is a number, the operator
shall adjust the text position by that amount; that is, it shall translate the
text matrix, Tm . The number shall be expressed in thousandths of a unit
of text space (see 9.4.4, "Text Space Details"). This amount shall be
subtracted from the current horizontal or vertical coordinate, depending
on the writing mode. In the default coordinate system, a positive
adjustment has the effect of moving the next glyph painted either to the
left or down by the given amount. Figure 46 shows an example of the
effect of passing offsets to TJ.

Table 109 – Text-showing operators (continued)

Operands Operator Description

[(AWAY again)] TJ AWAY again
[(A) 120 (W) 120 (A) 95 (Y again)] TJ AWAY again

PDF 32000-1:2008

252 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 6 The performance of text searching (and other text extraction operations) is significantly better if the text strings
are as long as possible and are shown in natural reading order.

NOTE 7 In some cases, the text that is extracted can vary depending on the grouping of glyphs into strings. See, for
example, 14.8.2.3.3, "Reverse-Order Show Strings".

9.4.4 Text Space Details

As stated in 9.4.2, "Text-Positioning Operators", text shall be shown in text space, defined by the combination
of the text matrix, Tm , and the text state parameters Tfs , Th , and Trise . This determines how text coordinates
are transformed into user space. Both the glyph’s shape and its displacement (horizontal or vertical) shall be
interpreted in text space.

NOTE 1 Glyphs are actually defined in glyph space, whose definition varies according to the font type as discussed in
9.2.4, "Glyph Positioning and Metrics". Glyph coordinates are first transformed from glyph space to text space
before being subjected to the transformations described in Note 2.

NOTE 2 Conceptually, the entire transformation from text space to device space may be represented by a text
rendering matrix, Trm :

Trm is a temporary matrix; conceptually, it is recomputed before each glyph is painted during a text-showing
operation.

After the glyph is painted, the text matrix shall be updated according to the glyph displacement and any spacing
parameters that apply. First, a combined displacement shall be computed, denoted by tx in horizontal writing
mode or ty in vertical writing mode (the variable corresponding to the other writing mode shall be set to 0):

where

w0 and w1 denote the glyph’s horizontal and vertical displacements

Tj denotes a number in a TJ array, if any, which specifies a position adjustment

Tfs and Th denote the current text font size and horizontal scaling parameters in the graphics state

Tc and Tw denote the current character- and word-spacing parameters in the graphics state, if applicable

The text matrix shall then be then updated as follows:

Trm

Tfs Th× 0 0

0 Tfs 0

0 Trise 1

Tm CTM××=

tx w0
Tj

1000
------------–⎝ ⎠

⎛ ⎞ Tfs× Tc Tw+ +⎝
⎛

⎠
⎞ Th×=

ty w1
Tj

1000
------------–⎝ ⎠

⎛ ⎞ Tfs× Tc Tw+ +=

Tm

1 0 0
0 1 0
tx ty 1

Tm×=

© Adobe Systems Incorporated 2008 – All rights reserved 253

PDF 32000-1:2008

9.5 Introduction to Font Data Structures

A font shall be represented in PDF as a dictionary specifying the type of font, its PostScript name, its encoding,
and information that can be used to provide a substitute when the font program is not available. Optionally, the
font program may be embedded as a stream object in the PDF file.

The font types are distinguished by the Subtype entry in the font dictionary. Table 110 lists the font types
defined in PDF. Type 0 fonts are called composite fonts; other types of fonts are called simple fonts. In addition
to fonts, PDF supports two classes of font-related objects, called CIDFonts and CMaps, described in 9.7.2,
"CID-Keyed Fonts Overview". CIDFonts are listed in Table 110 because, like fonts, they are collections of
glyphs; however, a CIDFont shall not be used directly but only as a component of a Type 0 font.

For all font types, the term font dictionary refers to a PDF dictionary containing information about the font;
likewise, a CIDFont dictionary contains information about a CIDFont. Except for Type 3, this dictionary is
distinct from the font program that defines the font’s glyphs. That font program may be embedded in the PDF
file as a stream object or be obtained from some external source.

NOTE 1 This terminology differs from that used in the PostScript language. In PostScript, a font dictionary is a
PostScript data structure that is created as a direct result of interpreting a font program. In PDF, a font program
is always treated as if it were a separate file, even when its content is embedded in the PDF file. The font
program is interpreted by a specialized font interpreter when necessary; its contents never materialize as PDF
objects.

NOTE 2 Most font programs (and related programs, such as CIDFonts and CMaps) conform to external specifications,
such as the Adobe Type 1 Font Format. This standard does not include those specifications. See the
Bibliography for more information about the specifications mentioned in this clause.

NOTE 3 The most predictable and dependable results are produced when all font programs used to show text are
embedded in the PDF file. The following sub-clauses describe precisely how to do so. If a PDF file refers to
font programs that are not embedded, the results depend on the availability of fonts in the conforming reader’s
environment. The following sub-clauses specify some conventions for referring to external font programs.
However, some details of font naming, font substitution, and glyph selection are implementation-dependent
and may vary among different conforming readers, writers and operating system environments.

Table 110 – Font types

Type Subtype Value Description

Type 0 Type0 (PDF 1.2) A composite font—a font composed of glyphs from a
descendant CIDFont (see 9.7, "Composite Fonts")

Type 1 Type1 A font that defines glyph shapes using Type 1 font technology (see
9.6.2, "Type 1 Fonts").

MMType1 A multiple master font—an extension of the Type 1 font that allows
the generation of a wide variety of typeface styles from a single font
(see 9.6.2.3, "Multiple Master Fonts")

Type 3 Type3 A font that defines glyphs with streams of PDF graphics operators
(see 9.6.5, "Type 3 Fonts")

TrueType TrueType A font based on the TrueType font format (see 9.6.3, "TrueType
Fonts")

CIDFont CIDFontType0 (PDF 1.2) A CIDFont whose glyph descriptions are based on Type 1
font technology (see 9.7.4, "CIDFonts")

CIDFontType2 (PDF 1.2) A CIDFont whose glyph descriptions are based on
TrueType font technology (see 9.7.4, "CIDFonts")

PDF 32000-1:2008

254 © Adobe Systems Incorporated 2008 – All rights reserved

9.6 Simple Fonts

9.6.1 General

There are several types of simple fonts, all of which have these properties:

• Glyphs in the font shall be selected by single-byte character codes obtained from a string that is shown by
the text-showing operators. Logically, these codes index into a table of 256 glyphs; the mapping from
codes to glyphs is called the font’s encoding. Under some circumstances, the encoding may be altered by
means described in 9.6.6, "Character Encoding".

• Each glyph shall have a single set of metrics, including a horizontal displacement or width, as described in
9.2.4, "Glyph Positioning and Metrics"; that is, simple fonts support only horizontal writing mode.

• Except for Type 0 fonts, Type 3 fonts in non-Tagged PDF documents, and certain standard Type 1 fonts,
every font dictionary shall contain a subsidiary dictionary, the font descriptor, containing font-wide metrics
and other attributes of the font; see 9.8, "Font Descriptors". Among those attributes is an optional font file
stream containing the font program.

9.6.2 Type 1 Fonts

9.6.2.1 General

A Type 1 font program is a stylized PostScript program that describes glyph shapes. It uses a compact
encoding for the glyph descriptions, and it includes hint information that enables high-quality rendering even at
small sizes and low resolutions.

NOTE 1 Details on this format are provided in a separate specification, Adobe Type 1 Font Format. An alternative, more
compact but functionally equivalent representation of a Type 1 font program is documented in Adobe Technical
Note #5176, The Compact Font Format Specification.

NOTE 2 Although a Type 1 font program uses PostScript language syntax, using it does not require a full PostScript
interpreter; a specialized Type 1 font interpreter suffices.

A Type 1 font dictionary may contain the entries listed in Table 111. Some entries are optional for the standard
14 fonts listed under 9.6.2.2, "Standard Type 1 Fonts (Standard 14 Fonts)", but are required otherwise.

Table 111 – Entries in a Type 1 font dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall
be Font for a font dictionary.

Subtype name (Required) The type of font; shall be Type1 for a Type 1 font.

Name name (Required in PDF 1.0; optional otherwise) The name by which this font
is referenced in the Font subdictionary of the current resource
dictionary.
This entry is obsolete and should not be used.

BaseFont name (Required) The PostScript name of the font. For Type 1 fonts, this is
always the value of the FontName entry in the font program; for more
information, see Section 5.2 of the PostScript Language Reference,
Third Edition. The PostScript name of the font may be used to find the
font program in the conforming reader or its environment. It is also the
name that is used when printing to a PostScript output device.

© Adobe Systems Incorporated 2008 – All rights reserved 255

PDF 32000-1:2008

FirstChar integer (Required except for the standard 14 fonts) The first character code
defined in the font’s Widths array.
Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. Conforming writers should represent all fonts
using a complete font descriptor. For backwards capability, conforming
readers shall still provide the special treatment identified for the
standard 14 fonts.

LastChar integer (Required except for the standard 14 fonts) The last character code
defined in the font’s Widths array.
Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. Conforming writers should represent all fonts
using a complete font descriptor. For backwards capability, conforming
readers shall still provide the special treatment identified for the
standard 14 fonts.

Widths array (Required except for the standard 14 fonts; indirect reference
preferred) An array of (LastChar − FirstChar + 1) widths, each
element being the glyph width for the character code that equals
FirstChar plus the array index. For character codes outside the range
FirstChar to LastChar, the value of MissingWidth from the
FontDescriptor entry for this font shall be used. The glyph widths
shall be measured in units in which 1000 units correspond to 1 unit in
text space. These widths shall be consistent with the actual widths
given in the font program. For more information on glyph widths and
other glyph metrics, see 9.2.4, "Glyph Positioning and Metrics".
Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. Conforming writers should represent all fonts
using a complete font descriptor. For backwards capability, conforming
readers shall still provide the special treatment identified for the
standard 14 fonts.

FontDescriptor dictionary (Required except for the standard 14 fonts; shall be an indirect
reference) A font descriptor describing the font’s metrics other than its
glyph widths (see 9.8, "Font Descriptors"”\).
For the standard 14 fonts, the entries FirstChar, LastChar, Widths,
and FontDescriptor shall either all be present or all be absent.
Ordinarily, these dictionary keys may be absent; specifying them
enables a standard font to be overridden; see 9.6.2.2, "Standard Type
1 Fonts (Standard 14 Fonts)".
Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. Conforming writers should represent all fonts
using a complete font descriptor. For backwards capability, conforming
readers shall still provide the special treatment identified for the
standard 14 fonts.

Encoding name or
dictionary

(Optional) A specification of the font’s character encoding if different
from its built-in encoding. The value of Encoding shall be either the
name of a predefined encoding (MacRomanEncoding,
MacExpertEncoding, or WinAnsiEncoding, as described in Annex
D) or an encoding dictionary that shall specify differences from the
font’s built-in encoding or from a specified predefined encoding (see
9.6.6, "Character Encoding").

ToUnicode stream (Optional; PDF 1.2) A stream containing a CMap file that maps
character codes to Unicode values (see 9.10, "Extraction of Text
Content").

Table 111 – Entries in a Type 1 font dictionary (continued)

Key Type Value

PDF 32000-1:2008

256 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE This example shows the font dictionary for the Adobe Garamond® Semibold font. The font has an
encoding dictionary (object 25), although neither the encoding dictionary nor the font descriptor (object 7)
is shown in the example.

14 0 obj

<< /Type /Font
 /Subtype /Type1
 /BaseFont /AGaramond−Semibold
 /FirstChar 0
 /LastChar 255
 /Widths 21 0 R
 /FontDescriptor 7 0 R
 /Encoding 25 0 R

>>
endobj

21 0 obj

[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 280 438 510 510 868 834 248 320 320 420 510 255 320 255 347
 510 510 510 510 510 510 510 510 510 510 255 255 510 510 510 330
 781 627 627 694 784 580 533 743 812 354 354 684 560 921 780 792
 588 792 656 504 682 744 650 968 648 590 638 320 329 320 510 500
 380 420 510 400 513 409 301 464 522 268 259 484 258 798 533 492
 516 503 349 346 321 520 434 684 439 448 390 320 255 320 510 255
 627 627 694 580 780 792 744 420 420 420 420 420 420 402 409 409
 409 409 268 268 268 268 533 492 492 492 492 492 520 520 520 520
 486 400 510 510 506 398 520 555 800 800 1044 360 380 549 846 792
 713 510 549 549 510 522 494 713 823 549 274 354 387 768 615 496
 330 280 510 549 510 549 612 421 421 1000 255 627 627 792 1016 730
 500 1000 438 438 248 248 510 494 448 590 100 510 256 256 539 539
 486 255 248 438 1174 627 580 627 580 580 354 354 354 354 792 792
 790 792 744 744 744 268 380 380 380 380 380 380 380 380 380 380
]

endobj

9.6.2.2 Standard Type 1 Fonts (Standard 14 Fonts)

The PostScript names of 14 Type 1 fonts, known as the standard 14 fonts, are as follows: Times-Roman,
Helvetica, Courier, Symbol, Times-Bold, Helvetica-Bold, Courier-Bold, ZapfDingbats, Times-Italic, Helvetica-
Oblique, Courier-Oblique, Times-BoldItalic, Helvetica-BoldOblique, Courier-BoldOblique

These fonts, or their font metrics and suitable substitution fonts, shall be available to the conforming reader.

NOTE The character sets and encodings for these fonts are listed in Annex D. The font metrics files for the standard
14 fonts are available from the ASN Web site (see the Bibliography). For more information on font metrics, see
Adobe Technical Note #5004, Adobe Font Metrics File Format Specification.

9.6.2.3 Multiple Master Fonts

The multiple master font format is an extension of the Type 1 font format that allows the generation of a wide
variety of typeface styles from a single font program. This is accomplished through the presence of various
design dimensions in the font.

EXAMPLE 1 Examples of design dimensions are weight (light to extra-bold) and width (condensed to expanded).

Coordinates along these design dimensions (such as the degree of boldness) are specified by numbers. A
particular choice of numbers selects an instance of the multiple master font. PDFs can contain multiple master
instances.

NOTE Adobe Technical Note #5015, Type 1 Font Format Supplement, describes multiple master fonts in detail.

© Adobe Systems Incorporated 2008 – All rights reserved 257

PDF 32000-1:2008

The font dictionary for a multiple master font instance may contain the same entries as a Type 1 font dictionary
(see Table 111), with these differences:

• The value of Subtype shall be MMType1.

• If the PostScript name of the instance contains SPACEs (20h), the SPACEs shall be replaced by LOW
LINEs (underscores) (5Fh) in the value of BaseFont. For instance, as illustrated in this example, the name
“MinionMM 366 465 11 ” (which ends with a SPACE character) becomes /MinionMM_366_465_11_.

EXAMPLE 2 7 0 obj
<< /Type /Font

 /Subtype /MMType1
 /BaseFont /MinionMM_366_465_11_
 /FirstChar 32
 /LastChar 255
 /Widths 19 0 R
 /FontDescriptor 6 0 R
 /Encoding 5 0 R

>>
endobj

19 0 obj

[187 235 317 430 427 717 607 168 326 326 421 619 219 317 219 282 427
 … Omitted data …
 569 0 569 607 607 607 239 400 400 400 400 253 400 400 400 400 400
]

endobj

This example illustrates a convention for including the numeric values of the design coordinates as part of
the instance’s BaseFont name. This convention is commonly used for accessing multiple master font
instances from an external source in the conforming reader’s environment; it is documented in Adobe
Technical Note #5088, Font Naming Issues. However, this convention is not prescribed as part of the PDF
specification.

If the font program for a multiple master font instance is embedded in the PDF file, it shall be an ordinary Type
1 font program, not a multiple master font program. This font program is called a snapshot of the multiple
master font instance that incorporates the chosen values of the design coordinates.

9.6.3 TrueType Fonts

A TrueType font dictionary may contain the same entries as a Type 1 font dictionary (see Table 111), with these
differences:

• The value of Subtype shall be TrueType.

• The value of Encoding is subject to limitations that are described in 9.6.6, "Character Encoding".

• The value of BaseFont is derived differently.

The PostScript name for the value of BaseFont may be determined in one of two ways:

• If the TrueType font program's “name” table contains a PostScript name, it shall be used.

• In the absence of such an entry in the “name” table, a PostScript name shall be derived from the name by
which the font is known in the host operating system. On a Windows system, the name shall be based on
the lfFaceName field in a LOGFONT structure; in the Mac OS, it shall be based on the name of the FOND
resource. If the name contains any SPACEs, the SPACEs shall be removed.

PDF 32000-1:2008

258 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 1 The TrueType font format was developed by Apple Computer, Inc., and has been adopted as a standard font
format for the Microsoft Windows operating system. Specifications for the TrueType font file format are
available in Apple’s TrueType Reference Manual and Microsoft’s TrueType 1.0 Font Files Technical
Specification (see Bibliography).

NOTE 2 A TrueType font program may be embedded directly in a PDF file as a stream object.

NOTE 3 The Type 42 font format that is defined for PostScript does not apply to PDF.

NOTE 4 For CJK (Chinese, Japanese, and Korean) fonts, the host font system’s font name is often encoded in the host
operating system’s script. For instance, a Japanese font may have a name that is written in Japanese using
some (unidentified) Japanese encoding. Thus, TrueType font names may contain multiple-byte character
codes, each of which requires multiple characters to represent in a PDF name object (using the # notation to
quote special characters as needed).

9.6.4 Font Subsets

PDF documents may include subsets of Type 1 and TrueType fonts. The font and font descriptor that describe
a font subset are slightly different from those of ordinary fonts. These differences allow a conforming reader to
recognize font subsets and to merge documents containing different subsets of the same font. (For more
information on font descriptors, see 9.8, "Font Descriptors".)

For a font subset, the PostScript name of the font—the value of the font’s BaseFont entry and the font
descriptor’s FontName entry— shall begin with a tag followed by a plus sign (+). The tag shall consist of
exactly six uppercase letters; the choice of letters is arbitrary, but different subsets in the same PDF file shall
have different tags.

EXAMPLE EOODIA+Poetica is the name of a subset of Poetica®, a Type 1 font.

9.6.5 Type 3 Fonts

Type 3 fonts differ from the other fonts supported by PDF. A Type 3 font dictionary defines the font; font
dictionaries for other fonts simply contain information about the font and refer to a separate font program for the
actual glyph descriptions. In Type 3 fonts, glyphs shall be defined by streams of PDF graphics operators. These
streams shall be associated with glyph names. A separate encoding entry shall map character codes to the
appropriate glyph names for the glyphs.

NOTE 1 Type 3 fonts are more flexible than Type 1 fonts because the glyph descriptions may contain arbitrary PDF
graphics operators. However, Type 3 fonts have no hinting mechanism for improving output at small sizes or
low resolutions.

A Type 3 font dictionary may contain the entries listed in Table 112.

Table 112 – Entries in a Type 3 font dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall
be Font for a font dictionary.

Subtype name (Required) The type of font; shall be Type3 for a Type 3 font.

Name name (Required in PDF 1.0; optional otherwise) See Table 111.

© Adobe Systems Incorporated 2008 – All rights reserved 259

PDF 32000-1:2008

For each character code shown by a text-showing operator that uses a Type 3 font, the conforming reader
shall:

FontBBox rectangle (Required) A rectangle (see 7.9.5, "Rectangles") expressed in the
glyph coordinate system, specifying the font bounding box. This is the
smallest rectangle enclosing the shape that would result if all of the
glyphs of the font were placed with their origins coincident and then
filled.
If all four elements of the rectangle are zero, a conforming reader shall
make no assumptions about glyph sizes based on the font bounding
box. If any element is nonzero, the font bounding box shall be
accurate. If any glyph’s marks fall outside this bounding box, incorrect
behavior may result.

FontMatrix array (Required) An array of six numbers specifying the font matrix, mapping
glyph space to text space (see 9.2.4, "Glyph Positioning and Metrics").
NOTE A common practice is to define glyphs in terms of a

1000-unit glyph coordinate system, in which case the font
matrix is [0.001 0 0 0.001 0 0].

CharProcs dictionary (Required) A dictionary in which each key shall be a glyph name and
the value associated with that key shall be a content stream that
constructs and paints the glyph for that character. The stream shall
include as its first operator either d0 or d1, followed by operators
describing one or more graphics objects, which may include path, text,
or image objects. See below for more details about Type 3 glyph
descriptions.

Encoding name or
dictionary

(Required) An encoding dictionary whose Differences array shall
specify the complete character encoding for this font (see 9.6.6,
"Character Encoding").

FirstChar integer (Required) The first character code defined in the font’s Widths array.

LastChar integer (Required) The last character code defined in the font’s Widths array.

Widths array (Required; should be an indirect reference) An array of (LastChar −
 FirstChar + 1) widths, each element being the glyph width for the
character code that equals FirstChar plus the array index. For
character codes outside the range FirstChar to LastChar, the width
shall be 0. These widths shall be interpreted in glyph space as
specified by FontMatrix (unlike the widths of a Type 1 font, which are
in thousandths of a unit of text space).
If FontMatrix specifies a rotation, only the horizontal component of the
transformed width shall be used. That is, the resulting displacement
shall be horizontal in text space, as is the case for all simple fonts.

FontDescriptor dictionary (Required in Tagged PDF documents; shall be an indirect reference) A
font descriptor describing the font’s default metrics other than its glyph
widths (see 9.8, "Font Descriptors").

Resources dictionary (Optional but should be used; PDF 1.2) A list of the named resources,
such as fonts and images, required by the glyph descriptions in this
font (see 7.8.3, "Resource Dictionaries"). If any glyph descriptions
refer to named resources but this dictionary is absent, the names shall
be looked up in the resource dictionary of the page on which the font is
used.

ToUnicode stream (Optional; PDF 1.2) A stream containing a CMap file that maps
character codes to Unicode values (see 9.10, "Extraction of Text
Content").

Table 112 – Entries in a Type 3 font dictionary (continued)

Key Type Value

PDF 32000-1:2008

260 © Adobe Systems Incorporated 2008 – All rights reserved

a) Look up the character code in the font’s Encoding entry, as described in 9.6.6, "Character Encoding," to
obtain a glyph name.

b) Look up the glyph name in the font’s CharProcs dictionary to obtain a stream object containing a glyph
description. If the name is not present as a key in CharProcs, no glyph shall be painted.

c) Invoke the glyph description. The graphics state shall be saved before this invocation and shall be restored
afterward; therefore, any changes the glyph description makes to the graphics state do not persist after it
finishes.

When the glyph description begins execution, the current transformation matrix (CTM) shall be the
concatenation of the font matrix (FontMatrix in the current font dictionary) and the text space that was in effect
at the time the text-showing operator was invoked (see 9.4.4, "Text Space Details"). This means that shapes
described in the glyph coordinate system are transformed into the user coordinate system and appear in the
appropriate size and orientation on the page. The glyph description shall describe the glyph in terms of
absolute coordinates in the glyph coordinate system, placing the glyph origin at (0, 0) in this space. It shall
make no assumptions about the initial text position.

Aside from the CTM, the graphics state shall be inherited from the environment of the text-showing operator
that caused the glyph description to be invoked. To ensure predictable results, the glyph description shall
initialize any graphics state parameters on which it depends. In particular, if it invokes the S (stroke) operator, it
shall explicitly set the line width, line join, line cap, and dash pattern to appropriate values.

NOTE 2 Normally, it is unnecessary and undesirable to initialize the current colour parameter because the text-showing
operators are designed to paint glyphs with the current colour.

The glyph description shall execute one of the operators described in Table 113 to pass width and bounding
box information to the font machinery. This shall precede the execution of any path construction or path-
painting operators describing the glyph.

NOTE 3 Type 3 fonts in PDF are very similar to those in PostScript. Some of the information provided in Type 3 font
dictionaries and glyph descriptions, while seemingly redundant or unnecessary, is nevertheless required for
correct results when a conforming reader prints to a PostScript output device. This applies particularly to the
operands of the d0 and d1 operators, are the equivalent of PostScript's setcharwidth and setcachedevice.
For further explanation, see Section 5.7 of the PostScript Language Reference, Third Edition.

Table 113 – Type 3 font operators

Operands Operator Description

wx wy d0 Set width information for the glyph and declare that the glyph
description specifies both its shape and its colour.
NOTE This operator name ends in the digit 0.

wx denotes the horizontal displacement in the glyph coordinate
system; it shall be consistent with the corresponding width in the
font’s Widths array. wy shall be 0 (see 9.2.4, "Glyph Positioning
and Metrics").
This operator shall only be permitted in a content stream
appearing in a Type 3 font’s CharProcs dictionary. It is typically
used only if the glyph description executes operators to set the
colour explicitly.

© Adobe Systems Incorporated 2008 – All rights reserved 261

PDF 32000-1:2008

EXAMPLE This example shows the definition of a Type 3 font with only two glyphs—a filled square and a filled
triangle, selected by the character codes a and b. Figure 47 shows the result of showing the string
(ababab) using this font.

Figure 47 – Output from the example in 9.6.5, "Type 3 Fonts"

wx wy llx lly urx ury d1 Set width and bounding box information for the glyph and declare
that the glyph description specifies only shape, not colour.
NOTE This operator name ends in the digit 1.

wx denotes the horizontal displacement in the glyph coordinate
system; it shall be consistent with the corresponding width in the
font’s Widths array. wy shall be 0 (see 9.2.4, "Glyph Positioning
and Metrics").
llx and lly denote the coordinates of the lower-left corner, and urx
and ury denote the upper-right corner, of the glyph bounding box.
The glyph bounding box is the smallest rectangle, oriented with
the axes of the glyph coordinate system, that completely encloses
all marks placed on the page as a result of executing the glyph’s
description. The declared bounding box shall be correct—in other
words, sufficiently large to enclose the entire glyph. If any marks
fall outside this bounding box, the result is unpredictable.
A glyph description that begins with the d1 operator should not
execute any operators that set the colour (or other colour-related
parameters) in the graphics state; any use of such operators shall
be ignored. The glyph description is executed solely to determine
the glyph’s shape. Its colour shall be determined by the graphics
state in effect each time this glyph is painted by a text-showing
operator. For the same reason, the glyph description shall not
include an image; however, an image mask is acceptable, since it
merely defines a region of the page to be painted with the current
colour.
This operator shall be used only in a content stream appearing in
a Type 3 font’s CharProcs dictionary.

Table 113 – Type 3 font operators (continued)

Operands Operator Description

PDF 32000-1:2008

262 © Adobe Systems Incorporated 2008 – All rights reserved

4 0 obj
<< /Type /Font

 /Subtype /Type3
 /FontBBox [0 0 750 750]
 /FontMatrix [0.001 0 0 0.001 0 0]
 /CharProcs 10 0 R
 /Encoding 9 0 R
 /FirstChar 97
 /LastChar 98
 /Widths [1000 1000]

>>
endobj

9 0 obj

<< /Type /Encoding
 /Differences [97 /square /triangle]

>>
endobj

10 0 obj

<< /square 11 0 R
 /triangle 12 0 R

>>
endobj

11 0 obj

<< /Length 39 >>
stream

1000 0 0 0 750 750 d1
0 0 750 750 re
f

endstream
endobj

12 0 obj

<< /Length 48 >>
stream

1000 0 0 0 750 750 d1
0 0 m
375 750 l
750 0 l
f

endstream
endobj

9.6.6 Character Encoding

9.6.6.1 General

A font’s encoding is the association between character codes (obtained from text strings that are shown) and
glyph descriptions. This sub-clause describes the character encoding scheme used with simple PDF fonts.
Composite fonts (Type 0) use a different character mapping algorithm, as discussed in 9.7, "Composite Fonts".

Except for Type 3 fonts, every font program shall have a built-in encoding. Under certain circumstances, a PDF
font dictionary may change the encoding used with the font program to match the requirements of the
conforming writer generating the text being shown.

© Adobe Systems Incorporated 2008 – All rights reserved 263

PDF 32000-1:2008

NOTE This flexibility in character encoding is valuable for two reasons:

It permits showing text that is encoded according to any of the various existing conventions. For example, the
Microsoft Windows and Apple Mac OS operating systems use different standard encodings for Latin text, and
many conforming writers use their own special-purpose encodings.

It permits conforming writers to specify how characters selected from a large character set are to be encoded.

Some character sets consist of more than 256 characters, including ligatures, accented characters, and other
symbols required for high-quality typography or non-Latin writing systems. Different encodings may select
different subsets of the same character set.

One commonly used font encoding for Latin-text font programs is often referred to as StandardEncoding or
sometimes as the Adobe standard encoding. The name StandardEncoding shall have no special meaning in
PDF, but this encoding does play a role as a default encoding (as shown in Table 114). The regular encodings
used for Latin-text fonts on Mac OS and Windows systems shall be named MacRomanEncoding and
WinAnsiEncoding, respectively. An encoding named MacExpertEncoding may be used with “expert” fonts
that contain additional characters useful for sophisticated typography. Complete details of these encodings and
of the characters present in typical fonts are provided in Annex D.

In PDF, a font is classified as either nonsymbolic or symbolic according to whether all of its characters are
members of the standard Latin character set; see D.2, “Latin Character Set and Encodings”. This shall be
indicated by flags in the font descriptor; see 9.8.2, "Font Descriptor Flags". Symbolic fonts contain other
character sets, to which the encodings mentioned previously ordinarily do not apply. Such font programs have
built-in encodings that are usually unique to each font. The standard 14 fonts include two symbolic fonts,
Symbol and ZapfDingbats, whose encodings and character sets are documented in Annex D.

A font program’s built-in encoding may be overridden by including an Encoding entry in the PDF font
dictionary. The possible encoding modifications depend on the font type. The value of the Encoding entry shall
be either a named encoding (the name of one of the predefined encodings MacRomanEncoding,
MacExpertEncoding, or WinAnsiEncoding) or an encoding dictionary. An encoding dictionary contains the
entries listed in Table 114.

The value of the Differences entry shall be an array of character codes and character names organized as
follows:

code1 name1,1 name1,2 …

Table 114 – Entries in an encoding dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Encoding for an encoding dictionary.

BaseEncoding name (Optional) The base encoding—that is, the encoding from which the
Differences entry (if present) describes differences— shall be the name
of one of the predefined encodings MacRomanEncoding,
MacExpertEncoding, or WinAnsiEncoding (see Annex D).
If this entry is absent, the Differences entry shall describe differences
from an implicit base encoding. For a font program that is embedded in
the PDF file, the implicit base encoding shall be the font program’s built-in
encoding, as described in 9.6.6, "Character Encoding" and further
elaborated in the sub-clauses on specific font types. Otherwise, for a
nonsymbolic font, it shall be StandardEncoding, and for a symbolic font,
it shall be the font’s built-in encoding.

Differences array (Optional; should not be used with TrueType fonts) An array describing
the differences from the encoding specified by BaseEncoding or, if
BaseEncoding is absent, from an implicit base encoding. The
Differences array is described in subsequent sub-clauses.

PDF 32000-1:2008

264 © Adobe Systems Incorporated 2008 – All rights reserved

code2 name2,1 name2,2 …
…
coden namen,1 namen,2 …

Each code shall be the first index in a sequence of character codes to be changed. The first character name
after the code becomes the name corresponding to that code. Subsequent names replace consecutive code
indices until the next code appears in the array or the array ends. These sequences may be specified in any
order but shall not overlap.

EXAMPLE In the encoding dictionary in this example, the name quotesingle (') is associated with character code 39,
Adieresis (Ä) with code 128, Aring (Å) with 129, and trademark (™) with 170.

25 0 obj

<< /Type /Encoding
 /Differences

[39 /quotesingle
 96 /grave

128 /Adieresis /Aring /Ccedilla /Eacute /Ntilde /Odieresis /Udieresis

 /aacute /agrave /acircumflex /adieresis /atilde /aring /ccedilla
 /eacute /egrave /ecircumflex /edieresis /iacute /igrave /icircumflex
 /idieresis /ntilde /oacute /ograve /ocircumflex /odieresis /otilde
 /uacute /ugrave /ucircumflex /udieresis /dagger /degree /cent
 /sterling /section /bullet /paragraph /germandbls /registered
 /copyright /trademark /acute /dieresis

174 /AE /Oslash
177 /plusminus
180 /yen /mu
187 /ordfeminine /ordmasculine
190 /ae /oslash /questiondown /exclamdown /logicalnot
196 /florin
199 /guillemotleft /guillemotright /ellipsis
203 /Agrave /Atilde /Otilde /OE /oe /endash /emdash /quotedblleft

 /quotedblright /quoteleft /quoteright /divide

216 /ydieresis /Ydieresis /fraction /currency /guilsinglleft /guilsinglright
 /fi /fl /daggerdbl /periodcentered /quotesinglbase /quotedblbase
 /perthousand /Acircumflex /Ecircumflex /Aacute /Edieresis /Egrave
 /Iacute /Icircumflex /Idieresis /Igrave /Oacute /Ocircumflex

241 /Ograve /Uacute /Ucircumflex /Ugrave /dotlessi /circumflex /tilde

 /macron /breve /dotaccent /ring /cedilla /hungarumlaut /ogonek
 /caron

]
>>

endobj

9.6.6.2 Encodings for Type 1 Fonts

A Type 1 font program’s glyph descriptions are keyed by glyph names, not by character codes. Glyph names
are ordinary PDF name objects. Descriptions of Latin alphabetic characters are normally associated with
names consisting of single letters, such as A or a. Other characters are associated with names composed of
words, such as three, ampersand, or parenleft. A Type 1 font’s built-in encoding shall be defined by an
Encoding array that is part of the font program, not to be confused with the Encoding entry in the PDF font
dictionary.

An Encoding entry may override a Type 1 font’s mapping from character codes to character names. The
Differences array may map a code to the name of any glyph description that exists in the font program,
regardless of whether that glyph is referenced by the font’s built-in encoding or by the encoding specified in the
BaseEncoding entry.

© Adobe Systems Incorporated 2008 – All rights reserved 265

PDF 32000-1:2008

All Type 1 font programs shall contain an actual glyph named . notdef. The effect produced by showing the
. notdef glyph is at the discretion of the font designer. If an encoding maps to a character name that does not
exist in the Type 1 font program, the . notdef glyph shall be substituted.

9.6.6.3 Encodings for Type 3 Fonts

A Type 3 font, like a Type 1 font, contains glyph descriptions that are keyed by glyph names; in this case, they
appear as explicit keys in the font’s CharProcs dictionary. A Type 3 font’s mapping from character codes to
glyph names shall be entirely defined by its Encoding entry, which is required in this case.

9.6.6.4 Encodings for TrueType Fonts

A TrueType font program’s built-in encoding maps directly from character codes to glyph descriptions by means
of an internal data structure called a “cmap” (not to be confused with the CMap described in 9.7.5, "CMaps").
This sub-clause describes how the PDF font dictionary’s Encoding entry shall be used in conjunction with a
“cmap” to map from a character code in a string to a glyph description in a TrueType font program.

A “cmap” table may contain one or more subtables that represent multiple encodings intended for use on
different platforms (such as Mac OS and Windows). Each subtable shall be identified by the two numbers, such
as (3, 1), that represent a combination of a platform ID and a platform-specific encoding ID, respectively.

Glyph names are not required in TrueType fonts, although some font programs have an optional “post” table
listing glyph names for the glyphs. If the conforming reader needs to select glyph descriptions by name, it
translates from glyph names to codes in one of the encodings given in the font program’s “cmap” table. When
there is no character code in the “cmap” that corresponds to a glyph name, the “post” table shall be used to
select a glyph description directly from the glyph name.

Because some aspects of TrueType glyph selection are dependent on the conforming reader or the operating
system, PDF files that use TrueType fonts should follow certain guidelines to ensure predictable behaviour
across all conforming readers:

• The font program should be embedded.

• A nonsymbolic font should specify MacRomanEncoding or WinAnsiEncoding as the value of its
Encoding entry, with no Differences array.

• A font that is used to display glyphs that do not use MacRomanEncoding or WinAnsiEncoding should
not specify an Encoding entry. The font descriptor’s Symbolic flag (see Table 123) should be set, and its
font program’s “cmap” table should contain a (1, 0) subtable. It may also contain a (3, 0) subtable; if
present, this subtable should map from character codes in the range 0xF000 to 0xF0FF by prepending the
single-byte codes in the (1, 0) subtable with 0xF0 and mapping to the corresponding glyph descriptions.

NOTE 1 Some popular TrueType font programs contain incorrect encoding information. Implementations of TrueType
font interpreters have evolved heuristics for dealing with such problems; those heuristics are not described
here. For maximum portability, only well-formed TrueType font programs should be used in PDF files.
Therefore, a TrueType font program in a PDF file may need to be modified to conform to these guidelines.

The following paragraphs describe the treatment of TrueType font encodings beginning with PDF 1.3.

If the font has a named Encoding entry of either MacRomanEncoding or WinAnsiEncoding, or if the font
descriptor’s Nonsymbolic flag (see Table 123) is set, the conforming reader shall create a table that maps from
character codes to glyph names:

• If the Encoding entry is one of the names MacRomanEncoding or WinAnsiEncoding, the table shall be
initialized with the mappings described in Annex D.

PDF 32000-1:2008

266 © Adobe Systems Incorporated 2008 – All rights reserved

• If the Encoding entry is a dictionary, the table shall be initialized with the entries from the dictionary’s
BaseEncoding entry (see Table 114). Any entries in the Differences array shall be used to update the
table. Finally, any undefined entries in the table shall be filled using StandardEncoding.

If a (3, 1) “cmap” subtable (Microsoft Unicode) is present:

• A character code shall be first mapped to a glyph name using the table described above.

• The glyph name shall then be mapped to a Unicode value by consulting the Adobe Glyph List (see the
Bibliography).

• Finally, the Unicode value shall be mapped to a glyph description according to the (3, 1) subtable.

If no (3, 1) subtable is present but a (1, 0) subtable (Macintosh Roman) is present:

• A character code shall be first mapped to a glyph name using the table described above.

• The glyph name shall then be mapped back to a character code according to the standard Roman
encoding used on Mac OS.

• Finally, the code shall be mapped to a glyph description according to the (1, 0) subtable.

In any of these cases, if the glyph name cannot be mapped as specified, the glyph name shall be looked up in
the font program’s “post” table (if one is present) and the associated glyph description shall be used.

The standard Roman encoding that is used on Mac OS is the same as the MacRomanEncoding described in
Annex D, with the addition of 15 entries and the replacement of the currency glyph with the Euro glyph, as
shown in Table 115.

Table 115 – Differences between MacRomanEncoding and Mac OS Roman encoding

Name Code (Octal) Code (DEcimal)

notequal 255 173

infinity 260 176

lessequal 262 178

greaterequal 263 179

partialdiff 266 182

summation 267 183

product 270 184

pi 271 185

integral 272 186

Omega 275 189

radical 303 195

approxequal 305 197

Delta 306 198

lozenge 327 215

Euro 333 219

apple 360 240

© Adobe Systems Incorporated 2008 – All rights reserved 267

PDF 32000-1:2008

When the font has no Encoding entry, or the font descriptor’s Symbolic flag is set (in which case the Encoding
entry is ignored), this shall occur:

• If the font contains a (3, 0) subtable, the range of character codes shall be one of these: 0x0000 - 0x00FF,
0xF000 - 0xF0FF, 0xF100 - 0xF1FF, or 0xF200 - 0xF2FF. Depending on the range of codes, each byte
from the string shall be prepended with the high byte of the range, to form a two-byte character, which shall
be used to select the associated glyph description from the subtable.

• Otherwise, if the font contains a (1, 0) subtable, single bytes from the string shall be used to look up the
associated glyph descriptions from the subtable.

If a character cannot be mapped in any of the ways described previously, a conforming reader may supply a
mapping of its choosing.

9.7 Composite Fonts

9.7.1 General

A composite font, also called a Type 0 font, is one whose glyphs are obtained from a fontlike object called a
CIDFont. A composite font shall be represented by a font dictionary whose Subtype value is Type0. The Type
0 font is known as the root font, and its associated CIDFont is called its descendant.

NOTE 1 Composite fonts in PDF are analogous to composite fonts in PostScript but with some limitations. In particular,
PDF requires that the character encoding be defined by a CMap, which is only one of several encoding
methods available in PostScript. Also, PostScript allows a Type 0 font to have multiple descendants, which
might also be Type 0 fonts. PDF supports only a single descendant, which shall be a CIDFont.

When the current font is composite, the text-showing operators shall behave differently than with simple fonts.
For simple fonts, each byte of a string to be shown selects one glyph, whereas for composite fonts, a sequence
of one or more bytes are decoded to select a glyph from the descendant CIDFont.

NOTE 2 This facility supports the use of very large character sets, such as those for the Chinese, Japanese, and
Korean languages. It also simplifies the organization of fonts that have complex encoding requirements.

This sub-clause first introduces the architecture of CID-keyed fonts, which are the only kind of composite font
supported in PDF. Then it describes the CIDFont and CMap dictionaries, which are the PDF objects that
represent the correspondingly named components of a CID-keyed font. Finally, it describes the Type 0 font
dictionary, which combines a CIDFont and a CMap to produce a font whose glyphs may be accessed by means
of variable-length character codes in a string to be shown.

9.7.2 CID-Keyed Fonts Overview

CID-keyed fonts provide a convenient and efficient method for defining multiple-byte character encodings and
fonts with a large number of glyphs. These capabilities provide great flexibility for representing text in writing
systems for languages with large character sets, such as Chinese, Japanese, and Korean (CJK).

The CID-keyed font architecture specifies the external representation of certain font programs, called CMap
and CIDFont files, along with some conventions for combining and using those files. As mentioned earlier, PDF
does not support the entire CID-keyed font architecture, which is independent of PDF; CID-keyed fonts may be
used in other environments.

NOTE For complete documentation on the architecture and the file formats, see Adobe Technical Notes #5092, CID-
Keyed Font Technology Overview, and #5014, Adobe CMap and CIDFont Files Specification. This sub-clause
describes only the PDF objects that represent these font programs.

The term CID-keyed font reflects the fact that CID (character identifier) numbers are used to index and access
the glyph descriptions in the font. This method is more efficient for large fonts than the method of accessing by
character name, as is used for some simple fonts. CIDs range from 0 to a maximum value that may be subject
to an implementation limit (see Table C.1).

PDF 32000-1:2008

268 © Adobe Systems Incorporated 2008 – All rights reserved

A character collection is an ordered set of glyphs. The order of the glyphs in the character collection shall
determine the CID number for each glyph. Each CID-keyed font shall explicitly reference the character
collection on which its CID numbers are based; see 9.7.3, "CIDSystemInfo Dictionaries".

A CMap (character map) file shall specify the correspondence between character codes and the CID numbers
used to identify glyphs. It is equivalent to the concept of an encoding in simple fonts. Whereas a simple font
allows a maximum of 256 glyphs to be encoded and accessible at one time, a CMap can describe a mapping
from multiple-byte codes to thousands of glyphs in a large CID-keyed font.

EXAMPLE A CMap can describe Shift-JIS, one of several widely used encodings for Japanese.

A CMap file may reference an entire character collection or a subset of a character collection. The CMap file’s
mapping yields a font number (which in PDF shall be 0) and a character selector (which in PDF shall be a CID).
Furthermore, a CMap file may incorporate another CMap file by reference, without having to duplicate it. These
features enable character collections to be combined or supplemented and make all the constituent characters
accessible to text-showing operations through a single encoding.

A CIDFont contains the glyph descriptions for a character collection. The glyph descriptions themselves are
typically in a format similar to those used in simple fonts, such as Type 1. However, they are identified by CIDs
rather than by names, and they are organized differently.

In PDF, the data from a CMap file and CIDFont shall be represented by PDF objects as described in 9.7.4,
"CIDFonts" and 9.7.5, "CMaps". The CMap file and CIDFont programs themselves may be either referenced by
name or embedded as stream objects in the PDF file.

A CID-keyed font, then, shall be the combination of a CMap with a CIDFont containing glyph descriptions. It
shall be represented as a Type 0 font. It contains an Encoding entry whose value shall be a CMap dictionary,
and its DescendantFonts entry shall reference the CIDFont dictionary with which the CMap has been
combined.

9.7.3 CIDSystemInfo Dictionaries

CIDFont and CMap dictionaries shall contain a CIDSystemInfo entry specifying the character collection
assumed by the CIDFont associated with the CMap—that is, the interpretation of the CID numbers used by the
CIDFont. A character collection shall be uniquely identified by the Registry, Ordering, and Supplement
entries in the CIDSystemInfo dictionary, as described in Table 116. In order to be compatible, the Registry and
Ordering values must be the same.

The CIDSystemInfo entry in a CIDFont is a dictionary that shall specify the CIDFont’s character collection. The
CIDFont need not contain glyph descriptions for all the CIDs in a collection; it may contain a subset. The
CIDSystemInfo entry in a CMap file shall be either a single dictionary or an array of dictionaries, depending on
whether it associates codes with a single character collection or with multiple character collections; see 9.7.5,
"CMaps".

For proper behaviour, the CIDSystemInfo entry of a CMap shall be compatible with that of the CIDFont or
CIDFonts with which it is used.

Table 116 – Entries in a CIDSystemInfo dictionary

Key Type Value

Registry ASCII
string

(Required) A string identifying the issuer of the character collection. For
information about assigning a registry identifier, contact the Adobe
Solutions Network or consult the ASN Web site (see the Bibliography).

© Adobe Systems Incorporated 2008 – All rights reserved 269

PDF 32000-1:2008

9.7.4 CIDFonts

9.7.4.1 General

A CIDFont program contains glyph descriptions that are accessed using a CID as the character selector. There
are two types of CIDFonts:

• A Type 0 CIDFont contains glyph descriptions based on CFF

NOTE The term “Type 0” when applied to a CIDFont has a different meaning than for a “Type 0 font”.

• A Type 2 CIDFont contains glyph descriptions based on the TrueType font format

A CIDFont dictionary is a PDF object that contains information about a CIDFont program. Although its Type
value is Font, a CIDFont is not actually a font. It does not have an Encoding entry, it may not be listed in the
Font subdictionary of a resource dictionary, and it may not be used as the operand of the Tf operator. It shall be
used only as a descendant of a Type 0 font. The CMap in the Type 0 font shall be what defines the encoding
that maps character codes to CIDs in the CIDFont. Table 117 lists the entries in a CIDFont dictionary.

Ordering ASCII
string

(Required) A string that uniquely names the character collection within the
specified registry.

Supplement integer (Required) The supplement number of the character collection. An original
character collection has a supplement number of 0. Whenever additional
CIDs are assigned in a character collection, the supplement number shall
be increased. Supplements shall not alter the ordering of existing CIDs in
the character collection. This value shall not be used in determining
compatibility between character collections.

Table 117 – Entries in a CIDFont dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes;
shall be Font for a CIDFont dictionary.

Subtype name (Required) The type of CIDFont shall be CIDFontType0 or
CIDFontType2.

BaseFont name (Required) The PostScript name of the CIDFont. For Type 0
CIDFonts, this shall be the value of the CIDFontName entry in the
CIDFont program. For Type 2 CIDFonts, it shall be derived the same
way as for a simple TrueType font; see 9.6.3, "TrueType Fonts". In
either case, the name may have a subset prefix if appropriate; see
9.6.4, "Font Subsets".

CIDSystemInfo dictionary (Required) A dictionary containing entries that define the character
collection of the CIDFont. See Table 116.

FontDescriptor dictionary (Required; shall be an indirect reference) A font descriptor describing
the CIDFont’s default metrics other than its glyph widths (see 9.8,
"Font Descriptors").

DW integer (Optional) The default width for glyphs in the CIDFont (see 9.7.4.3,
"Glyph Metrics in CIDFonts"). Default value: 1000 (defined in user
units).

Table 116 – Entries in a CIDSystemInfo dictionary (continued)

Key Type Value

PDF 32000-1:2008

270 © Adobe Systems Incorporated 2008 – All rights reserved

9.7.4.2 Glyph Selection in CIDFonts

Type 0 and Type 2 CIDFonts handle the mapping from CIDs to glyph descriptions in somewhat different ways.

For Type 0, the CIDFont program contains glyph descriptions that are identified by CIDs. The CIDFont program
identifies the character collection by a CIDSystemInfo dictionary, which should be copied into the PDF
CIDFont dictionary. CIDs shall be interpreted uniformly in all CIDFont programs supporting a given character
collection, whether the program is embedded in the PDF file or obtained from an external source.

When the CIDFont contains an embedded font program that is represented in the Compact Font Format (CFF),
the FontFile3 entry in the font descriptor (see Table 126) may be CIDFontType0C or OpenType. There are
two cases, depending on the contents of the font program:

• The “CFF” font program has a Top DICT that uses CIDFont operators: The CIDs shall be used to
determine the GID value for the glyph procedure using the charset table in the CFF program. The GID
value shall then be used to look up the glyph procedure using the CharStrings INDEX table.

NOTE Although in many fonts the CID value and GID value are the same, the CID and GID values may differ.

• The “CFF” font program has a Top DICT that does not use CIDFont operators: The CIDs shall be used
directly as GID values, and the glyph procedure shall be retrieved using the CharStrings INDEX.

For Type 2, the CIDFont program is actually a TrueType font program, which has no native notion of CIDs. In a
TrueType font program, glyph descriptions are identified by glyph index values. Glyph indices are internal to the
font and are not defined consistently from one font to another. Instead, a TrueType font program contains a
“cmap” table that provides mappings directly from character codes to glyph indices for one or more predefined
encodings.

W array (Optional) A description of the widths for the glyphs in the CIDFont.
NOTE The array’s elements have a variable format that can

specify individual widths for consecutive CIDs or one
width for a range of CIDs (see 9.7.4.3, "Glyph Metrics in
CIDFonts").

Default value: none (the DW value shall be used for all glyphs).

DW2 array (Optional; applies only to CIDFonts used for vertical writing) An array
of two numbers specifying the default metrics for vertical writing (see
9.7.4.3, "Glyph Metrics in CIDFonts"). Default value: [880 −1000].

W2 array (Optional; applies only to CIDFonts used for vertical writing) A
description of the metrics for vertical writing for the glyphs in the
CIDFont (see 9.7.4.3, "Glyph Metrics in CIDFonts"). Default value:
none (the DW2 value shall be used for all glyphs).

CIDToGIDMap stream
or name

(Optional; Type 2 CIDFonts only) A specification of the mapping from
CIDs to glyph indices. If the value is a stream, the bytes in the stream
shall contain the mapping from CIDs to glyph indices: the glyph index
for a particular CID value c shall be a 2-byte value stored in bytes
2 × c and 2 × c + 1, where the first byte shall be the high-order byte.
If the value of CIDToGIDMap is a name, it shall be Identity,
indicating that the mapping between CIDs and glyph indices is the
identity mapping. Default value: Identity.
This entry may appear only in a Type 2 CIDFont whose associated
TrueType font program is embedded in the PDF file.

Table 117 – Entries in a CIDFont dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 271

PDF 32000-1:2008

TrueType font programs are integrated with the CID-keyed font architecture in one of two ways, depending on
whether the font program is embedded in the PDF file:

• If the TrueType font program is embedded, the Type 2 CIDFont dictionary shall contain a CIDToGIDMap
entry that maps CIDs to the glyph indices for the appropriate glyph descriptions in that font program.

• If the TrueType font program is not embedded but is referenced by name, the Type 2 CIDFont dictionary
shall not contain a CIDToGIDMap entry, since it is not meaningful to refer to glyph indices in an external
font program. In this case, CIDs shall not participate in glyph selection, and only predefined CMaps may be
used with this CIDFont (see 9.7.5, "CMaps"). The conforming reader shall select glyphs by translating
characters from the encoding specified by the predefined CMap to one of the encodings in the TrueType
font’s “cmap” table. The means by which this is accomplished are implementation-dependent.

Even though the CIDs are not used to select glyphs in a Type 2 CIDFont, they shall always be used to
determine the glyph metrics, as described in the next sub-clause.

Every CIDFont shall contain a glyph description for CID 0, which is analogous to the . notdef character name in
simple fonts (see 9.7.6.3, "Handling Undefined Characters").

9.7.4.3 Glyph Metrics in CIDFonts

As discussed in 9.2.4, "Glyph Positioning and Metrics", the width of a glyph refers to the horizontal
displacement between the origin of the glyph and the origin of the next glyph when writing in horizontal mode.
In this mode, the vertical displacement between origins shall be 0. Widths for a CIDFont are defined using the
DW and W entries in the CIDFont dictionary. These widths shall be consistent with the actual widths given in
the CIDFont program.

The W array allows the definition of widths for individual CIDs. The elements of the array shall be organized in
groups of two or three, where each group shall be in one of these two formats:

c [w1 w2 … wn]
cfirst clast w

In the first format, c shall be an integer specifying a starting CID value; it shall be followed by an array of n
numbers that shall specify the widths for n consecutive CIDs, starting with c. The second format shall define the
same width, w, for all CIDs in the range cfirst to clast .

EXAMPLE 1 In this example, the glyphs having CIDs 120, 121, and 122 are 400, 325, and 500 units wide, respectively.
CIDs in the range 7080 through 8032 all have a width of 1000 units.

W entry example:

/W [120 [400 325 500]

 7080 8032 1000
]

Glyphs from a CIDFont may be shown in vertical writing mode. This is selected by the WMode entry in the
associated CMap dictionary; see 9.7.5, "CMaps". To be used in this way, the CIDFont shall define the vertical
displacement for each glyph and the position vector that relates the horizontal and vertical writing origins.

The default position vector and vertical displacement vector shall be specified by the DW2 entry in the CIDFont
dictionary. DW2 shall be an array of two values: the vertical component of the position vector v and the vertical
component of the displacement vector w1 (see Figure 40). The horizontal component of the position vector
shall be half the glyph width, and that of the displacement vector shall be 0.

EXAMPLE 2 If the DW2 entry is

/ DW2 [880 −1000]

PDF 32000-1:2008

272 © Adobe Systems Incorporated 2008 – All rights reserved

then a glyph’s position vector and vertical displacement vector are

where w0 is the width (horizontal displacement) for the same glyph.

NOTE A negative value for the vertical component places the origin of the next glyph below the current glyph because
vertical coordinates in a standard coordinate system increase from bottom to top.

The W2 array shall define vertical metrics for individual CIDs. The elements of the array shall be organized in
groups of two or five, where each group shall be in one of these two formats:

c [w11y v1x v1y w12y v2x v2y …]
cfirst clast w11y v1x v1y

In the first format, c is a starting CID and shall be followed by an array containing numbers interpreted in groups
of three. Each group shall consist of the vertical component of the vertical displacement vector w1 (whose
horizontal component shall be 0) followed by the horizontal and vertical components for the position vector v.
Successive groups shall define the vertical metrics for consecutive CIDs starting with c. The second format
defines a range of CIDs from cfirst to clast , that shall be followed by three numbers that define the vertical
metrics for all CIDs in this range.

EXAMPLE 3 This W2 entry defines the vertical displacement vector for the glyph with CID 120 as (0, −1000) and the
position vector as (250, 772). It also defines the displacement vector for CIDs in the range 7080 through
8032 as (0, −1000) and the position vector as (500, 900).
/W2 [120 [−1000 250 772]

7080 8032 −1000 500 900
]

9.7.5 CMaps

9.7.5.1 General

A CMap shall specify the mapping from character codes to character selectors. In PDF, the character selectors
shall be CIDs in a CIDFont (as mentioned earlier, PostScript CMaps can use names or codes as well). A CMap
serves a function analogous to the Encoding dictionary for a simple font. The CMap shall not refer directly to a
specific CIDFont; instead, it shall be combined with it as part of a CID-keyed font, represented in PDF as a
Type 0 font dictionary (see 9.7.6, "Type 0 Font Dictionaries"). Within the CMap, the character mappings shall
refer to the associated CIDFont by font number, which in PDF shall be 0.

PDF also uses a special type of CMap to map character codes to Unicode values (see 9.10.3, "ToUnicode
CMaps").

A CMap shall specify the writing mode—horizontal or vertical—for any CIDFont with which the CMap is
combined. The writing mode determines which metrics shall be used when glyphs are painted from that font.

NOTE Writing mode is specified as part of the CMap because, in some cases, different shapes are used when writing
horizontally and vertically. In such cases, the horizontal and vertical variants of a CMap specify different CIDs
for a given character code.

A CMap shall be specified in one of two ways:

• As a name object identifying a predefined CMap, whose value shall be one of the predefined CMap names
defined in Table 118.

• As a stream object whose contents shall be a CMap file.

v w0 2÷ 880(,)=

w1 0 1000–(,)=

© Adobe Systems Incorporated 2008 – All rights reserved 273

PDF 32000-1:2008

9.7.5.2 Predefined CMaps

Several of the CMaps define mappings from Unicode encodings to character collections. Unicode values
appearing in a text string shall be represented in big-endian order (high-order byte first). CMap names
containing “UCS2” use UCS-2 encoding; names containing “UTF16” use UTF-16BE (big-endian) encoding.

NOTE 1 Table 118 lists the names of the predefined CMaps. These CMaps map character codes to CIDs in a single
descendant CIDFont. CMaps whose names end in H specify horizontal writing mode; those ending in V specify
vertical writing mode.

Table 118 – Predefined CJK CMap names

Name Description

Chinese (Simplified)

GB-EUC-H Microsoft Code Page 936 (lfCharSet 0x86), GB 2312-80 character set, EUC-CN
encoding

GB-EUC-V Vertical version of GB-EUC-H

GBpc-EUC-H Mac OS, GB 2312-80 character set, EUC-CN encoding, Script Manager code 19

GBpc-EUC-V Vertical version of GBpc-EUC-H

GBK-EUC-H Microsoft Code Page 936 (lfCharSet 0x86), GBK character set, GBK encoding

GBK-EUC-V Vertical version of GBK-EUC-H

GBKp-EUC-H Same as GBK-EUC-H but replaces half-width Latin characters with proportional
forms and maps character code 0x24 to a dollar sign ($) instead of a yuan symbol
(¥)

GBKp-EUC-V Vertical version of GBKp-EUC-H

GBK2K-H GB 18030-2000 character set, mixed 1-, 2-, and 4-byte encoding

GBK2K-V Vertical version of GBK2K-H

UniGB-UCS2-H Unicode (UCS-2) encoding for the Adobe-GB1 character collection

UniGB-UCS2-V Vertical version of UniGB-UCS2-H

UniGB-UTF16-H Unicode (UTF-16BE) encoding for the Adobe-GB1 character collection; contains
mappings for all characters in the GB18030-2000 character set

UniGB-UTF16-V Vertical version of UniGB-UTF16-H

Chinese (Traditional)

B5pc-H Mac OS, Big Five character set, Big Five encoding, Script Manager code 2

B5pc-V Vertical version of B5pc-H

HKscs-B5-H Hong Kong SCS, an extension to the Big Five character set and encoding

HKscs-B5-V Vertical version of HKscs-B5-H

ETen-B5-H Microsoft Code Page 950 (lfCharSet 0x88), Big Five character set with ETen
extensions

ETen-B5-V Vertical version of ETen-B5-H

ETenms-B5-H Same as ETen-B5-H but replaces half-width Latin characters with proportional
forms

PDF 32000-1:2008

274 © Adobe Systems Incorporated 2008 – All rights reserved

ETenms-B5-V Vertical version of ETenms-B5-H

CNS-EUC-H CNS 11643-1992 character set, EUC-TW encoding

CNS-EUC-V Vertical version of CNS-EUC-H

UniCNS-UCS2-H Unicode (UCS-2) encoding for the Adobe-CNS1 character collection

UniCNS-UCS2-V Vertical version of UniCNS-UCS2-H

UniCNS-UTF16-H Unicode (UTF-16BE) encoding for the Adobe-CNS1 character collection;
contains mappings for all the characters in the HKSCS-2001 character set and
contains both 2- and 4-byte character codes

UniCNS-UTF16-V Vertical version of UniCNS-UTF16-H

Japanese

83pv-RKSJ-H Mac OS, JIS X 0208 character set with KanjiTalk6 extensions, Shift-JIS encoding,
Script Manager code 1

90ms-RKSJ-H Microsoft Code Page 932 (lfCharSet 0x80), JIS X 0208 character set with NEC
and IBM® extensions

90ms-RKSJ-V Vertical version of 90ms-RKSJ-H

90msp-RKSJ-H Same as 90ms-RKSJ-H but replaces half-width Latin characters with proportional
forms

90msp-RKSJ-V Vertical version of 90msp-RKSJ-H

90pv-RKSJ-H Mac OS, JIS X 0208 character set with KanjiTalk7 extensions, Shift-JIS encoding,
Script Manager code 1

Add-RKSJ-H JIS X 0208 character set with Fujitsu FMR extensions, Shift-JIS encoding

Add-RKSJ-V Vertical version of Add-RKSJ-H

EUC-H JIS X 0208 character set, EUC-JP encoding

EUC-V Vertical version of EUC-H

Ext-RKSJ-H JIS C 6226 (JIS78) character set with NEC extensions, Shift-JIS encoding

Ext-RKSJ-V Vertical version of Ext-RKSJ-H

H JIS X 0208 character set, ISO-2022-JP encoding

V Vertical version of H

UniJIS-UCS2-H Unicode (UCS-2) encoding for the Adobe-Japan1 character collection

UniJIS-UCS2-V Vertical version of UniJIS-UCS2-H

UniJIS-UCS2-HW-H Same as UniJIS-UCS2-H but replaces proportional Latin characters with half-
width forms

UniJIS-UCS2-HW-V Vertical version of UniJIS-UCS2-HW-H

UniJIS-UTF16-H Unicode (UTF-16BE) encoding for the Adobe-Japan1 character collection;
contains mappings for all characters in the JIS X 0213:1000 character set

UniJIS-UTF16-V Vertical version of UniJIS-UTF16-H

Korean

Table 118 – Predefined CJK CMap names (continued)

Name Description

© Adobe Systems Incorporated 2008 – All rights reserved 275

PDF 32000-1:2008

NOTE 2 The Identity-H and Identity-V CMaps may be used to refer to glyphs directly by their CIDs when showing a text
string.

When the current font is a Type 0 font whose Encoding entry is Identity-H or Identity-V, the string to be shown
shall contain pairs of bytes representing CIDs, high-order byte first. When the current font is a CIDFont, the
string to be shown shall contain pairs of bytes representing CIDs, high-order byte first. When the current font is
a Type 2 CIDFont in which the CIDToGIDMap entry is Identity and if the TrueType font is embedded in the PDF
file, the 2-byte CID values shall be identical glyph indices for the glyph descriptions in the TrueType font
program.

NOTE 3 Table 119 lists the character collections referenced by the predefined CMaps for the different versions of PDF.
A dash (—) indicates that the CMap is not predefined in that PDF version.

KSC-EUC-H KS X 1001:1992 character set, EUC-KR encoding

KSC-EUC-V Vertical version of KSC-EUC-H

KSCms-UHC-H Microsoft Code Page 949 (lfCharSet 0x81), KS X 1001:1992 character set plus
8822 additional hangul, Unified Hangul Code (UHC) encoding

KSCms-UHC-V Vertical version of KSCms−UHC-H

KSCms-UHC-HW-H Same as KSCms-UHC-H but replaces proportional Latin characters with half-
width forms

KSCms-UHC-HW-V Vertical version of KSCms-UHC-HW-H

KSCpc-EUC-H Mac OS, KS X 1001:1992 character set with Mac OS KH extensions, Script
Manager Code 3

UniKS-UCS2-H Unicode (UCS-2) encoding for the Adobe-Korea1 character collection

UniKS-UCS2-V Vertical version of UniKS-UCS2-H

UniKS-UTF16-H Unicode (UTF-16BE) encoding for the Adobe-Korea1 character collection

UniKS-UTF16-V Vertical version of UniKS-UTF16-H

Generic

Identity-H The horizontal identity mapping for 2-byte CIDs; may be used with CIDFonts
using any Registry, Ordering, and Supplement values. It maps 2-byte character
codes ranging from 0 to 65,535 to the same 2-byte CID value, interpreted high-
order byte first.

Identity-V Vertical version of Identity-H. The mapping is the same as for Identity-H.

Table 119 – Character collections for predefined CMaps, by PDF version

CMAP PDF 1.2 PDF 1.3 PDF 1.4 PDF 1.5

Chinese (Simplified)

GB-EUC-H/V Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0

GBpc-EUC-H Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0

GBpc-EUC-V — Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0

GBK-EUC-H/V — Adobe-GB1-2 Adobe-GB1-2 Adobe-GB1-2

GBKp-EUC-H/V — — Adobe-GB1-2 Adobe-GB1-2

Table 118 – Predefined CJK CMap names (continued)

Name Description

PDF 32000-1:2008

276 © Adobe Systems Incorporated 2008 – All rights reserved

GBK2K-H/V — — Adobe-GB1-4 Adobe-GB1-4

UniGB-UCS2-H/V — Adobe-GB1-2 Adobe-GB1-4 Adobe-GB1-4

UniGB-UTF16-H/V — — — Adobe-GB1-4

Chinese (Traditional)

B5pc-H/V Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0

HKscs-B5-H/V — — Adobe-CNS1-3 Adobe-CNS1-3

ETen-B5-H/V Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0

ETenms-B5-H/V — Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0

CNS-EUC-H/V Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0

UniCNS-UCS2-H/V — Adobe-CNS1-0 Adobe-CNS1-3 Adobe-CNS1-3

UniCNS-UTF16-H/V — — — Adobe-CNS1-4

Japanese

83pv-RKSJ-H Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1

90ms-RKSJ-H/V Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2

90msp-RKSJ-H/V — Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2

90pv-RKSJ-H Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1

Add-RKSJ-H/V Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1

EUC-H/V — Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1

Ext-RKSJ-H/V Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2

H/V Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1

UniJIS-UCS2-H/V — Adobe-Japan1-2 Adobe-Japan1-4 Adobe-Japan1-4

UniJIS-UCS2-HW-H/V — Adobe-Japan1-2 Adobe-Japan1-4 Adobe-Japan1-4

UniJIS-UTF16-H/V — — — Adobe-Japan1-5

Korean

KSC-EUC-H/V Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0

KSCms-UHC-H/V Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1

KSCms-UHC-HW-H/V — Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1

KSCpc-EUC-H Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0

UniKS-UCS2-H/V — Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1

UniKS-UTF16-H/V — — — Adobe-Korea1-2

Generic

Identity-H/V Adobe-Identity-0 Adobe-Identity-0 Adobe-Identity-0 Adobe-Identity-0

Table 119 – Character collections for predefined CMaps, by PDF version (continued)

CMAP PDF 1.2 PDF 1.3 PDF 1.4 PDF 1.5

© Adobe Systems Incorporated 2008 – All rights reserved 277

PDF 32000-1:2008

A conforming reader shall support all of the character collections listed in Table 119. As noted in 9.7.3,
"CIDSystemInfo Dictionaries", a character collection is identified by registry, ordering, and supplement number,
and supplements are cumulative; that is, a higher-numbered supplement includes the CIDs contained in lower-
numbered supplements, as well as some additional CIDs. Consequently, text encoded according to the
predefined CMaps for a given PDF version shall be valid when interpreted by a conforming reader supporting
the same or a later PDF version. When interpreted by a conforming reader supporting an earlier PDF version,
such text causes an error if a CMap is encountered that is not predefined for that PDF version. If character
codes are encountered that were added in a higher-numbered supplement than the one corresponding to the
supported PDF version, no characters are displayed for those codes; see 9.7.6.3, "Handling Undefined
Characters".

The Identity-H and Identity-V CMaps shall not be used with a non-embedded font. Only standardized character
sets may be used.

NOTE 4 If a conforming writer producing a PDF file encounters text to be included that uses CIDs from a higher-
numbered supplement than the one corresponding to the PDF version being generated, the application should
embed the CMap for the higher-numbered supplement rather than refer to the predefined CMap.

The CMap programs that define the predefined CMaps are available through the ASN Web site.

9.7.5.3 Embedded CMap Files

For character encodings that are not predefined, the PDF file shall contain a stream that defines the CMap. In
addition to the standard entries for streams (listed in Table 5), the CMap stream dictionary contains the entries
listed in Table 120. The data in the stream defines the mapping from character codes to a font number and a
character selector. The data shall follow the syntax defined in Adobe Technical Note #5014, Adobe CMap and
CIDFont Files Specification (see bibliography).

9.7.5.4 CMap Example and Operator Summary

Embedded CMap files shall conform to the format documented in Adobe Technical Note #5014, subject to
these additional constraints:

Table 120 – Additional entries in a CMap stream dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall
be CMap for a CMap dictionary.

CMapName name (Required) The name of the CMap. It shall be the same as the value of
CMapName in the CMap file.

CIDSystemInfo dictionary (Required) A dictionary (see 9.7.3, "CIDSystemInfo Dictionaries")
containing entries that define the character collection for the CIDFont
or CIDFonts associated with the CMap.
The value of this entry shall be the same as the value of
CIDSystemInfo in the CMap file. (However, it does not need to match
the values of CIDSystemInfo for the Identity-H or Identity-V CMaps.)

WMode integer (Optional) A code that specifies the writing mode for any CIDFont with
which this CMap is combined. The value shall be 0 for horizontal or 1
for vertical. Default value: 0.
The value of this entry shall be the same as the value of WMode in the
CMap file.

UseCMap name or
stream

(Optional) The name of a predefined CMap, or a stream containing a
CMap. If this entry is present, the referencing CMap shall specify only
the character mappings that differ from the referenced CMap.

PDF 32000-1:2008

278 © Adobe Systems Incorporated 2008 – All rights reserved

a) If the embedded CMap file contains a usecmap reference, the CMap indicated there shall also be identified
by the UseCMap entry in the CMap stream dictionary.

b) The usefont operator, if present, shall specify a font number of 0.

c) The beginbfchar and endbfchar shall not appear in a CMap that is used as the Encoding entry of a Type 0
font; however, they may appear in the definition of a ToUnicode CMap.

d) A notdef mapping, defined using beginnotdefchar, endnotdefchar, beginnotdefrange, and endnotdefrange
shall be used if the normal mapping produces a CID for which no glyph is present in the associated
CIDFont.

e) The beginrearrangedfont, endrearrangedfont, beginusematrix, and endusematrix operators shall not be
used.

EXAMPLE This example shows a sample CMap for a Japanese Shift-JIS encoding. Character codes in this encoding
can be either 1 or 2 bytes in length. This CMap could be used with a CIDFont that uses the same CID
ordering as specified in the CIDSystemInfo entry. Note that several of the entries in the stream dictionary
are also replicated in the stream data.

22 0 obj

<< /Type /CMap
 /CMapName /90ms-RKSJ-H
 /CIDSystemInfo << /Registry (Adobe)

 /Ordering (Japan1)
 /Supplement 2

 >>
 /WMode 0
 /Length 23 0 R

>>

stream
%!PS-Adobe-3 . 0 Resource-CMap
%%DocumentNeededResources : ProcSet (CIDInit)
%%IncludeResource : ProcSet (CIDInit)
%%BeginResource : CMap (90ms-RKSJ-H)
%%Title : (90ms-RKSJ-H Adobe Japan1 2)
%%Version : 10 . 001
%%Copyright : Copyright 1990-2001 Adobe Systems Inc .
%%Copyright : All Rights Reserved .
%%EndComments

/CIDInit /ProcSet findresource begin
12 dict begin
begincmap
/CIDSystemInfo
3 dict dup begin
/Registry (Adobe) def
/Ordering (Japan1) def
/Supplement 2 def
end def

/CMapName /90ms-RKSJ-H def
/CMapVersion 10 . 001 def
/CMapType 1 def
/UIDOffset 950 def
/XUID [1 10 25343] def
/WMode 0 def

4 begincodespacerange
< 00 > < 80 >
< 8140 > < 9FFC >
< A0 > < DF >

© Adobe Systems Incorporated 2008 – All rights reserved 279

PDF 32000-1:2008

< E040 > < FCFC >
endcodespacerange

1 beginnotdefrange
< 00 > < 1F > 231
endnotdefrange

100 begincidrange
< 20 > < 7D > 231
< 7E > < 7E > 631
< 8140 > < 817E > 633
< 8180 > < 81AC > 696
< 81B8 > < 81BF > 741
< 81C8 > < 81CE > 749
… Additional ranges …
< FB40 > < FB7E > 8518
< FB80 > < FBFC > 8581
< FC40 > < FC4B > 8706
endcidrange
endcmap
CMapName currentdict /CMap defineresource pop
end
end
%%EndResource
%%EOF
endstream
endobj

9.7.6 Type 0 Font Dictionaries

9.7.6.1 General

A Type 0 font dictionary contains the entries listed in Table 121.

Table 121 – Entries in a Type 0 font dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall
be Font for a font dictionary.

Subtype name (Required) The type of font; shall be Type0 for a Type 0 font.

BaseFont name (Required) The name of the font. If the descendant is a Type 0
CIDFont, this name should be the concatenation of the CIDFont’s
BaseFont name, a hyphen, and the CMap name given in the
Encoding entry (or the CMapName entry in the CMap). If the
descendant is a Type 2 CIDFont, this name should be the same as the
CIDFont’s BaseFont name.
NOTE In principle, this is an arbitrary name, since there is no

font program associated directly with a Type 0 font
dictionary. The conventions described here ensure
maximum compatibility with existing readers.

Encoding name or
stream

(Required) The name of a predefined CMap, or a stream containing a
CMap that maps character codes to font numbers and CIDs. If the
descendant is a Type 2 CIDFont whose associated TrueType font
program is not embedded in the PDF file, the Encoding entry shall be
a predefined CMap name (see 9.7.4.2, "Glyph Selection in CIDFonts").

PDF 32000-1:2008

280 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE This code sample shows a Type 0 font.

14 0 obj

<< /Type /Font
 /Subtype /Type0
 /BaseFont /HeiseiMin-W5-90ms-RKSJ-H
 /Encoding /90ms-RKSJ-H
 /DescendantFonts [15 0 R]

>>
endobj

9.7.6.2 CMap Mapping

The Encoding entry of a Type 0 font dictionary specifies a CMap that specifies how text-showing operators
(such as Tj) shall interpret the bytes in the string to be shown when the current font is the Type 0 font. This sub-
clause describes how the characters in the string shall be decoded and mapped into character selectors, which
in PDF are always CIDs.

The codespace ranges in the CMap (delimited by begincodespacerange and endcodespacerange) specify
how many bytes are extracted from the string for each successive character code. A codespace range shall be
specified by a pair of codes of some particular length giving the lower and upper bounds of that range. A code
shall be considered to match the range if it is the same length as the bounding codes and the value of each of
its bytes lies between the corresponding bytes of the lower and upper bounds. The code length shall not be
greater than 4.

A sequence of one or more bytes shall be extracted from the string and matched against the codespace ranges
in the CMap. That is, the first byte shall be matched against 1-byte codespace ranges; if no match is found, a
second byte shall be extracted, and the 2-byte code shall be matched against 2-byte codespace ranges. This
process continues for successively longer codes until a match is found or all codespace ranges have been
tested. There will be at most one match because codespace ranges shall not overlap.

The code extracted from the string shall be looked up in the character code mappings for codes of that length.
(These are the mappings defined by beginbfchar, endbfchar, begincidchar, endcidchar, and corresponding
operators for ranges.) Failing that, it shall be looked up in the notdef mappings, as described in the next sub-
clause.

The results of the CMap mapping algorithm are a font number and a character selector. The font number shall
be used as an index into the Type 0 font’s DescendantFonts array to select a CIDFont. In PDF, the font
number shall be 0 and the character selector shall be a CID; this is the only case described here. The CID shall
then be used to select a glyph in the CIDFont. If the CIDFont contains no glyph for that CID, the notdef
mappings shall be consulted, as described in 9.7.6.3, "Handling Undefined Characters".

9.7.6.3 Handling Undefined Characters

A CMap mapping operation can fail to select a glyph for a variety of reasons. This sub-clause describes those
reasons and what happens when they occur.

If a code maps to a CID for which no such glyph exists in the descendant CIDFont, the notdef mappings in the
CMap shall be consulted to obtain a substitute character selector. These mappings are delimited by the

DescendantFonts array (Required) A one-element array specifying the CIDFont dictionary that
is the descendant of this Type 0 font.

ToUnicode stream (Optional) A stream containing a CMap file that maps character codes
to Unicode values (see 9.10, "Extraction of Text Content").

Table 121 – Entries in a Type 0 font dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 281

PDF 32000-1:2008

operators beginnotdefchar, endnotdefchar, beginnotdefrange, and endnotdefrange within an embedded
CMap file. They shall always map to a CID. If a matching notdef mapping is found, the CID selects a glyph in
the associated descendant, which shall be a CIDFont. If no glyph exists for that CID, the glyph for CID 0 (which
shall be present) shall be substituted.

NOTE 5 The notdef mappings are similar to the . notdef character mechanism in simple fonts.

If the CMap does not contain either a character mapping or a notdef mapping for the code, descendant 0 shall
be selected and the glyph for CID 0 shall be substituted from the associated CIDFont.

If the code is invalid—that is, the bytes extracted from the string to be shown do not match any codespace
range in the CMap—a substitute glyph is chosen as just described. The character mapping algorithm shall be
reset to its original position in the string, and a modified mapping algorithm chooses the best partially matching
codespace range:

a) If the first byte extracted from the string to be shown does not match the first byte of any codespace range,
the range having the shortest codes shall be chosen.

b) Otherwise (that is, if there is a partial match), for each additional byte extracted, the code accumulated so
far shall be matched against the beginnings of all longer codespace ranges until the longest such partial
match has been found. If multiple codespace ranges have partial matches of the same length, the one
having the shortest codes shall be chosen.

The length of the codes in the chosen codespace range determines the total number of bytes to consume from
the string for the current mapping operation.

9.8 Font Descriptors

9.8.1 General

A font descriptor specifies metrics and other attributes of a simple font or a CIDFont as a whole, as distinct from
the metrics of individual glyphs. These font metrics provide information that enables a conforming reader to
synthesize a substitute font or select a similar font when the font program is unavailable. The font descriptor
may also be used to embed the font program in the PDF file.

Font descriptors shall not be used with Type 0 fonts. Beginning with PDF 1.5, font descriptors may be used with
Type 3 fonts.

A font descriptor is a dictionary whose entries specify various font attributes. The entries common to all font
descriptors—for both simple fonts and CIDFonts—are listed in Table 122. Additional entries in the font
descriptor for a CIDFont are described in 9.8.3, "Font Descriptors for CIDFonts". All integer values shall be
units in glyph space. The conversion from glyph space to text space is described in 9.2.4, "Glyph Positioning
and Metrics".

Table 122 – Entries common to all font descriptors

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall
be FontDescriptor for a font descriptor.

FontName name (Required) The PostScript name of the font. This name shall be the
same as the value of BaseFont in the font or CIDFont dictionary that
refers to this font descriptor.

FontFamily byte string (Optional; PDF 1.5; should be used for Type 3 fonts in Tagged PDF
documents) A byte string specifying the preferred font family name.
EXAMPLE 1 For the font Times Bold Italic, the FontFamily is

Times.

PDF 32000-1:2008

282 © Adobe Systems Incorporated 2008 – All rights reserved

FontStretch name (Optional; PDF 1.5; should be used for Type 3 fonts in Tagged PDF
documents) The font stretch value. It shall be one of these names
(ordered from narrowest to widest): UltraCondensed,
ExtraCondensed, Condensed, SemiCondensed, Normal,
SemiExpanded, Expanded, ExtraExpanded or UltraExpanded.
The specific interpretation of these values varies from font to font.
EXAMPLE 2 Condensed in one font may appear most similar to

Normal in another.

FontWeight number (Optional; PDF 1.5; should be used for Type 3 fonts in Tagged PDF
documents) The weight (thickness) component of the fully-qualified
font name or font specifier. The possible values shall be 100, 200, 300,
400, 500, 600, 700, 800, or 900, where each number indicates a
weight that is at least as dark as its predecessor. A value of 400 shall
indicate a normal weight; 700 shall indicate bold.
The specific interpretation of these values varies from font to font.
EXAMPLE 3 300 in one font may appear most similar to 500 in

another.

Flags integer (Required) A collection of flags defining various characteristics of the
font (see 9.8.2, "Font Descriptor Flags").

FontBBox rectangle (Required, except for Type 3 fonts) A rectangle (see 7.9.5,
"Rectangles"), expressed in the glyph coordinate system, that shall
specify the font bounding box. This should be the smallest rectangle
enclosing the shape that would result if all of the glyphs of the font
were placed with their origins coincident and then filled.

ItalicAngle number (Required) The angle, expressed in degrees counterclockwise from
the vertical, of the dominant vertical strokes of the font.
EXAMPLE 4 The 9-o’clock position is 90 degrees, and the 3-

o’clock position is –90 degrees.

The value shall be negative for fonts that slope to the right, as almost
all italic fonts do.

Ascent number (Required, except for Type 3 fonts) The maximum height above the
baseline reached by glyphs in this font. The height of glyphs for
accented characters shall be excluded.

Descent number (Required, except for Type 3 fonts) The maximum depth below the
baseline reached by glyphs in this font. The value shall be a negative
number.

Leading number (Optional) The spacing between baselines of consecutive lines of text.
Default value: 0.

CapHeight number (Required for fonts that have Latin characters, except for Type 3 fonts)
The vertical coordinate of the top of flat capital letters, measured from
the baseline.

XHeight number (Optional) The font’s x height: the vertical coordinate of the top of flat
nonascending lowercase letters (like the letter x), measured from the
baseline, in fonts that have Latin characters. Default value: 0.

StemV number (Required, except for Type 3 fonts) The thickness, measured
horizontally, of the dominant vertical stems of glyphs in the font.

StemH number (Optional) The thickness, measured vertically, of the dominant
horizontal stems of glyphs in the font. Default value: 0.

Table 122 – Entries common to all font descriptors (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 283

PDF 32000-1:2008

At most, only one of the FontFile, FontFile2, and FontFile3 entries shall be present.

9.8.2 Font Descriptor Flags

The value of the Flags entry in a font descriptor shall be an unsigned 32-bit integer containing flags specifying
various characteristics of the font. Bit positions within the flag word are numbered from 1 (low-order) to 32
(high-order). Table 123 shows the meanings of the flags; all undefined flag bits are reserved and shall be set to
0 by conforming writers. Figure 48 shows examples of fonts with these characteristics.

AvgWidth number (Optional) The average width of glyphs in the font. Default value: 0.

MaxWidth number (Optional) The maximum width of glyphs in the font. Default value: 0.

MissingWidth number (Optional) The width to use for character codes whose widths are not
specified in a font dictionary’s Widths array. This shall have a
predictable effect only if all such codes map to glyphs whose actual
widths are the same as the value of the MissingWidth entry. Default
value: 0.

FontFile stream (Optional) A stream containing a Type 1 font program (see 9.9,
"Embedded Font Programs").

FontFile2 stream (Optional; PDF 1.1) A stream containing a TrueType font program (see
9.9, "Embedded Font Programs").

FontFile3 stream (Optional; PDF 1.2) A stream containing a font program whose format
is specified by the Subtype entry in the stream dictionary (see
Table 126).

CharSet ASCII string
or byte
string

(Optional; meaningful only in Type 1 fonts; PDF 1.1) A string listing the
character names defined in a font subset. The names in this string
shall be in PDF syntax—that is, each name preceded by a slash (/).
The names may appear in any order. The name . notdef shall be
omitted; it shall exist in the font subset. If this entry is absent, the only
indication of a font subset shall be the subset tag in the FontName
entry (see 9.6.4, "Font Subsets").

Table 123 – Font flags

Bit position Name Meaning

1 FixedPitch All glyphs have the same width (as opposed to proportional or
variable-pitch fonts, which have different widths).

2 Serif Glyphs have serifs, which are short strokes drawn at an angle on the
top and bottom of glyph stems. (Sans serif fonts do not have serifs.)

3 Symbolic Font contains glyphs outside the Adobe standard Latin character set.
This flag and the Nonsymbolic flag shall not both be set or both be
clear.

4 Script Glyphs resemble cursive handwriting.

6 Nonsymbolic Font uses the Adobe standard Latin character set or a subset of it.

7 Italic Glyphs have dominant vertical strokes that are slanted.

17 AllCap Font contains no lowercase letters; typically used for display purposes,
such as for titles or headlines.

Table 122 – Entries common to all font descriptors (continued)

Key Type Value

PDF 32000-1:2008

284 © Adobe Systems Incorporated 2008 – All rights reserved

The Nonsymbolic flag (bit 6 in the Flags entry) indicates that the font’s character set is the Adobe standard
Latin character set (or a subset of it) and that it uses the standard names for those glyphs. This character set is
shown in D.2, "Latin Character Set and Encodings". If the font contains any glyphs outside this set, the
Symbolic flag shall be set and the Nonsymbolic flag shall be clear. In other words, any font whose character set
is not a subset of the Adobe standard character set shall be considered to be symbolic. This influences the
font’s implicit base encoding and may affect a conforming reader’s font substitution strategies.

Figure 48 – Characteristics represented in the Flags entry of a font descriptor

NOTE 1 This classification of nonsymbolic and symbolic fonts is peculiar to PDF. A font may contain additional
characters that are used in Latin writing systems but are outside the Adobe standard Latin character set; PDF
considers such a font to be symbolic. The use of two flags to represent a single binary choice is a historical
accident.

The ForceBold flag (bit 19) shall determine whether bold glyphs shall be painted with extra pixels even at very
small text sizes by a conforming reader. If the ForceBold flag is set, features of bold glyphs may be thickened at
small text sizes.

NOTE 2 Typically, when glyphs are painted at small sizes on very low-resolution devices such as display screens,
features of bold glyphs may appear only 1 pixel wide. Because this is the minimum feature width on a pixel-
based device, ordinary (nonbold) glyphs also appear with 1-pixel-wide features and therefore cannot be
distinguished from bold glyphs.

18 SmallCap Font contains both uppercase and lowercase letters. The uppercase
letters are similar to those in the regular version of the same typeface
family. The glyphs for the lowercase letters have the same shapes as
the corresponding uppercase letters, but they are sized and their
proportions adjusted so that they have the same size and stroke
weight as lowercase glyphs in the same typeface family.

19 ForceBold See description after Note 1 in this sub-clause.

Table 123 – Font flags (continued)

Bit position Name Meaning

The quick brown fox jumped.

The quick brown fox jumped.

The quick brown fox jumped.

✴❈❅ ❑◆❉❃❋ ❂❒❏◗■ ❆❏❘ ❊◆❍❐❅❄✎

The quick brown fox jumped.

The quick brown fox jumped.

The quick brown fox jumped

The quick brown fox jumped.

Fixed-pitch font

Serif font

Sans serif font

Symbolic font

Script font

Italic font

All-cap font

Small-cap font

© Adobe Systems Incorporated 2008 – All rights reserved 285

PDF 32000-1:2008

EXAMPLE This code sample illustrates a font descriptor whose Flags entry has the Serif, Nonsymbolic, and
ForceBold flags (bits 2, 6, and 19) set.

7 0 obj

<< /Type /FontDescriptor
 /FontName /AGaramond-Semibold
 /Flags 262178 % Bits 2, 6, and 19
 /FontBBox [−177 −269 1123 866]
 /MissingWidth 255
 /StemV 105
 /StemH 45
 /CapHeight 660
 /XHeight 394
 /Ascent 720
 /Descent −270
 /Leading 83
 /MaxWidth 1212
 /AvgWidth 478
 /ItalicAngle 0

>>
endobj

9.8.3 Font Descriptors for CIDFonts

9.8.3.1 General

In addition to the entries in Table 122, the FontDescriptor dictionaries of CIDFonts may contain the entries
listed in Table 124.

9.8.3.2 Style

The Style dictionary contains entries that define style attributes and values for the CIDFont. Only the Panose
entry is defined. The value of Panose shall be a 12-byte string consisting of these elements:

Table 124 – Additional font descriptor entries for CIDFonts

Key Type Value

Style dictionary (Optional) A dictionary containing entries that describe the style of the glyphs in
the font (see 9.8.3.2, "Style").

Lang name (Optional; PDF 1.5) A name specifying the language of the font, which may be
used for encodings where the language is not implied by the encoding itself.
The value shall be one of the codes defined by Internet RFC 3066, Tags for the
Identification of Languages or (PDF 1.0) 2-character language codes defined
by ISO 639 (see the Bibliography). If this entry is absent, the language shall be
considered to be unknown.

FD dictionary (Optional) A dictionary whose keys identify a class of glyphs in a CIDFont.
Each value shall be a dictionary containing entries that shall override the
corresponding values in the main font descriptor dictionary for that class of
glyphs (see 9.8.3.3, "FD").

CIDSet stream (Optional) A stream identifying which CIDs are present in the CIDFont file. If
this entry is present, the CIDFont shall contain only a subset of the glyphs in
the character collection defined by the CIDSystemInfo dictionary. If it is
absent, the only indication of a CIDFont subset shall be the subset tag in the
FontName entry (see 9.6.4, "Font Subsets").
The stream’s data shall be organized as a table of bits indexed by CID. The bits
shall be stored in bytes with the high-order bit first. Each bit shall correspond to
a CID. The most significant bit of the first byte shall correspond to CID 0, the
next bit to CID 1, and so on.

PDF 32000-1:2008

286 © Adobe Systems Incorporated 2008 – All rights reserved

• The font family class and subclass ID bytes, given in the sFamilyClass field of the “OS/2” table in a
TrueType font. This field is documented in Microsoft’s TrueType 1.0 Font Files Technical Specification.

• Ten bytes for the PANOSE classification number for the font. The PANOSE classification system is
documented in Hewlett-Packard Company’s PANOSE Classification Metrics Guide.

See the Bibliography for more information about these documents.

EXAMPLE This is an example of a Style entry in the font descriptor:

/Style << /Panose < 01 05 02 02 03 00 00 00 00 00 00 00 > >>

9.8.3.3 FD

A CIDFont may be made up of different classes of glyphs, each class requiring different sets of the font-wide
attributes that appear in font descriptors.

EXAMPLE 1 Latin glyphs, for example, may require different attributes than kanji glyphs.

The font descriptor shall define a set of default attributes that apply to all glyphs in the CIDFont. The FD entry in
the font descriptor shall contain exceptions to these defaults.

The key for each entry in an FD dictionary shall be the name of a class of glyphs—that is, a particular subset of
the CIDFont’s character collection. The entry’s value shall be a font descriptor whose contents shall override
the font-wide attributes for that class only. This font descriptor shall contain entries for metric information only; it
shall not include FontFile, FontFile2, FontFile3, or any of the entries listed in Table 122.

The FD dictionary should contain at least the metrics for the proportional Latin glyphs. With the information for
these glyphs, a more accurate substitution font can be created.

The names of the glyph classes depend on the character collection, as identified by the Registry, Ordering,
and Supplement entries in the CIDSystemInfo dictionary. Table 125 lists the valid keys for the Adobe-GB1,
Adobe-CNS1, Adobe-Japan1, Adobe-Japan2, and Adobe-Korea1 character collections.

© Adobe Systems Incorporated 2008 – All rights reserved 287

PDF 32000-1:2008

Table 125 – Glyph classes in CJK fonts

Character Collection Class Glyphs in Class

Adobe-GB1 Alphabetic
Dingbats
Generic
Hanzi
HRoman
HRomanRot
Kana
Proportional
ProportionalRot

Full-width Latin, Greek, and Cyrillic glyphs
Special symbols
Typeface-independent glyphs, such as line-drawing
Full-width hanzi (Chinese) glyphs
Half-width Latin glyphs
Same as HRoman but rotated for use in vertical writing
Japanese kana (katakana and hiragana) glyphs
Proportional Latin glyphs
Same as Proportional but rotated for use in vertical
writing

Adobe-CNS1 Alphabetic
Dingbats
Generic
Hanzi
HRoman
HRomanRot
Kana
Proportional
ProportionalRot

Full-width Latin, Greek, and Cyrillic glyphs
Special symbols
Typeface-independent glyphs, such as line-drawing
Full-width hanzi (Chinese) glyphs
Half-width Latin glyphs
Same as HRoman but rotated for use in vertical writing
Japanese kana (katakana and hiragana) glyphs
Proportional Latin glyphs
Same as Proportional but rotated for use in vertical
writing

Adobe-Japan1 Alphabetic
AlphaNum
Dingbats
DingbatsRot
Generic
GenericRot
HKana
HKanaRot
HRoman
HRomanRot
Kana
Kanji
Proportional
ProportionalRot

Ruby

Full-width Latin, Greek, and Cyrillic glyphs
Numeric glyphs
Special symbols
Same as Dingbats but rotated for use in vertical writing
Typeface-independent glyphs, such as line-drawing
Same as Generic but rotated for use in vertical writing
Half-width kana (katakana and hiragana) glyphs
Same as HKana but rotated for use in vertical writing
Half-width Latin glyphs
Same as HRoman but rotated for use in vertical writing
Full-width kana (katakana and hiragana) glyphs
Full-width kanji (Chinese) glyphs
Proportional Latin glyphs
Same as Proportional but rotated for use in vertical
writing
Glyphs used for setting ruby (small glyphs that serve to
annotate other glyphs with meanings or readings)

Adobe-Japan2 Alphabetic
Dingbats
HojoKanji

Full-width Latin, Greek, and Cyrillic glyphs
Special symbols
Full-width kanji glyphs

PDF 32000-1:2008

288 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE 2 This example illustrates an FD dictionary containing two entries.

/FD << /Proportional 25 0 R

 /HKana 26 0 R
 >>

25 0 obj

<< /Type /FontDescriptor
 /FontName /HeiseiMin-W3-Proportional
 /Flags 2
 /AvgWidth 478
 /MaxWidth 1212
 /MissingWidth 250
 /StemV 105
 /StemH 45
 /CapHeight 660
 /XHeight 394
 /Ascent 720
 /Descent −270
 /Leading 83

>>
endobj

26 0 obj

<< /Type /FontDescriptor
 /FontName /HeiseiMin-W3-HKana
 /Flags 3
 /AvgWidth 500
 /MaxWidth 500
 /MissingWidth 500
 /StemV 50
 /StemH 75
 /Ascent 720
 /Descent 0
 /Leading 83

>>
endobj

9.9 Embedded Font Programs

A font program may be embedded in a PDF file as data contained in a PDF stream object.

NOTE 1 Such a stream object is also called a font file by analogy with font programs that are available from sources
external to the conforming writer.

 Adobe-Korea1 Alphabetic
Dingbats
Generic
Hangul
Hanja
HRoman
HRomanRot
Kana
Proportional
ProportionalRot

Full-width Latin, Greek, and Cyrillic glyphs
Special symbols
Typeface-independent glyphs, such as line-drawing
Hangul and jamo glyphs
Full-width hanja (Chinese) glyphs
Half-width Latin glyphs
Same as HRoman but rotated for use in vertical writing
Japanese kana (katakana and hiragana) glyphs
Proportional Latin glyphs
Same as Proportional but rotated for use in vertical
writing

Table 125 – Glyph classes in CJK fonts (continued)

Character Collection Class Glyphs in Class

© Adobe Systems Incorporated 2008 – All rights reserved 289

PDF 32000-1:2008

Font programs are subject to copyright, and the copyright owner may impose conditions under which a font
program may be used. These permissions are recorded either in the font program or as part of a separate
license. One of the conditions may be that the font program cannot be embedded, in which case it should not
be incorporated into a PDF file. A font program may allow embedding for the sole purpose of viewing and
printing the document but not for creating new or modified text that uses the font (in either the same document
or other documents). The latter operation would require the user performing the operation to have a licensed
copy of the font program, not a copy extracted from the PDF file. In the absence of explicit information to the
contrary, embedded font programs shall be used only to view and print the document and not for any other
purposes.

Table 126 summarizes the ways in which font programs shall be embedded in a PDF file, depending on the
representation of the font program. The key shall be the name used in the font descriptor to refer to the font file
stream; the subtype shall be the value of the Subtype key, if present, in the font file stream dictionary. Further
details of specific font program representations are given below.

Table 126 – Embedded font organization for various font types

Key Subtype Description

FontFile — Type 1 font program, in the original (noncompact) format described
in Adobe Type 1 Font Format. This entry may appear in the font
descriptor for a Type1 or MMType1 font dictionary.

FontFile2 — (PDF 1.1) TrueType font program, as described in the TrueType
Reference Manual. This entry may appear in the font descriptor for
a TrueType font dictionary or (PDF 1.3) for a CIDFontType2
CIDFont dictionary.

FontFile3 Type1C (PDF 1.2) Type 1–equivalent font program represented in the
Compact Font Format (CFF), as described in Adobe Technical Note
#5176, The Compact Font Format Specification. This entry may
appear in the font descriptor for a Type1 or MMType1 font
dictionary.

FontFile3 CIDFontType0C (PDF 1.3) Type 0 CIDFont program represented in the Compact
Font Format (CFF), as described in Adobe Technical Note #5176,
The Compact Font Format Specification. This entry may appear in
the font descriptor for a CIDFontType0 CIDFont dictionary.

PDF 32000-1:2008

290 © Adobe Systems Incorporated 2008 – All rights reserved

The stream dictionary for a font file shall contain the normal entries for a stream, such as Length and Filter
(listed in Table 5), plus the additional entries listed in Table 127.

NOTE 2 A standard Type 1 font program, as described in the Adobe Type 1 Font Format specification, consists of three
parts: a clear-text portion (written using PostScript syntax), an encrypted portion, and a fixed-content portion.
The fixed-content portion contains 512 ASCII zeros followed by a cleartomark operator, and perhaps followed

FontFile3 OpenType (PDF 1.6) OpenType® font program, as described in the OpenType
Specification v.1.4 (see the Bibliography). OpenType is an
extension of TrueType that allows inclusion of font programs that
use the Compact Font Format (CFF).
A FontFile3 entry with an OpenType subtype may appear in the
font descriptor for these types of font dictionaries:
• A TrueType font dictionary or a CIDFontType2 CIDFont

dictionary, if the embedded font program contains a “glyf” table.
In addition to the “glyf” table, the font program must include
these tables: “head”, “hhea”, “hmtx”, “loca”, and “maxp”. The
“cvt ” (notice the trailing SPACE), “fpgm”, and “prep” tables must
also be included if they are required by the font instructions.

• A CIDFontType0 CIDFont dictionary, if the embedded font
program contains a “CFF ” table (notice the trailing SPACE) with
a Top DICT that uses CIDFont operators (this is equivalent to
subtype CIDFontType0C). In addition to the “CFF ” table, the
font program must include the “cmap” table.

• A Type1 font dictionary or CIDFontType0 CIDFont dictionary, if
the embedded font program contains a “CFF ” table without
CIDFont operators. In addition to the “CFF ” table, the font
program must include the “cmap” table.

The OpenType Specification describes a set of required tables;
however, not all tables are required in the font file, as described for
each type of font dictionary that can include this entry.
NOTE The absence of some optional tables (such as those

used for advanced line layout) may prevent editing of
text containing the font.

Table 127 – Additional entries in an embedded font stream dictionary

Key Type Value

Length1 integer (Required for Type 1 and TrueType fonts) The length in bytes of the clear-text
portion of the Type 1 font program, or the entire TrueType font program, after it has
been decoded using the filters specified by the stream’s Filter entry, if any.

Length2 integer (Required for Type 1 fonts) The length in bytes of the encrypted portion of the Type
1 font program after it has been decoded using the filters specified by the stream’s
Filter entry.

Length3 integer (Required for Type 1 fonts) The length in bytes of the fixed-content portion of the
Type 1 font program after it has been decoded using the filters specified by the
stream’s Filter entry. If Length3 is 0, it indicates that the 512 zeros and
cleartomark have not been included in the FontFile font program and shall be
added by the conforming reader.

Subtype name (Required if referenced from FontFile3; PDF 1.2) A name specifying the format of
the embedded font program. The name shall be Type1C for Type 1 compact fonts,
CIDFontType0C for Type 0 compact CIDFonts, or OpenType for OpenType fonts.

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the embedded font
program (see 14.3.2, "Metadata Streams").

Table 126 – Embedded font organization for various font types (continued)

Key Subtype Description

© Adobe Systems Incorporated 2008 – All rights reserved 291

PDF 32000-1:2008

by additional data. Although the encrypted portion of a standard Type 1 font may be in binary or ASCII
hexadecimal format, PDF supports only the binary format. However, the entire font program may be encoded
using any filters.

EXAMPLE This code shows the structure of an embedded standard Type 1 font.

12 0 obj

<< /Filter /ASCII85Decode
 /Length 41116
 /Length1 2526
 /Length2 32393
 /Length3 570

>>
stream
,p>`rDKJj'E+LaU0eP.@+AH9dBOu$hFD55nC
… Omitted data …
JJQ&Nt')<=^p&mGf(%:%h1%9c//K(/*o=.C>UXkbVGTrr~>
endstream
endobj

As noted in Table 126, a Type 1–equivalent font program or a Type 0 CIDFont program may be represented in
the Compact Font Format (CFF). The Length1, Length2, and Length3 entries are not needed in that case and
shall not be present. Although CFF enables multiple font or CIDFont programs to be bundled together in a
single file, an embedded CFF font file in PDF shall consist of exactly one font or CIDFont (as appropriate for the
associated font dictionary).

According to the Adobe Type 1 Font Format specification, a Type 1 font program may contain a PaintType
entry specifying whether the glyphs’ outlines are to be filled or stroked. For fonts embedded in a PDF file, this
entry shall be ignored; the decision whether to fill or stroke glyph outlines is entirely determined by the PDF text
rendering mode parameter (see 9.3.6, "Text Rendering Mode"). This shall also applies to Type 1 compact fonts
and Type 0 compact CIDFonts.

A TrueType font program may be used as part of either a font or a CIDFont. Although the basic font file format
is the same in both cases, there are different requirements for what information shall be present in the font
program. These TrueType tables shall always be present if present in the original TrueType font program:
“head”, “hhea”, “loca”, “maxp”, “cvt”, “prep”, “glyf”, “hmtx”, and “fpgm”. If used with a simple font dictionary, the
font program shall additionally contain a cmap table defining one or more encodings, as discussed in 9.6.6.4,
"Encodings for TrueType Fonts". If used with a CIDFont dictionary, the cmap table is not needed and shall not
be present, since the mapping from character codes to glyph descriptions is provided separately.

The “vhea” and “vmtx” tables that specify vertical metrics shall never be used by a conforming reader. The only
way to specify vertical metrics in PDF shall be by means of the DW2 and W2 entries in a CIDFont dictionary.

NOTE 3 Beginning with PDF 1.6, font programs may be embedded using the OpenType format, which is an extension
of the TrueType format that allows inclusion of font programs using the Compact Font Format (CFF). It also
allows inclusion of data to describe glyph substitutions, kerning, and baseline adjustments. In addition to
rendering glyphs, conforming readers may use the data in OpenType fonts to do advanced line layout,
automatically substitute ligatures, provide selections of alternate glyphs to users, and handle complex writing
scripts.

The process of finding glyph descriptions in OpenType fonts by a conforming reader shall be the following:

• For Type 1 fonts using “CFF” tables, the process shall be as described in 9.6.6.2, "Encodings for Type 1
Fonts".

• For TrueType fonts using “glyf” tables, the process shall be as described in 9.6.6.4, "Encodings for
TrueType Fonts". Since this process sometimes produces ambiguous results, conforming writers, instead
of using a simple font, shall use a Type 0 font with an Identity-H encoding and use the glyph indices as
character codes, as described following Table 118.

PDF 32000-1:2008

292 © Adobe Systems Incorporated 2008 – All rights reserved

• For CIDFontType0 fonts using “CFF” tables, the process shall be as described in the discussion of
embedded Type 0 CIDFonts in 9.7.4.2, "Glyph Selection in CIDFonts".

• For CIDFontType2 fonts using “glyf” tables, the process shall be as described in the discussion of
embedded Type 2 CIDFonts in 9.7.4.2, "Glyph Selection in CIDFonts".

As discussed in 9.6.4, "Font Subsets", an embedded font program may contain only the subset of glyphs that
are used in the PDF document. This may be indicated by the presence of a CharSet or CIDSet entry in the font
descriptor that refers to the font file.

9.10 Extraction of Text Content

9.10.1 General

The preceding sub-clauses describe all the facilities for showing text and causing glyphs to be painted on the
page. In addition to displaying text, conforming readers sometimes need to determine the information content
of text—that is, its meaning according to some standard character identification as opposed to its rendered
appearance. This need arises during operations such as searching, indexing, and exporting of text to other file
formats.

The Unicode standard defines a system for numbering all of the common characters used in a large number of
languages. It is a suitable scheme for representing the information content of text, but not its appearance, since
Unicode values identify characters, not glyphs. For information about Unicode, see the Unicode Standard by
the Unicode Consortium (see the Bibliography).

When extracting character content, a conforming reader can easily convert text to Unicode values if a font’s
characters are identified according to a standard character set that is known to the conforming reader. This
character identification can occur if either the font uses a standard named encoding or the characters in the
font are identified by standard character names or CIDs in a well-known collection. 9.10.2, "Mapping Character
Codes to Unicode Values", describes in detail the overall algorithm for mapping character codes to Unicode
values.

If a font is not defined in one of these ways, the glyphs can still be shown, but the characters cannot be
converted to Unicode values without additional information:

• This information can be provided as an optional ToUnicode entry in the font dictionary (PDF 1.2; see
9.10.3, "ToUnicode CMaps"), whose value shall be a stream object containing a special kind of CMap file
that maps character codes to Unicode values.

• An ActualText entry for a structure element or marked-content sequence (see 14.9.4, "Replacement
Text") may be used to specify the text content directly.

9.10.2 Mapping Character Codes to Unicode Values

A conforming reader can use these methods, in the priority given, to map a character code to a Unicode value.
Tagged PDF documents, in particular, shall provide at least one of these methods (see 14.8.2.4.2, "Unicode
Mapping in Tagged PDF"):

• If the font dictionary contains a ToUnicode CMap (see 9.10.3, "ToUnicode CMaps"), use that CMap to
convert the character code to Unicode.

• If the font is a simple font that uses one of the predefined encodings MacRomanEncoding,
MacExpertEncoding, or WinAnsiEncoding, or that has an encoding whose Differences array includes
only character names taken from the Adobe standard Latin character set and the set of named characters
in the Symbol font (see Annex D):

a) Map the character code to a character name according to Table D.1 and the font’s Differences
array.

© Adobe Systems Incorporated 2008 – All rights reserved 293

PDF 32000-1:2008

b) Look up the character name in the Adobe Glyph List (see the Bibliography) to obtain the
corresponding Unicode value.

• If the font is a composite font that uses one of the predefined CMaps listed in Table 118 (except Identity–H
and Identity–V) or whose descendant CIDFont uses the Adobe-GB1, Adobe-CNS1, Adobe-Japan1, or
Adobe-Korea1 character collection:

a) Map the character code to a character identifier (CID) according to the font’s CMap.

b) Obtain the registry and ordering of the character collection used by the font’s CMap (for example,
Adobe and Japan1) from its CIDSystemInfo dictionary.

c) Construct a second CMap name by concatenating the registry and ordering obtained in step (b) in
the format registry–ordering–UCS2 (for example, Adobe–Japan1–UCS2).

d) Obtain the CMap with the name constructed in step (c) (available from the ASN Web site; see the
Bibliography).

e) Map the CID obtained in step (a) according to the CMap obtained in step (d), producing a
Unicode value.

NOTE Type 0 fonts whose descendant CIDFonts use the Adobe-GB1, Adobe-CNS1, Adobe-Japan1, or Adobe-
Korea1 character collection (as specified in the CIDSystemInfo dictionary) shall have a supplement number
corresponding to the version of PDF supported by the conforming reader. See Table 3 for a list of the character
collections corresponding to a given PDF version. (Other supplements of these character collections can be
used, but if the supplement is higher-numbered than the one corresponding to the supported PDF version,
only the CIDs in the latter supplement are considered to be standard CIDs.)

If these methods fail to produce a Unicode value, there is no way to determine what the character code
represents in which case a conforming reader may choose a character code of their choosing.

9.10.3 ToUnicode CMaps

The CMap defined in the ToUnicode entry of the font dictionary shall follow the syntax for CMaps introduced in
9.7.5, "CMaps" and fully documented in Adobe Technical Note #5014, Adobe CMap and CIDFont Files
Specification. Additional guidance regarding the CMap defined in this entry is provided in Adobe Technical Note
#5411, ToUnicode Mapping File Tutorial. This CMap differs from an ordinary one in these ways:

• The only pertinent entry in the CMap stream dictionary (see Table 120) is UseCMap, which may be used if
the CMap is based on another ToUnicode CMap.

• The CMap file shall contain begincodespacerange and endcodespacerange operators that are
consistent with the encoding that the font uses. In particular, for a simple font, the codespace shall be one
byte long.

• It shall use the beginbfchar, endbfchar, beginbfrange, and endbfrange operators to define the mapping
from character codes to Unicode character sequences expressed in UTF-16BE encoding.

EXAMPLE 1 This example illustrates a Type 0 font that uses the Identity-H CMap to map from character codes to CIDs
and whose descendant CIDFont uses the Identity mapping from CIDs to TrueType glyph indices. Text
strings shown using this font simply use a 2-byte glyph index for each glyph. In the absence of a
ToUnicode entry, no information would be available about what the glyphs mean.

14 0 obj

<< /Type /Font
 /Subtype /Type0
 /BaseFont /Ryumin−Light
 /Encoding /Identity−H
 /DescendantFonts [15 0 R]
 /ToUnicode 16 0 R

PDF 32000-1:2008

294 © Adobe Systems Incorporated 2008 – All rights reserved

>>
endobj

15 0 obj

<< /Type /Font
 /Subtype /CIDFontType2
 /BaseFont /Ryumin−Light
 /CIDSystemInfo 17 0 R
 /FontDescriptor 18 0 R
 /CIDToGIDMap /Identity

>>
endobj

EXAMPLE 2 In this example, the value of the ToUnicode entry is a stream object that contains the definition of the
CMap.

The begincodespacerange and endcodespacerange operators define the source character code range
to be the 2-byte character codes from < 00 00 > to < FF FF >. The specific mappings for several of the
character codes are shown.

16 0 obj

<< /Length 433 >>
stream
/CIDInit /ProcSet findresource begin
12 dict begin
begincmap
/CIDSystemInfo
<< /Registry (Adobe)
/Ordering (UCS)
/Supplement 0
>> def
/CMapName /Adobe−Identity−UCS def
/CMapType 2 def
1 begincodespacerange
< 0000 > < FFFF >
endcodespacerange
2 beginbfrange
< 0000 > < 005E > < 0020 >
< 005F > < 0061 > [< 00660066 > < 00660069 > < 00660066006C >]
endbfrange
1 beginbfchar
<3A51> <D840DC3E>
endbfchar
endcmap
CMapName currentdict /CMap defineresource pop
end
end
endstream
endobj
< 00 00 > to < 00 5E > are mapped to the Unicode values U+0020 to U+007E This is followed by the
definition of a mapping where each character code represents more than one Unicode value:

< 005F > < 0061 > [< 00660066 > < 00660069 > < 00660066006C >]

In this case, the original character codes are the glyph indices for the ligatures ff, fi, and ffl. The entry
defines the mapping from the character codes < 00 5F >, < 00 60 >, and < 00 61 > to the strings of Unicode
values with a Unicode scalar value for each character in the ligature: U+0066 U+0066 are the Unicode
values for the character sequence f f, U+0066 U+0069 for f i, and U+0066 U+0066 U+006c for f f l.

Finally, the character code < 3A 51> is mapped to the Unicode value U+2003E, which is expressed by the
byte sequence <D840DC3E> in UTF-16BE encoding.

© Adobe Systems Incorporated 2008 – All rights reserved 295

PDF 32000-1:2008

EXAMPLE 2 in this sub-clause illustrates several extensions to the way destination values may be defined. To
support mappings from a source code to a string of destination codes, this extension has been made to the
ranges defined after a beginbfchar operator:

n beginbfchar
srcCode dstString
endbfchar

where dstString may be a string of up to 512 bytes. Likewise, mappings after the beginbfrange operator may
be defined as:

n beginbfrange
srcCode1 srcCode2 dstString
endbfrange

In this case, the last byte of the string shall be incremented for each consecutive code in the source code
range.

When defining ranges of this type, the value of the last byte in the string shall be less than or equal to 255 −
 (srcCode2 − srcCode1). This ensures that the last byte of the string shall not be incremented past 255;
otherwise, the result of mapping is undefined.

To support more compact representations of mappings from a range of source character codes to a
discontiguous range of destination codes, the CMaps used for the ToUnicode entry may use this syntax for the
mappings following a beginbfrange definition.

n beginbfrange
srcCode1 srcCode2 [dstString1 dstString2 … dstStringm]
endbfrange

Consecutive codes starting with srcCode1 and ending with srcCode2 shall be mapped to the destination strings
in the array starting with dstString1 and ending with dstStringm . The value of dstString can be a string of up to
512 bytes. The value of m represents the number of continuous character codes in the source character code
range.

m = srcCode2 - srcCode1 + 1

PDF 32000-1:2008

296 © Adobe Systems Incorporated 2008 – All rights reserved

10 Rendering

10.1 General

Nearly all of the rendering facilities that are under the control of a PDF file pertain to the reproduction of colour.
Colours shall be rendered by a conforming reader using the following multiple-step process outlined.

NOTE 1 The PDF imaging model separates graphics (the specification of shapes and colours) from rendering
(controlling a raster output device). Figures 20 and 21 in 8.6.3, "Colour Space Families" illustrate this division.
8, "Graphics" describes the facilities for specifying the appearance of pages in a device-independent way. This
clause describes the facilities for controlling how shapes and colours are rendered on the raster output device.
All of the facilities discussed here depend on the specific characteristics of the output device. PDF files that are
intended to be device-independent should limit themselves to the general graphics facilities described in 8,
"Graphics".

Depending on the current colour space and on the characteristics of the device, it is not always necessary to
perform every step.

a) If a colour has been specified in a CIE-based colour space (see 8.6.5, "CIE-Based Colour Spaces"), it shall
first be transformed to the native colour space of the raster output device (also called its process colour
model).

b) If a colour has been specified in a device colour space that is inappropriate for the output device (for
example, RGB colour with a CMYK or grayscale device), a colour conversion function shall be invoked.

c) The device colour values shall now be mapped through transfer functions, one for each colour component.

NOTE 2 The transfer functions compensate for peculiarities of the output device, such as nonlinear gray-level
response. This step is sometimes called gamma correction.

d) If the device cannot reproduce continuous tones, but only certain discrete colours such as black and white
pixels, a halftone function shall be invoked, which approximates the desired colours by means of patterns
of pixels.

e) Finally, scan conversion shall be performed to mark the appropriate pixels of the raster output device with
the requested colours.

Once these operations have been performed for all graphics objects on the page, the resulting raster data shall
be used to mark the physical output medium, such as pixels on a display or ink on a printed page. A PDF file
may specify very little about the properties of the physical medium on which the output will be produced; that
information may be obtained from the following sources by a conforming reader:

• The media box and a few other entries in the page dictionary (see 14.11.2, "Page Boundaries").

• An interactive dialogue conducted when the user requests viewing or printing.

• A job ticket, either embedded in the PDF file or provided separately, that may specify detailed instructions
for imposing PDF pages onto media and for controlling special features of the output device. Various
standards exist for the format of job tickets. Two of them, JDF (Job Definition Format) and PJTF (Portable
Job Ticket Format), are described in the CIP4 document JDF Specification and in Adobe Technical Note
#5620, Portable Job Ticket Format (see the Bibliography), respectively.

Table 58 in 8.4.5, "Graphics State Parameter Dictionaries" lists the various device-dependent graphics state
parameters that may be used to control certain aspects of rendering. To invoke these parameters, the gs
operator shall be used.

© Adobe Systems Incorporated 2008 – All rights reserved 297

PDF 32000-1:2008

10.2 CIE-Based Colour to Device Colour

To render CIE-based colours on an output device, the conforming reader shall convert from the specified CIE-
based colour space to the device’s native colour space (typically DeviceGray, DeviceRGB, or DeviceCMYK),
taking into account the known properties of the device.

NOTE 1 As discussed in 8.6.5, "CIE-Based Colour Spaces" CIE-based colour is based on a model of human colour
perception. The goal of CIE-based colour rendering is to produce output in the device’s native colour space
that accurately reproduces the requested CIE-based colour values as perceived by a human observer. CIE-
based colour specification and rendering are a feature of PDF 1.1 (CalGray, CalRGB, and Lab) and PDF 1.3
(ICCBased).

NOTE 2 The conversion from CIE-based colour to device colour is complex, and the theory on which it is based is
beyond the scope of this specification. The algorithm has many parameters, including an optional, full three-
dimensional colour lookup table. The colour fidelity of the output depends on having these parameters properly
set, usually by a method that includes some form of calibration. The colours that a device can produce are
characterized by a device profile, which is usually specified by an ICC profile associated with the device (and
entirely separate from the profile that is specified in an ICCBased colour space).

NOTE 3 PDF has no equivalent of the PostScript colour rendering dictionary. The means by which a device profile is
associated with a conforming reader’s output device are implementation-dependent and not specified in a PDF
file. Typically, this is done through a colour management system (CMS) that is provided by the operating
system. Beginning with PDF 1.4, a PDF file can also specify one or more output intents providing possible
profiles that may be used to process the file (see 14.11.5, "Output Intents").

Conversion from a CIE-based colour value to a device colour value requires two main operations:

a) The CIE-based colour value shall be adjusted according to a CIE-based gamut mapping function.

NOTE 4 A gamut is a subset of all possible colours in some colour space. A page description has a source gamut
consisting of all the colours it uses. An output device has a device gamut consisting of all the colours it can
reproduce. This step transforms colours from the source gamut to the device gamut in a way that attempts to
preserve colour appearance, visual contrast, or some other explicitly specified rendering intent (see 8.6.5.8,
"Rendering Intents").

b) A corresponding device colour value shall be generated according to a CIE-based colour mapping
function. For a given CIE-based colour value, this function shall compute a colour value in the device’s
native colour space.

The CIE-based gamut and colour mapping functions shall be applied only to colour values presented in a CIE-
based colour space. Colour values in device colour spaces directly control the device colour components
though this may be altered by the DefaultGray, DefaultRGB, and DefaultCMYK colour space resources (see
8.6.5.6, "Default Colour Spaces").

The source gamut shall be specified by the information contained in the definition of the CIE-based colour
space when selected. This specification shall be device-independent. The corresponding properties of the
output device shall be given in the device profile associated with the device. The gamut mapping and colour
mapping functions are part of the implementation of the conforming reader.

10.3 Conversions among Device Colour Spaces

10.3.1 General

Each raster output device has a native colour space, which typically is one of the standard device colour
spaces (DeviceGray, DeviceRGB, or DeviceCMYK). In other words, most devices support reproduction of
colours according to a grayscale (monochrome), RGB (red-green-blue), or CMYK (cyan-magenta-yellow-black)
model. If the device supports continuous-tone output, reproduction shall occur directly. Otherwise, it shall be
accomplished by means of halftoning.

PDF 32000-1:2008

298 © Adobe Systems Incorporated 2008 – All rights reserved

A device’s native colour space is also called its process colour model. Process colours are ones that are
produced by combinations of one or more standard process colorants. Colours specified in any device or CIE-
based colour space shall be rendered as process colours. A device may also support additional spot colorants,
which shall be painted only by means of Separation or DeviceN colour spaces. They shall not be involved in
the rendering of device or CIE-based colour spaces, nor shall they be subject to the conversions described in
the Note.

NOTE Some devices provide a native colour space that is not one of the three named previously but consists of a
different combination of colorants. In that case, conversion from the standard device colour spaces to the
device’s native colour space may be performed by the conforming reader in a manner of its own choosing.

Knowing the native colour space and other output capabilities of the device, the conforming reader shall
automatically convert the colour values specified in a file to those appropriate for the device’s native colour
space. If the file specifies colours directly in the device’s native colour space, no conversions shall be
performed.

EXAMPLE If a file specifies colours in the DeviceRGB colour space but the device supports grayscale (such as a
monochrome display) or CMYK (such as a colour printer), the conforming reader shall perform the
necessary conversions.

The algorithms used to convert among device colour spaces are very simple. As perceived by a human viewer,
these conversions produce only crude approximations of the original colours. More sophisticated control over
colour conversion may be achieved by means of CIE-based colour specification and rendering. Additionally,
device colour spaces may be remapped into CIE-based colour spaces (see 8.6.5.6, "Default Colour Spaces").

10.3.2 Conversion between DeviceGray and DeviceRGB

Black, white, and intermediate shades of gray can be considered special cases of RGB colour. A grayscale
value shall be described by a single number: 0.0 corresponds to black, 1.0 to white, and intermediate values to
different gray levels.

A gray level shall be equivalent to an RGB value with all three components the same. In other words, the RGB
colour value equivalent to a specific gray value shall be

The gray value for a given RGB value shall be computed according to the NTSC video standard, which
determines how a colour television signal is rendered on a black-and-white television set:

10.3.3 Conversion between DeviceGray and DeviceCMYK

Nominally, a gray level is the complement of the black component of CMYK. Therefore, the CMYK colour value
equivalent to a specific gray level shall be

To obtain the equivalent gray level for a given CMYK value, the contributions of all components shall be taken
into account:

red gray=
green gray=

blue gray=

gray 0.3 red× 0.59 green× 0.11 blu×+ +=

cyan 0.0=
magenta 0.0=

yellow 0.0=
black 1.0 gray–=

gray 1.0 min(1.0· 0.3 cyan× 0.59 magenta× 0.11 yellow× black+ + +,–=

© Adobe Systems Incorporated 2008 – All rights reserved 299

PDF 32000-1:2008

The interactions between the black component and the other three are elaborated in 10.3.4.

10.3.4 Conversion from DeviceRGB to DeviceCMYK

Conversion of a colour value from RGB to CMYK is a two-step process. The first step shall be to convert the
red-green-blue value to equivalent cyan, magenta, and yellow components. The second step shall be to
generate a black component and alter the other components to produce a better approximation of the original
colour.

NOTE 1 The subtractive colour primaries cyan, magenta, and yellow are the complements of the additive primaries red,
green, and blue.

EXAMPLE A cyan ink subtracts the red component of white light. In theory, the conversion is very simple:

A colour that is 0.2 red, 0.7 green, and 0.4 blue can also be expressed as 1.0 − 0.2 = 0.8 cyan, 1.0 −
 0.7 = 0.3 magenta, and 1.0 − 0.4 = 0.6 yellow.

NOTE 2 Logically, only cyan, magenta, and yellow are needed to generate a printing colour. An equal level of cyan,
magenta, and yellow should create the equivalent level of black. In practice, however, coloured printing inks do
not mix perfectly; such combinations often form dark brown shades instead of true black. To obtain a truer
colour rendition on a printer, true black ink is often substituted for the mixed-black portion of a colour. Most
colour printers support a black component (the K component of CMYK). Computing the quantity of this
component requires some additional steps:

Black generation calculates the amount of black to be used when trying to reproduce a particular colour.

Undercolor removal reduces the amounts of the cyan, magenta, and yellow components to compensate for the
amount of black that was added by black generation.

The complete conversion from RGB to CMYK shall be as follows, where BG (k) and UCR (k) are invocations of
the black-generation and undercolor-removal functions, respectively:

The black-generation and undercolor-removal functions shall be defined as PDF function dictionaries (see
7.10, "Functions") that are parameters in the graphics state. They shall be specified as the values of the BG
and UCR (or BG2 and UCR2) entries in a graphics state parameter dictionary (see Table 58). Each function
shall be called with a single numeric operand and shall return a single numeric result.

The input of both the black-generation and undercolor-removal functions shall be k, the minimum of the
intermediate c, m, and y values that have been computed by subtracting the original red, green, and blue
components from 1.0.

NOTE 3 Nominally, k is the amount of black that can be removed from the cyan, magenta, and yellow components and
substituted as a separate black component.

cyan 1.0 red–=
magenta 1.0 green–=

yellow 1.0 blue–=

c 1.0 red–=
m 1.0 green–=
y 1.0 blue–=
k min c m y, ,()=

cyan min 1.0 max 0.0 c UCR k()–,(),)(=
magenta min 1.0 max 0.0 m UCR k()–,(),)(=

yellow min 1.0 max 0.0 y UCR k()–,(),)(=
black min 1.0 max 0.0 BG k(),(),)(=

PDF 32000-1:2008

300 © Adobe Systems Incorporated 2008 – All rights reserved

The black-generation function shall compute the black component as a function of the nominal k value. It may
simply return its k operand unchanged, or it may return a larger value for extra black, a smaller value for less
black, or 0.0 for no black at all.

The undercolor-removal function shall compute the amount to subtract from each of the intermediate c, m, and
y values to produce the final cyan, magenta, and yellow components. It may simply return its k operand
unchanged, or it may return 0.0 (so that no colour is removed), some fraction of the black amount, or even a
negative amount, thereby adding to the total amount of colorant.

The final component values that result after applying black generation and undercolor removal should be in the
range 0.0 to 1.0. If a value falls outside this range, the nearest valid value shall be substituted automatically
without error indication.

NOTE 4 This substitution is indicated explicitly by the min and max operations in the preceding formulas.

The correct choice of black-generation and undercolor-removal functions depends on the characteristics of the
output device. Each device shall be configured with default values that are appropriate for that device.

NOTE 5 See 11.7.5, "Rendering Parameters and Transparency" and, in particular, 11.7.5.3, "Rendering Intent and
Colour Conversions" for further discussion of the role of black-generation and undercolor-removal functions in
the transparent imaging model.

10.3.5 Conversion from DeviceCMYK to DeviceRGB

Conversion of a colour value from CMYK to RGB is a simple operation that does not involve black generation
or undercolour removal:

The black component shall be added to each of the other components, which shall then be converted to their
complementary colours by subtracting them each from 1.0.

10.4 Transfer Functions

In the sequence of steps for processing colours, the conforming reader shall apply the transfer function after
performing any needed conversions between colour spaces, but before applying a halftone function, if
necessary. Each colour component shall have its own separate transfer function; there shall not be interaction
between components.

NOTE 1 Starting with PDF 1.2, a transfer function may be used to adjust the values of colour components to
compensate for nonlinear response in an output device and in the human eye. Each component of a device
colour space—for example, the red component of the DeviceRGB space—is intended to represent the
perceived lightness or intensity of that colour component in proportion to the component’s numeric value.

NOTE 2 Many devices do not actually behave this way, however; the purpose of a transfer function is to compensate for
the device’s actual behaviour. This operation is sometimes called gamma correction (not to be confused with
the CIE-based gamut mapping function performed as part of CIE-based colour rendering).

Transfer functions shall always operate in the native colour space of the output device, regardless of the colour
space in which colours were originally specified. (For example, for a CMYK device, the transfer functions apply
to the device’s cyan, magenta, yellow, and black colour components, even if the colours were originally
specified in, for example, a DeviceRGB or CalRGB colour space.) The transfer function shall be called with a
numeric operand in the range 0.0 to 1.0 and shall return a number in the same range. The input shall be the
value of a colour component in the device’s native colour space, either specified directly or produced by
conversion from some other colour space. The output shall be the transformed component value to be
transmitted to the device (after halftoning, if necessary).

red 1.0 min 1.0 cyan black+,)(–=
green 1.0 min 1.0 magenta black+,)(–=

blue 1.0 min 1.0 yellow black+,)(–=

© Adobe Systems Incorporated 2008 – All rights reserved 301

PDF 32000-1:2008

Both the input and the output of a transfer function shall always be interpreted as if the corresponding colour
component were additive (red, green, blue, or gray): the greater the numeric value, the lighter the colour. If the
component is subtractive (cyan, magenta, yellow, black, or a spot colour), it shall be converted to additive form
by subtracting it from 1.0 before it is passed to the transfer function. The output of the function shall always be
in additive form and shall be passed on to the halftone function in that form.

Starting with PDF 1.2, transfer functions shall be defined as PDF function objects (see 7.10, "Functions").
There are two ways to specify transfer functions:

• The current transfer function parameter in the graphics state shall consist of either a single transfer
function or an array of four separate transfer functions, one each for red, green, blue, and gray or their
complements cyan, magenta, yellow, and black. If only a single function is specified, it shall apply to all
components. An RGB device shall use the first three, a monochrome device shall use the gray transfer
function only, and a CMYK device shall use all four. The current transfer function may be specified as the
value of the TR or TR2 entry in a graphics state parameter dictionary; see Table 58.

• The current halftone parameter in the graphics state may specify transfer functions as optional entries in
halftone dictionaries (see 10.5.5, "Halftone Dictionaries"). This is the only way to set transfer functions for
nonprimary colour components or for any component in devices whose native colour space uses
components other than the ones listed previously. A transfer function specified in a halftone dictionary shall
override the corresponding one specified by the current transfer function parameter in the graphics state.

In addition to their intended use for gamma correction, transfer functions may be used to produce a variety of
special, device-dependent effects. Because transfer functions produce device-dependent effects, a page
description that is intended to be device-independent shall not alter them.

When the current colour space is DeviceGray and the output device’s native colour space is DeviceCMYK, a
conforming reader shall use only the gray transfer function. The normal conversion from DeviceGray to
DeviceCMYK produces 0.0 for the cyan, magenta, and yellow components. These components shall not be
passed through their respective transfer functions but are rendered directly, producing output containing no
coloured inks. This special case exists for compatibility with existing conforming readers that use a transfer
function to obtain special effects on monochrome devices, and shall apply only to colours specified in the
DeviceGray colour space.

NOTE 3 See 11.7.5, "Rendering Parameters and Transparency" and, in particular, 11.7.5.2, "Halftone and Transfer
Function" for further discussion of the role of transfer functions in the transparent imaging model.

10.5 Halftones

10.5.1 General

Halftoning is a process by which continuous-tone colours are approximated on an output device that can
achieve only a limited number of discrete colours. Colours that the device cannot produce directly are
simulated by using patterns of pixels in the colours available.

NOTE 1 Perhaps the most familiar example is the rendering of gray tones with black and white pixels, as in a
newspaper photograph.

Some output devices can reproduce continuous-tone colours directly. Halftoning is not required for such
devices; after gamma correction by the transfer functions, the colour components shall be transmitted directly
to the device. On devices that do require halftoning, it shall occur after all colour components have been
transformed by the applicable transfer functions. The input to the halftone function shall consist of continuous-
tone, gamma-corrected colour components in the device’s native colour space. Its output shall consist of pixels
in colours the device can reproduce.

PDF provides a high degree of control over details of the halftoning process.

NOTE 2 When rendering on low-resolution displays, fine control over halftone patterns is needed to achieve the best
approximations of gray levels or colours and to minimize visual artifacts.

PDF 32000-1:2008

302 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 3 In colour printing, independent halftone screens can be specified for each of several colorants.

NOTE 4 Remember that everything pertaining to halftones is, by definition, device-dependent. In general, when a PDF
file provides its own halftone specifications, it sacrifices portability. Associated with every output device is a
default halftone definition that is appropriate for most purposes. Only relatively sophisticated files need to
define their own halftones to achieve special effects. For correct results, a PDF file that defines a new halftone
depends on certain assumptions about the resolution and orientation of device space. The best choice of
halftone parameters often depends on specific physical properties of the output device, such as pixel shape,
overlap between pixels, and the effects of electronic or mechanical noise.

All halftones are defined in device space, and shall be unaffected by the current transformation matrix.

10.5.2 Halftone Screens

In general, halftoning methods are based on the notion of a halftone screen, which divides the array of device
pixels into cells that may be modified to produce the desired halftone effects. A screen is defined by
conceptually laying a uniform rectangular grid over the device pixel array. Each pixel belongs to one cell of the
grid; a single cell typically contains many pixels. The screen grid shall be defined entirely in device space and
shall be unaffected by modifications to the current transformation matrix.

NOTE This property is essential to ensure that adjacent areas coloured by halftones are properly stitched together
without visible seams.

On a bilevel (black-and-white) device, each cell of a screen may be made to approximate a shade of gray by
painting some of the cell’s pixels black and some white. Numerically, the gray level produced within a cell shall
be the ratio of white pixels to the total number of pixels in the cell. A cell containing n pixels can render n + 1
different gray levels, ranging from all pixels black to all pixels white. A gray value g in the range 0.0 to 1.0 shall
be produced by making i pixels white, where i = floor (g × n).

The foregoing description also applies to colour output devices whose pixels consist of primary colours that are
either completely on or completely off. Most colour printers, but not colour displays, work this way. Halftoning
shall be applied to each colour component independently, producing shades of that colour.

Colour components shall be presented to the halftoning machinery in additive form, regardless of whether they
were originally specified additively (RGB or gray) or subtractively (CMYK or tint). Larger values of a colour
component represent lighter colours—greater intensity in an additive device such as a display or less ink in a
subtractive device such as a printer. Transfer functions produce colour values in additive form; see 10.4,
"Transfer Functions".

10.5.3 Spot Functions

A common way of defining a halftone screen is by specifying a frequency, angle, and spot function. The
frequency indicates the number of halftone cells per inch; the angle indicates the orientation of the grid lines
relative to the device coordinate system. As a cell’s desired gray level varies from black to white, individual
pixels within the cell change from black to white in a well-defined sequence: if a particular gray level includes
certain white pixels, lighter grays will include the same white pixels along with some additional ones. The order
in which pixels change from black to white for increasing gray levels shall be determined by a spot function,
which specifies that order in an indirect way that minimizes interactions with the screen frequency and angle.

Consider a halftone cell to have its own coordinate system: the centre of the cell is the origin and the corners
are at coordinates ±1.0 horizontally and vertically. Each pixel in the cell is centred at horizontal and vertical
coordinates that both lie in the range −1.0 to +1.0. For each pixel, the spot function shall be invoked with the
pixel’s coordinates as input and shall return a single number in the range −1.0 to +1.0, defining the pixel’s
position in the whitening order.

The specific values the spot function returns are not significant; all that matters are the relative values returned
for different pixels. As a cell’s gray level varies from black to white, the first pixel whitened shall be the one for
which the spot function returns the lowest value, the next pixel shall be the one with the next higher spot

© Adobe Systems Incorporated 2008 – All rights reserved 303

PDF 32000-1:2008

function value, and so on. If two pixels have the same spot function value, their relative order shall be chosen
arbitrarily.

PDF provides built-in definitions for many of the most commonly used spot functions that a conforming reader
shall implement. A halftone may simply specify any of these predefined spot functions by name instead of
giving an explicit function definition.

EXAMPLE The name SimpleDot designates a spot function whose value is inversely related to a pixel’s distance
from the center of the halftone cell. This produces a “dot screen” in which the black pixels are clustered
within a circle whose area is inversely proportional to the gray level. The name Line designates a spot
function whose value is the distance from a given pixel to a line through the center of the cell, producing a
“line screen” in which the white pixels grow away from that line.

Table 128 shows the predefined spot functions. The table gives the mathematical definition of each function
along with the corresponding PostScript language code as it would be defined in a PostScript calculator
function (see 7.10.5, "Type 4 (PostScript Calculator) Functions"). The image accompanying each function
shows how the relative values of the function are distributed over the halftone cell, indicating the approximate
order in which pixels are whitened. Pixels corresponding to darker points in the image are whitened later than
those corresponding to lighter points.

Table 128 – Predefined spot functions

Name Appearance Definition

SimpleDot 1 − (x 2 + y 2)
{ dup mul exch dup mul add 1 exch sub }

InvertedSimpleDot x 2 + y 2 − 1
{ dup mul exch dup mul add 1 sub }

DoubleDot

{ 360 mul sin 2 div exch 360 mul sin 2 div add }

InvertedDoubleDot

{ 360 mul sin 2 div exch 360 mul sin 2 div add neg }

360 x×()sin
2

------------------------------ 360 y×()sin
2

------------------------------+

360 x×()sin
2

------------------------------ 360 y×()sin
2

------------------------------+⎝
⎛– ⎠

⎞

PDF 32000-1:2008

304 © Adobe Systems Incorporated 2008 – All rights reserved

CosineDot

{ 180 mul cos exch 180 mul cos add 2 div }

Double

{ 360 mul sin 2 div exch 2 div 360 mul sin 2 div add }

InvertedDouble

{ 360 mul sin 2 div exch 2 div 360 mul sin 2
div add neg }

Line − | y |
{ exch pop abs neg }

LineX x
{ pop }

LineY y
{ exch pop }

Table 128 – Predefined spot functions (continued)

Name Appearance Definition

180 x×()cos
2

------------------------------- 180 y×()cos
2

-------------------------------+

360 x
2
---×⎝ ⎠

⎛ ⎞sin

2
------------------------------- 360 y×()sin

2
------------------------------+

360 x
2
---×⎝ ⎠

⎛ ⎞sin

2
------------------------------- 360 y×()sin

2
------------------------------+

⎠
⎟
⎟
⎟
⎞

⎝
⎜
⎜
⎜
⎛

–

© Adobe Systems Incorporated 2008 – All rights reserved 305

PDF 32000-1:2008

Round if | x | + | y | ≤ 1 then 1 − (x 2 + y 2)
else (| x | − 1) 2 + (| y | − 1) 2 − 1
{ abs exch abs
 2 copy add 1 le

{ dup mul exch dup mul add 1 exch sub }
{ 1 sub dup mul exch 1 sub dup mul add 1
sub }

ifelse }

Ellipse let w = (3 × | x |) + (4 × | y |) − 3

if w < 0 then

else if w > 1 then

else 0.5 − w
{ abs exch abs 2 copy 3 mul exch 4 mul add 3
sub dup 0 lt

{ pop dup mul exch 0.75 div dup mul add
 4 div 1 exch sub }
{ dup 1 gt

{ pop 1 exch sub dup mul
 exch 1 exch sub 0.75 div dup
mul add
 4 div 1 sub }
{ 0.5 exch sub exch pop exch pop }

ifelse }
ifelse }

EllipseA 1 − (x 2 + 0.9 × y 2)
{ dup mul 0.9 mul exch dup mul add 1 exch sub }

InvertedEllipseA x 2 + 0.9 × y 2 − 1
{ dup mul 0.9 mul exch dup mul add 1 sub }

Table 128 – Predefined spot functions (continued)

Name Appearance Definition

1
x2 y

0.75
----------⎝ ⎠

⎛ ⎞ 2
+

4
------------------------------–

1 x–()2 1 y–
0.75

---------------⎝ ⎠
⎛ ⎞ 2

+

4
-- 1–

PDF 32000-1:2008

306 © Adobe Systems Incorporated 2008 – All rights reserved

EllipseB

{ dup 5 mul 8 div mul exch dup mul exch add sqrt
 1 exch sub }

EllipseC 1 − (0.9 × x2 + y2)
{ dup mul exch dup mul 0.9 mul add 1 exch sub }

InvertedEllipseC 0.9 × x 2 + y 2 − 1
{ dup mul exch dup mul 0.9 mul add 1 sub }

Square −max (| x | , | y |)
{ abs exch abs 2 copy lt
{ exch }
if
 pop neg }

Cross −min (| x | , | y |)
{ abs exch abs 2 copy gt
{ exch }
if
 pop neg }

Rhomboid

{ abs exch abs 0.9 mul add 2 div }

Table 128 – Predefined spot functions (continued)

Name Appearance Definition

1 x2 5
8
--- y2×+–

0.9 x× y+
2

© Adobe Systems Incorporated 2008 – All rights reserved 307

PDF 32000-1:2008

Figure 49 illustrates the effects of some of the predefined spot functions.

Figure 49 – Various halftoning effects

10.5.4 Threshold Arrays

Another way to define a halftone screen is with a threshold array that directly controls individual device pixels in
a halftone cell. This technique provides a high degree of control over halftone rendering. It also permits halftone
cells to be arbitrary rectangles, whereas those controlled by a spot function are always square.

A threshold array is much like a sampled image—a rectangular array of pixel values—but shall be defined
entirely in device space. Depending on the halftone type, the threshold values occupy 8 or 16 bits each.
Threshold values nominally represent gray levels in the usual way, from 0 for black up to the maximum (255 or
65,535) for white. The threshold array shall be replicated to tile the entire device space: each pixel in device
space shall be mapped to a particular sample in the threshold array. On a bilevel device, where each pixel is
either black or white, halftoning with a threshold array shall proceed as follows:

a) For each device pixel that is to be painted with some gray level, consult the corresponding threshold value
from the threshold array.

b) If the requested gray level is less than the threshold value, paint the device pixel black; otherwise, paint it
white. Gray levels in the range 0.0 to 1.0 correspond to threshold values from 0 to the maximum available
(255 or 65,535).

Diamond if | x | + | y | ≤ 0.75 then 1 − (x 2 + y 2)
else if | x | + | y | ≤ 1.23 then 1 − (0.85 × | x | + | y |)
else (| x | − 1) 2 + (| y | − 1) 2 − 1
{ abs exch abs 2 copy add 0.75 le

{ dup mul exch dup mul add 1 exch sub }
{ 2 copy add 1.23 le

{ 0.85 mul add 1 exch sub }
{ 1 sub dup mul exch 1 sub du
mul add 1 sub }

ifelse }
ifelse }

Table 128 – Predefined spot functions (continued)

Name Appearance Definition

150 per inch at 45
Round dot screen

100 per inch at 45
Round dot screen

50 per inch at 45
Round dot screen

75 per inch at 45
Line screen

PDF 32000-1:2008

308 © Adobe Systems Incorporated 2008 – All rights reserved

A threshold value of 0 shall be treated as if it were 1; therefore, a gray level of 0.0 paints all pixels black,
regardless of the values in the threshold array.

This scheme easily generalizes to monochrome devices with multiple bits per pixel, where each pixel can
directly represent intermediate gray levels in addition to black and white. For any device pixel that is specified
with some in-between gray level, the halftoning algorithm shall consult the corresponding value in the threshold
array to determine whether to use the next-lower or next-higher representable gray level. In this situation, the
threshold values do not represent absolute gray levels, but rather gradations between any two adjacent
representable gray levels.

EXAMPLE If there are 2 bits per pixel, each pixel can directly represent one of four different gray levels: black, dark
gray, light gray, or white, encoded as 0, 1, 2, and 3, respectively.

NOTE A halftone defined in this way can also be used with colour displays that have a limited number of values for
each colour component. The red, green, and blue components are simply treated independently as gray
levels, applying the appropriate threshold array to each. (This technique also works for a screen defined as a
spot function, since the spot function is used to compute a threshold array internally.)

10.5.5 Halftone Dictionaries

10.5.5.1 General

In PDF 1.2, the graphics state includes a current halftone parameter, which determines the halftoning process
that a conforming reader shall use to perform painting operations. The current halftone may be specified as the
value of the HT entry in a graphics state parameter dictionary; see Table 58. It may be defined by either a
dictionary or a stream, depending on the type of halftone; the term halftone dictionary is used generically
throughout this clause to refer to either a dictionary object or the dictionary portion of a stream object. (The
halftones that are defined by streams are specifically identified as such in the descriptions of particular halftone
types; unless otherwise stated, they are understood to be defined by simple dictionaries instead.)

Every halftone dictionary shall have a HalftoneType entry whose value shall be an integer specifying the
overall type of halftone definition. The remaining entries in the dictionary are interpreted according to this type.
PDF supports the halftone types listed in Table 129.

NOTE 1 The dictionaries representing these halftone types contain the same entries as the corresponding PostScript
language halftone dictionaries (as described in Section 7.4 of the PostScript Language Reference, Third
Edition), with the following exceptions:

Table 129 – PDF halftone types

Type Meaning

1 Defines a single halftone screen by a frequency, angle, and spot
function.

5 Defines an arbitrary number of halftone screens, one for each colorant
or colour component (including both primary and spot colorants). The
keys in this dictionary are names of colorants; the values are halftone
dictionaries of other types, each defining the halftone screen for a single
colorant.

6 Defines a single halftone screen by a threshold array containing 8-bit
sample values.

10 Defines a single halftone screen by a threshold array containing 8-bit
sample values, representing a halftone cell that may have a nonzero
screen angle.

16 (PDF 1.3) Defines a single halftone screen by a threshold array
containing 16-bit sample values, representing a halftone cell that may
have a nonzero screen angle.

© Adobe Systems Incorporated 2008 – All rights reserved 309

PDF 32000-1:2008

The PDF dictionaries may contain a Type entry with the value Halftone, identifying the type of PDF object that
the dictionary describes.

Spot functions and transfer functions are represented by function objects instead of PostScript procedures.

Threshold arrays are specified as streams instead of files.

In type 5 halftone dictionaries, the keys for colorants shall be name objects; they may not be strings as they
may in PostScript.

Halftone dictionaries have an optional entry, HalftoneName, that identifies the halftone by name. In PDF 1.3, if
this entry is present, all other entries, including HalftoneType, are optional. At rendering time, if the output
device has a halftone with the specified name, that halftone shall be used, overriding any other halftone
parameters specified in the dictionary.

NOTE 2 This provides a way for PDF files to select the proprietary halftones supplied by some device manufacturers,
which would not otherwise be accessible because they are not explicitly defined in PDF.

If there is no HalftoneName entry, or if the requested halftone name does not exist on the device, the halftone’s
parameters shall be defined by the other entries in the dictionary, if any. If no other entries are present, the
default halftone shall be used.

NOTE 3 See 11.7.5, "Rendering Parameters and Transparency" and, in particular, “Halftone and Transfer Function” in
11.7.5.2 for further discussion of the role of halftones in the transparent imaging model.

10.5.5.2 Type 1 Halftones

Table 130 describes the contents of a halftone dictionary of type 1, which defines a halftone screen in terms of
its frequency, angle, and spot function.

Table 130 – Entries in a type 1 halftone dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes;
if present, shall be Halftone for a halftone dictionary.

HalftoneType integer (Required) A code identifying the halftone type that this
dictionary describes; shall be 1 for this type of halftone.

HalftoneName byte string (Optional) The name of the halftone dictionary.

Frequency number (Required) The screen frequency, measured in halftone cells per
inch in device space.

Angle number (Required) The screen angle, in degrees of rotation
counterclockwise with respect to the device coordinate system.
NOTE Most output devices have left-handed device

spaces. On such devices, a counterclockwise angle
in device space corresponds to a clockwise angle
in default user space and on the physical medium.

SpotFunction function or name (Required) A function object defining the order in which device
pixels within a screen cell shall be adjusted for different gray
levels, or the name of one of the predefined spot functions (see
Table 128).

AccurateScreens boolean (Optional) A flag specifying whether to invoke a special halftone
algorithm that is extremely precise but computationally
expensive; see Note 1 for further discussion. Default value:
false.

PDF 32000-1:2008

310 © Adobe Systems Incorporated 2008 – All rights reserved

If the AccurateScreens entry has a value of true, a highly precise halftoning algorithm shall be substituted in
place of the standard one. If AccurateScreens is false or not present, ordinary halftoning shall be used.

NOTE 1 Accurate halftoning achieves the requested screen frequency and angle with very high accuracy, whereas
ordinary halftoning adjusts them so that a single screen cell is quantized to device pixels. High accuracy is
important mainly for making colour separations on high-resolution devices. However, it may be computationally
expensive and therefore is ordinarily disabled.

NOTE 2 In principle, PDF permits the use of halftone screens with arbitrarily large cells—in other words, arbitrarily low
frequencies. However, cells that are very large relative to the device resolution or that are oriented at
unfavorable angles may exceed the capacity of available memory. If this happens, an error occurs. The
AccurateScreens feature often requires very large amounts of memory to achieve the highest accuracy.

EXAMPLE The following shows a halftone dictionary for a type 1 halftone.

28 0 obj

<< /Type /Halftone
 /HalftoneType 1
 /Frequency 120
 /Angle 30
 /SpotFunction /CosineDot
 /TransferFunction /Identity

>>
endobj

10.5.5.3 Type 6 Halftones

A type 6 halftone defines a halftone screen with a threshold array. The halftone shall be represented as a
stream containing the threshold values; the parameters defining the halftone shall be specified by entries in the
stream dictionary. This dictionary may contain the entries shown in Table 131 in addition to the usual entries
common to all streams (see Table 5). The Width and Height entries shall specify the dimensions of the
threshold array in device pixels; the stream shall contain Width × Height bytes, each representing a single
threshold value. Threshold values are defined in device space in the same order as image samples in image
space (see Figure 34), with the first value at device coordinates (0, 0) and horizontal coordinates changing
faster than vertical coordinates.

TransferFunction function or name (Optional) A transfer function, which overrides the current
transfer function in the graphics state for the same component.
This entry shall be present if the dictionary is a component of a
type 5 halftone (see “Type 5 Halftones” in 10.5.5.6) and
represents either a nonprimary or nonstandard primary colour
component (see 10.4, "Transfer Functions"). The name Identity
may be used to specify the identity function.

Table 131 – Additional entries specific to a type 6 halftone dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes;
if present, shall be Halftone for a halftone dictionary.

HalftoneType integer (Required) A code identifying the halftone type that this
dictionary describes; shall be 6 for this type of halftone.

HalftoneName byte string (Optional) The name of the halftone dictionary.

Width integer (Required) The width of the threshold array, in device pixels.

Height integer (Required) The height of the threshold array, in device pixels.

Table 130 – Entries in a type 1 halftone dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 311

PDF 32000-1:2008

10.5.5.4 Type 10 Halftones

Type 6 halftones specify a threshold array with a zero screen angle; they make no provision for other angles.
The type 10 halftone removes this restriction and allows the use of threshold arrays for halftones with nonzero
screen angles as well.

Halftone cells at nonzero angles can be difficult to specify because they may not line up well with scan lines
and because it may be difficult to determine where a given sampled point goes. The type 10 halftone addresses
these difficulties by dividing the halftone cell into a pair of squares that line up at zero angles with the output
device’s pixel grid. The squares contain the same information as the original cell but are much easier to store
and manipulate. In addition, they can be mapped easily into the internal representation used for all rendering.

NOTE 1 Figure 50 shows a halftone cell with a frequency of 38.4 cells per inch and an angle of 50.2 degrees,
represented graphically in device space at a resolution of 300 dots per inch. Each asterisk in the figure
represents a location in device space that is mapped to a specific location in the threshold array.

Figure 50 – Halftone cell with a nonzero angle

NOTE 2 Figure 51 shows how the halftone cell can be divided into two squares. If the squares and the original cell are
tiled across device space, the area to the right of the upper square maps exactly into the empty area of the
lower square, and vice versa (see Figure 52). The last row in the first square is immediately adjacent to the first
row in the second square and starts in the same column.

TransferFunction function or name (Optional) A transfer function, which shall override the current
transfer function in the graphics state for the same component.
This entry shall be present if the dictionary is a component of a
type 5 halftone (see “Type 5 Halftones” in 10.5.5.6) and
represents either a nonprimary or nonstandard primary colour
component (see 10.4, "Transfer Functions"). The name Identity
may be used to specify the identity function.

Table 131 – Additional entries specific to a type 6 halftone dictionary (continued)

Key Type Value

* * * * * * * * * *
* * * * * * * *

* * * * * *
* * * *

* *

* * * * * * * * * *
* * * * * * * *

* * * * * *
* * * *

* *
*

PDF 32000-1:2008

312 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 51 – Angled halftone cell divided into two squares

Figure 52 – Halftone cell and two squares tiled across device space

NOTE 3 Any halftone cell can be divided in this way. The side of the upper square (X) is equal to the horizontal
displacement from a point in one halftone cell to the corresponding point in the adjacent cell, such as those
marked by asterisks in Figure 52. The side of the lower square (Y) is the vertical displacement between the
same two points. The frequency of a halftone screen constructed from squares with sides X and Y is thus
given by

and the angle by

* * * * * * * * * *
* * * * * * * *

* * * * * *
* * * *

* *

* * * * * * * * * *
* * * * * * * *

* * * * * *
* * * *

* *
*

X

Y

a a a a a a a a a a

a a a a a a a a

a a a a a a

a a a a

a a

a a a a a a a a a a

a a a a a a a a

a a a a a a

a a a a

a a

a

b b b b b * b b b b

b b b b b b b b

b b b b b b

b b b b

b b

b b b b b b b b b b

b b b b b b b b

b b b b b b

b b b b

b b

bc c c c c * c c c c

c c c c c c c c

c c c c c c

c c c c

c c

c c c c c c c c c c

c c c c c c c c

c c c c c c

c c c c

c c

c

X

X

X

Y

Y

Y

Y

frequency resolution

X2 Y2
+

------------------------=

angle Y
X
---⎝ ⎠

⎛ ⎞atan=

© Adobe Systems Incorporated 2008 – All rights reserved 313

PDF 32000-1:2008

Like a type 6 halftone, a type 10 halftone shall be represented as a stream containing the threshold values, with
the parameters defining the halftone specified by entries in the stream dictionary. This dictionary may contain
the entries shown in Table 132 in addition to the usual entries common to all streams (see Table 5). The
Xsquare and Ysquare entries replace the type 6 halftone’s Width and Height entries.

The Xsquare and Ysquare entries shall specify the dimensions of the two squares in device pixels. The stream
shall contain Xsquare 2 + Ysquare 2 bytes, each representing a single threshold value. The contents of square
X shall be specified first, followed by those of square Y. Threshold values within each square shall be defined in
device space in the same order as image samples in image space (see Figure 34), with the first value at device
coordinates (0, 0) and horizontal coordinates changing faster than vertical coordinates.

10.5.5.5 Type 16 Halftones

Like type 10, a type 16 halftone (PDF 1.3) defines a halftone screen with a threshold array and allows nonzero
screen angles. In type 16, however, each element of the threshold array shall be 16 bits wide instead of 8. This
allows the threshold array to distinguish 65,536 levels of colour rather than only 256 levels. The threshold array
may consist of either one rectangle or two rectangles. If two rectangles are specified, they shall tile the device
space as shown in Figure 53. The last row in the first rectangle shall be immediately adjacent to the first row in
the second and shall start in the same column.

Figure 53 – Tiling of device space in a type 16 halftone

A type 16 halftone, like type 6 and type 10, shall be represented as a stream containing the threshold values,
with the parameters defining the halftone specified by entries in the stream dictionary. This dictionary may
contain the entries shown in Table 133 in addition to the usual entries common to all streams (see Table 5). The

Table 132 – Additional entries specific to a type 10 halftone dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Halftone for a halftone dictionary.

HalftoneType integer (Required) A code identifying the halftone type that this dictionary
describes; shall be 10 for this type of halftone.

HalftoneName byte string (Optional) The name of the halftone dictionary.

Xsquare integer (Required) The side of square X, in device pixels; see below.

Ysquare integer (Required) The side of square Y, in device pixels; see below.

TransferFunction function or
name

(Optional) A transfer function, which shall override the current
transfer function in the graphics state for the same component.
This entry shall be present if the dictionary is a component of a type
5 halftone (see “Type 5 Halftones” in 10.5.5.6) and represents
either a nonprimary or nonstandard primary colour component (see
10.4, "Transfer Functions"). The name Identity may be used to
specify the identity function.

Width ´ HeightHeight

Height2

Width

Width2 ´
Height2

Width2

PDF 32000-1:2008

314 © Adobe Systems Incorporated 2008 – All rights reserved

dictionary’s Width and Height entries define the dimensions of the first (or only) rectangle. The dimensions of
the second, optional rectangle are defined by the optional entries Width2 and Height2. Each threshold value
shall be represented as 2 bytes, with the high-order byte first. The stream shall contain 2 × Width × Height
bytes if there is only one rectangle or 2 × (Width × Height + Width2 × Height2) bytes if there are two
rectangles. The contents of the first rectangle are specified first, followed by those of the second rectangle.
Threshold values within each rectangle shall be defined in device space in the same order as image samples in
image space (see Figure 34), with the first value at device coordinates (0, 0) and horizontal coordinates
changing faster than vertical coordinates.

10.5.5.6 Type 5 Halftones

Some devices, particularly colour printers, require separate halftones for each individual colorant. Also, devices
that can produce named separations may require individual halftones for each separation. Halftone dictionaries
of type 5 allow individual halftones to be specified for an arbitrary number of colorants or colour components.

A type 5 halftone dictionary (Table 134) is a composite dictionary containing independent halftone definitions
for multiple colorants. Its keys shall be name objects representing the names of individual colorants or colour
components. The values associated with these keys shall be other halftone dictionaries, each defining the
halftone screen and transfer function for a single colorant or colour component. The component halftone
dictionaries shall not be of halftone type 5.

Table 133 – Additional entries specific to a type 16 halftone dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes;
if present, shall be Halftone for a halftone dictionary.

HalftoneType integer (Required) A code identifying the halftone type that this
dictionary describes; shall be 16 for this type of halftone.

HalftoneName byte string (Optional) The name of the halftone dictionary.

Width integer (Required) The width of the first (or only) rectangle in the
threshold array, in device pixels.

Height integer (Required) The height of the first (or only) rectangle in the
threshold array, in device pixels.

Width2 integer (Optional) The width of the optional second rectangle in the
threshold array, in device pixels. If this entry is present, the
Height2 entry shall be present as well. If this entry is absent, the
Height2 entry shall also be absent, and the threshold array has
only one rectangle.

Height2 integer (Optional) The height of the optional second rectangle in the
threshold array, in device pixels.

TransferFunction function or name (Optional) A transfer function, which shall override the current
transfer function in the graphics state for the same component.
This entry shall be present if the dictionary is a component of a
type 5 halftone (see 10.5.5.6, "Type 5 Halftones") and
represents either a nonprimary or nonstandard primary colour
component (see 10.4, "Transfer Functions"). The name Identity
may be used to specify the identity function.

© Adobe Systems Incorporated 2008 – All rights reserved 315

PDF 32000-1:2008

The colorants or colour components represented in a type 5 halftone dictionary (aside from the Default entry)
fall into two categories:

• Primary colour components for the standard native device colour spaces (Gray for DeviceGray; Red,
Green, and Blue for DeviceRGB; Cyan, Magenta, Yellow, and Black for DeviceCMYK;).

• Nonstandard colour components for use as spot colorants in Separation and DeviceN colour spaces.
Some of these may also be used as process colorants if the native colour space is nonstandard.

When a halftone dictionary of some other type appears as the value of an entry in a type 5 halftone dictionary,
it shall apply only to the single colorant or colour component named by that entry’s key. This is in contrast to
such a dictionary’s being used as the current halftone parameter in the graphics state, which shall apply to all
colour components. If nonprimary colorants are requested when the current halftone is defined by any means
other than a type 5 halftone dictionary, the gray halftone screen and transfer function shall be used for all such
colorants.

EXAMPLE In this example, the halftone dictionaries for the colour components and for the default all use the same
spot function. In this example, the halftone dictionaries for the colour components and for the default all
use the same spot function.

27 0 obj

<< /Type /Halftone
 /HalftoneType 5
 /Cyan 31 0 R
 /Magenta 32 0 R
 /Yellow 33 0 R
 /Black 34 0 R
 /Default 35 0 R

>>
endobj

31 0 obj

<< /Type /Halftone
 /HalftoneType 1
 /Frequency 89.827
 /Angle 15
 /SpotFunction /Round
 /AccurateScreens true

>>
endobj

32 0 obj

Table 134 – Entries in a type 5 halftone dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Halftone for a halftone dictionary.

HalftoneType number (Required) A code identifying the halftone type that this dictionary
describes; shall be 5 for this type of halftone.

HalftoneName byte string (Optional) The name of the halftone dictionary.

any colorant
name

dictionary
or stream

(Required, one per colorant) The halftone corresponding to the
colorant or colour component named by the key. The halftone may be
of any type other than 5.

Default dictionary
or stream

(Required) A halftone to be used for any colorant or colour component
that does not have an entry of its own. The value shall not be 5. If there
are any nonprimary colorants, the default halftone shall have a transfer
function.

PDF 32000-1:2008

316 © Adobe Systems Incorporated 2008 – All rights reserved

<< /Type /Halftone
 /HalftoneType 1
 /Frequency 89.827
 /Angle 75
 /SpotFunction /Round
 /AccurateScreens true

>>
endobj

33 0 obj

<< /Type /Halftone
 /HalftoneType 1
 /Frequency 90.714
 /Angle 0
 /SpotFunction /Round
 /AccurateScreens true

>>
endobj

34 0 obj

<< /Type /Halftone
 /HalftoneType 1
 /Frequency 89.803
 /Angle 45
 /SpotFunction /Round
 /AccurateScreens true

>>
endobj

35 0 obj

<< /Type /Halftone
 /HalftoneType 1
 /Frequency 90.000
 /Angle 45
 /SpotFunction /Round
 /AccurateScreens true

>>
endobj

10.6 Scan Conversion Details

10.6.1 General

The final step of rendering shall be scan conversion. The conforming reader executes a scan conversion
algorithm to paint graphics, text, and images in the raster memory of the output device.

NOTE The specifics of the scan conversion algorithm are not defined as part of PDF. Different implementations may
perform scan conversion in different ways; techniques that are appropriate for one device may be
inappropriate for another. Still, it is useful to have a general understanding of how scan conversion works,
particularly when creating PDF files intended for viewing on a display. At the low resolutions typical of displays,
variations of even one pixel’s width can have a noticeable effect on the appearance of painted shapes.

Most scan conversion details are not under program control, but a few are; the parameters for controlling them
are described here.

10.6.2 Flatness Tolerance

The flatness tolerance controls the maximum permitted distance in device pixels between the mathematically
correct path and an approximation constructed from straight line segments, as shown in Figure 54. Flatness
may be specified as the operand of the i operator (see Table 57) or as the value of the FL entry in a graphics
state parameter dictionary (see Table 58). It shall be a positive number.

© Adobe Systems Incorporated 2008 – All rights reserved 317

PDF 32000-1:2008

NOTE 1 Smaller values yield greater precision at the cost of more computation.

NOTE 2 Although the figure exaggerates the difference between the curved and flattened paths for the sake of clarity,
the purpose of the flatness tolerance is to control the precision of curve rendering, not to draw inscribed
polygons. If the parameter’s value is large enough to cause visible straight line segments to appear, the result
is unpredictable.

Figure 54 – Flatness tolerance

10.6.3 Smoothness Tolerance

The smoothness tolerance (PDF 1.3) controls the quality of smooth shading (type 2 patterns and the sh
operator) and thus indirectly controls the rendering performance. Smoothness is the allowable colour error
between a shading approximated by piecewise linear interpolation and the true value of a (possibly nonlinear)
shading function. The error shall be measured for each colour component, and the maximum independent error
shall be used. The allowable error (or tolerance) shall be expressed as a fraction of the range of the colour
component, from 0.0 to 1.0. Thus, a smoothness tolerance of 0.1 represents a tolerance of 10 percent in each
colour component. Smoothness may be specified as the value of the SM entry in a graphics state parameter
dictionary (see Table 58).

EXAMPLE Each output device may have internal limits on the maximum and minimum tolerances attainable. setting
smoothness to 1.0 may result in an internal smoothness of 0.5 on a high-quality colour device, while
setting it to 0.0 on the same device may result in an internal smoothness of 0.01 if an error of that
magnitude is imperceptible on the device.

NOTE 1 The smoothness tolerance may also interact with the accuracy of colour conversion. In the case of a colour
conversion defined by a sampled function, the conversion function is unknown. Thus the error may be sampled
at too low a frequency, in which case the accuracy defined by the smoothness tolerance cannot be
guaranteed. In most cases, however, where the conversion function is smooth and continuous, the accuracy
should be within the specified tolerance.

NOTE 2 The effect of the smoothness tolerance is similar to that of the flatness tolerance. However, that flatness is
measured in device-dependent units of pixel width, whereas smoothness is measured as a fraction of colour
component range.

10.6.4 Scan Conversion Rules

The following rules determine which device pixels a painting operation affects. All references to coordinates
and pixels are in device space. A shape is a path to be painted with the current colour or with an image. Its
coordinates are mapped into device space but not rounded to device pixel boundaries. At this level, curves
have been flattened to sequences of straight lines, and all “insideness” computations have been performed.

Pixel boundaries always fall on integer coordinates in device space. A pixel is a square region identified by the
location of its corner with minimum horizontal and vertical coordinates. The region is half-open, meaning that it
includes its lower but not its upper boundaries. More precisely, for any point whose real-number coordinates

Flatness error
tolerance

PDF 32000-1:2008

318 © Adobe Systems Incorporated 2008 – All rights reserved

are (x, y), let i = floor (x) and j = floor (y). The pixel that contains this point is the one identified as (i, j). The
region belonging to that pixel is defined to be the set of points (x ′, y ′) such that i ≤ x ′ < i + 1 and j ≤ y ′ < j + 1.
Like pixels, shapes to be painted by filling and stroking operations are also treated as half-open regions that
include the boundaries along their “floor” sides, but not along their “ceiling” sides.

A shape shall be scan-converted by painting any pixel whose square region intersects the shape, no matter
how small the intersection is. This ensures that no shape ever disappears as a result of unfavourable
placement relative to the device pixel grid, as might happen with other possible scan conversion rules. The
area covered by painted pixels shall always be at least as large as the area of the original shape. This rule
applies both to fill operations and to strokes with nonzero width. Zero-width strokes may be done in an
implementation-defined manner that may include fewer pixels than the rule implies.

NOTE 1 Normally, the intersection of two regions is defined as the intersection of their interiors. However, for purposes
of scan conversion, a filling region is considered to intersect every pixel through which its boundary passes,
even if the interior of the filling region is empty.

EXAMPLE A zero-width or zero-height rectangle paints a line 1 pixel wide.

The region of device space to be painted by a sampled image is determined similarly to that of a filled shape,
though not identically. The conforming reader transforms the image’s source rectangle into device space and
defines a half-open region, just as for fill operations. However, only those pixels whose centres lie within the
region shall be painted. The position of the centre of such a pixel—in other words, the point whose coordinate
values have fractional parts of one-half—shall be mapped back into source space to determine how to colour
the pixel. There shall not be averaging over the pixel area;

NOTE 2 If the resolution of the source image is higher than that of device space, some source samples may not be
used.

For clipping, the clipping region consists of the set of pixels that would be included by a fill operation.
Subsequent painting operations shall affect a region that is the intersection of the set of pixels defined by the
clipping region with the set of pixels for the region to be painted.

Scan conversion of character glyphs may be performed by a different algorithm from the preceding one.

NOTE 3 That font rendering algorithm uses hints in the glyph descriptions and techniques that are specialized to glyph
rasterization.

10.6.5 Automatic Stroke Adjustment

When a stroke is drawn along a path, the scan conversion algorithm may produce lines of nonuniform
thickness because of rasterization effects. In general, the line width and the coordinates of the endpoints,
transformed into device space, are arbitrary real numbers not quantized to device pixels. A line of a given width
can intersect with different numbers of device pixels, depending on where it is positioned. Figure 55 illustrates
this effect.

For best results, it is important to compensate for the rasterization effects to produce strokes of uniform
thickness. This is especially important in low-resolution display applications. To meet this need, PDF 1.2
provides an optional automatic stroke adjustment feature. When stroke adjustment is enabled, the line width
and the coordinates of a stroke shall automatically be adjusted as necessary to produce lines of uniform
thickness. The thickness shall be as near as possible to the requested line width—no more than half a pixel
different.

© Adobe Systems Incorporated 2008 – All rights reserved 319

PDF 32000-1:2008

Figure 55 – Rasterization without stroke adjustment

If stroke adjustment is enabled and the requested line width, transformed into device space, is less than half a
pixel, the stroke shall be rendered as a single-pixel line.

NOTE This is the thinnest line that can be rendered at device resolution. It is equivalent to the effect produced by
setting the line width to 0 (see 10.6.4, "Scan Conversion Rules").

Because automatic stroke adjustment can have a substantial effect on the appearance of lines, PDF provides
means to control whether the adjustment shall be performed. This may be specified with the stroke adjustment
parameter in the graphics state, set by means of the SA entry in a graphics state parameter dictionary (see
8.4.5, "Graphics State Parameter Dictionaries").

Path

Resulting line

Line width

Resulting line

Line width

Path

1
pixel

PDF 32000-1:2008

320 © Adobe Systems Incorporated 2008 – All rights reserved

11 Transparency

11.1 General

The PDF imaging model includes the notion of transparency. Transparent objects do not necessarily obey a
strict opaque painting model but may blend (composite) in interesting ways with other overlapping objects. This
clause describes the general transparency model but does not cover how it is implemented. At various points it
uses implementation-like descriptions to describe how things work, for the purpose of elucidating the behaviour
of the model. The actual implementation will almost certainly be different from what these descriptions might
imply.

NOTE Transparency was added to PDF in version 1.4

The clause is organized as follows:

• 11.2, "Overview of Transparency," introduces the basic concepts of the transparency model and its
associated terminology.

• 11.3, "Basic Compositing Computations," describes the mathematics involved in compositing a single
object with its backdrop.

• 11.4, "Transparency Groups," introduces the concept of transparency groups and describes their
properties and behaviour.

• 11.5, "Soft Masks," covers the creation and use of masks to specify position-dependent shape and opacity.

• 11.6, "Specifying Transparency in PDF," describes how transparency properties are represented in a PDF
document.

• 11.7, "Colour Space and Rendering Issues," deals with some specific interactions between transparency
and other aspects of colour specification and rendering.

11.2 Overview of Transparency

The original PDF imaging model paints objects (fills, strokes, text, and images), possibly clipped by a path,
opaquely onto a page. The colour of the page at any point shall be that of the topmost enclosing object,
disregarding any previous objects it may overlap. This effect may be—and often is—realized simply by
rendering objects directly to the page in the order in which they are specified, with each object completely
overwriting any others that it overlaps.

Under the transparent imaging model, all of the objects on a page may potentially contribute to the result.
Objects at a given point may be thought of as forming a transparency stack (or stack for short). The objects
shall be arranged from bottom to top in the order in which they are specified. The colour of the page at each
point shall be determined by combining the colours of all enclosing objects in the stack according to
compositing rules defined by the transparency model.

NOTE 1 The order in which objects are specified determines the stacking order but not necessarily the order in which
the objects are actually painted onto the page. In particular, the transparency model does not require a
conforming reader to rasterize objects immediately or to commit to a raster representation at any time before
rendering the entire stack onto the page. This is important, since rasterization often causes significant loss of
information and precision that is best avoided during intermediate stages of the transparency computation.

A given object shall be composited with a backdrop. Ordinarily, the backdrop consists of the stack of all objects
that have been specified previously. The result of compositing shall then be treated as the backdrop for the
next object. However, within certain kinds of transparency groups (see “Transparency Groups”), a different
backdrop may be chosen.

© Adobe Systems Incorporated 2008 – All rights reserved 321

PDF 32000-1:2008

During the compositing of an object with its backdrop, the colour at each point shall be computed using a
specified blend mode, which is a function of both the object’s colour and the backdrop colour. The blend mode
shall determine how colours interact; different blend modes may be used to achieve a variety of useful effects.
A single blend mode shall be in effect for compositing all of a given object, but different blend modes may be
applied to different objects.

Two scalar quantities called shape and opacity mediate compositing of an object with its backdrop.
Conceptually, for each object, these quantities shall be defined at every point in the plane, just as if they were
additional colour components. (In actual practice, they may be obtained from auxiliary sources rather than
being intrinsic to the object.)

Both shape and opacity vary from 0.0 (no contribution) to 1.0 (maximum contribution). At any point where either
the shape or the opacity of an object is equal to 0.0, its colour shall be undefined. At points where the shape is
equal to 0.0, the opacity shall also be undefined. The shape and opacity shall be subject to compositing rules;
therefore, the stack as a whole also has a shape and opacity at each point.

An object’s opacity, in combination with the backdrop’s opacity, shall determine the relative contributions of the
backdrop colour, the object’s colour, and the blended colour to the resulting composite colour. The object’s
shape shall then determine the degree to which the composite colour replaces the backdrop colour. Shape
values of 0.0 and 1.0 identify points that lie outside and inside a conventional sharp-edged object; intermediate
values are useful in defining soft-edged objects.

Shape and opacity are conceptually very similar. In fact, they can usually be combined into a single value,
called alpha, which controls both the colour compositing computation and the fading between an object and its
backdrop. However, there are a few situations in which they shall be treated separately; see 11.4.6, "Knockout
Groups."

NOTE 2 Raster-based implementations may need to maintain a separate shape parameter to do anti-aliasing properly;
it is therefore convenient to have shape as an explicit part of the model.

One or more consecutive objects in a stack may be collected together into a transparency group (often referred
to hereafter simply as a group). The group as a whole may have various properties that modify the compositing
behaviour of objects within the group and their interactions with its backdrop. An additional blend mode, shape,
and opacity may also be associated with the group as a whole and used when compositing it with its backdrop.
Groups may be nested within other groups, forming a tree-structured hierarchy.

EXAMPLE Figure L.16 in Annex L illustrates the effects of transparency grouping. In the upper two figures, three
coloured circles are painted as independent objects with no grouping. At the upper left, the three objects
are painted opaquely (opacity = 1.0); each object completely replaces its backdrop (including previously
painted objects) with its own colour. At the upper right, the same three independent objects are painted
with an opacity of 0.5, causing them to composite with each other and with the gray and white backdrop.
In the lower two figures, the three objects are combined as a transparency group. At the lower left, the
individual objects have an opacity of 1.0 within the group, but the group as a whole is painted in the
Normal blend mode with an opacity of 0.5. The objects thus completely overwrite each other within the
group, but the resulting group then composites transparently with the gray and white backdrop. At the
lower right, the objects have an opacity of 0.5 within the group and thus composite with each other. The
group as a whole is painted against the backdrop with an opacity of 1.0 but in a different blend mode
(HardLight), producing a different visual effect.

The colour result of compositing a group may be converted to a single-component luminosity value and treated
as a soft mask. Such a mask may then be used as an additional source of shape or opacity values for
subsequent compositing operations. When the mask is used as a shape, this technique is known as soft
clipping; it is a generalization of the current clipping path in the opaque imaging model (see “Clipping Path
Operators”).

The notion of current page is generalized to refer to a transparency group consisting of the entire stack of
objects placed on the page, composited with a backdrop that is pure white and fully opaque. Logically, this
entire stack shall then be rasterized to determine the actual pixel values to be transmitted to the output device.

PDF 32000-1:2008

322 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 3 In contexts where a PDF page is treated as a piece of artwork to be placed on some other page it is treated not
as a page but as a group, whose backdrop may be defined differently from that of a page.

11.3 Basic Compositing Computations

11.3.1 General

This sub-clause describes the basic computations for compositing a single object with its backdrop. These
computations are extended in 11.4, "Transparency Groups," to cover groups consisting of multiple objects.

11.3.2 Basic Notation for Compositing Computations

In general, variable names in this clause consisting of a lowercase letter denote a scalar quantity, such as an
opacity. Uppercase letters denote a value with multiple scalar components, such as a colour. In the descriptions
of the basic colour compositing computations, colour values are generally denoted by the letter C, with a
mnemonic subscript indicating which of several colour values is being referred to; for instance, Cs stands for
“source colour.” Shape and opacity values are denoted respectively by the letters f (for “form factor”) and q (for
“opaqueness”)—again with a mnemonic subscript, such as qs for “source opacity.” The symbol α (alpha) stands
for a product of shape and opacity values.

In certain computations, one or more variables may have undefined values; for instance, when opacity is equal
to zero, the corresponding colour is undefined. A quantity can also be undefined if it results from division by
zero. In any formula that uses such an undefined quantity, the quantity has no effect on the ultimate result
because it is subsequently multiplied by zero or otherwise cancelled out. It is significant that while any arbitrary
value may be chosen for such an undefined quantity, the computation shall not malfunction because of
exceptions caused by overflow or division by zero. The further convention that 0 ÷ 0 = 0 should also be
adopted.

11.3.3 Basic Compositing Formula

The primary change in the imaging model to accommodate transparency is in how colours are painted. In the
transparent model, the result of painting (the result colour) is a function of both the colour being painted (the
source colour) and the colour it is painted over (the backdrop colour). Both of these colours may vary as a
function of position on the page; however, this sub-clause focuses on some fixed point on the page and
assumes a fixed backdrop and source colour.

This computation uses two other parameters: alpha, which controls the relative contributions of the backdrop
and source colours, and the blend function, which specifies how they shall be combined in the painting
operation. The resulting basic colour compositing formula (or just basic compositing formula for short) shall
determine the result colour produced by the painting operation:

where the variables have the meanings shown in Table 135.

Table 135 – Variables used in the basic compositing formula

Variable Meaning

Backdrop colour

Source colour

Result colour

Cr 1
αs
αr
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

Cb×
αs
αr
------ 1 αb–() Cs× αb B Cb Cs,()×+[]×+=

Cb

Cs

Cr

© Adobe Systems Incorporated 2008 – All rights reserved 323

PDF 32000-1:2008

This formula represents a simplified form of the compositing formula in which the shape and opacity values are
combined and represented as a single alpha value; the more general form is presented later. This function is
based on the over operation defined in the article “Compositing Digital Images,” by Porter and Duff (see
the Bibliography), extended to include a blend mode in the region of overlapping coverage. The following sub-
clauses elaborate on the meaning and implications of this formula.

11.3.4 Blending Colour Space

The compositing formula shown in 11.3.3, "Basic Compositing Formula," represents a vector function: the
colours it operates on are represented in the form of n-element vectors, where n denotes the number of
components required by the colour space in used in the compositing process. The ith component of the result
colour Cr shall be obtained by applying the compositing formula to the ith components of the constituent
colours Cb , Cs , and B (Cb, Cs). The result of the computation thus depends on the colour space in which the
colours are represented. For this reason, the colour space used for compositing, called the blending colour
space, is explicitly made part of the transparent imaging model. When necessary, backdrop and source colours
shall be converted to the blending colour space before the compositing computation.

Of the PDF colour spaces described in Section 8.6, the following shall be supported as blending colour spaces:

• DeviceGray

• DeviceRGB

• DeviceCMYK

• CalGray

• CalRGB

• ICCBased colour spaces equivalent to the preceding (including calibrated CMYK)

The Lab space and ICCBased spaces that represent lightness and chromaticity separately (such as L*a*b*,
L*u*v*, and HSV) shall not be used as blending colour spaces because the compositing computations in such
spaces do not give meaningful results when applied separately to each component. In addition, an ICCBased
space used as a blending colour space shall be bidirectional; that is, the ICC profile shall contain both AToB
and BToA transformations.

The blending colour space shall be consulted only for process colours. Although blending may also be done on
individual spot colours specified in a Separation or DeviceN colour space, such colours shall not be converted
to a blending colour space (except in the case where they first revert to their alternate colour space, as
described under Section 8.6.6.4 and “DeviceN Colour Spaces”). Instead, the specified colour components shall
be blended individually with the corresponding components of the backdrop.

The blend functions for the various blend modes are defined such that the range for each colour component
shall be 0.0 to 1.0 and that the colour space shall be additive. When performing blending operations in

Backdrop alpha

Source alpha

Result alpha

Blend function

Table 135 – Variables used in the basic compositing formula (continued)

Variable Meaning

αb

αs

αr

B Cb Cs,()

PDF 32000-1:2008

324 © Adobe Systems Incorporated 2008 – All rights reserved

subtractive colour spaces (DeviceCMYK, Separation, and DeviceN), the colour component values shall be
complemented (subtracted from 1.0) before the blend function is applied and the results of the function shall
then be complemented back before being used.

NOTE This adjustment makes the effects of the various blend modes numerically consistent across all colour spaces.
However, the actual visual effect produced by a given blend mode still depends on the colour space. Blending
in a device colour space produces device-dependent results, whereas in a CIE-based space it produces
results that are consistent across all devices. See 11.7, "Colour Space and Rendering Issues," for additional
details concerning colour spaces.

11.3.5 Blend Mode

In principle, any function of the backdrop and source colours that yields another colour, Cr, for the result may be
used as a blend function B (Cb , Cs), in the compositing formula to customize the blending operation. PDF
defines a standard set of named blend functions, or blend modes, listed in Tables 136 and 137. Figures L.18
and L.19 in Annex L illustrate the resulting visual effects for RGB and CMYK colours, respectively.

A blend mode is termed separable if each component of the result colour is completely determined by the
corresponding components of the constituent backdrop and source colours—that is, if the blend mode function
B is applied separately to each set of corresponding components:

where the lowercase variables cr , cb , and cs denote corresponding components of the colours Cr , Cb , and Cs ,
expressed in additive form. A separable blend mode may be used with any colour space, since it applies
independently to any number of components. Only separable blend modes shall be used for blending spot
colours.

NOTE 1 Theoretically, a blend mode could have a different function for each colour component and still be separable;
however, none of the standard PDF blend modes have this property.

Table 136 lists the standard separable blend modes available in PDF and the algorithms/formulas that shall be
used in the calculation of blended colours.

Table 136 – Standard separable blend modes

Name Result

Normal

NOTE Selects the source colour, ignoring the backdrop.

Compatible Same as Normal. This mode exists only for compatibility and should not be used.

Multiply

NOTE 1 Multiplies the backdrop and source colour values.

NOTE 2 The result colour is always at least as dark as either of the two
constituent colours. Multiplying any colour with black produces black;
multiplying with white leaves the original colour unchanged. Painting
successive overlapping objects with a colour other than black or white
produces progressively darker colours.

cr B cb cs,()=

B cb cs,() cs=

B cb cs,() cb cs×=

© Adobe Systems Incorporated 2008 – All rights reserved 325

PDF 32000-1:2008

Screen

NOTE 3 Multiplies the complements of the backdrop and source colour values,
then complements the result.

NOTE 4 The result colour is always at least as light as either of the two
constituent colours. Screening any colour with white produces white;
screening with black leaves the original colour unchanged. The effect
is similar to projecting multiple photographic slides simultaneously
onto a single screen.

Overlay

NOTE 5 Multiplies or screens the colours, depending on the backdrop colour
value. Source colours overlay the backdrop while preserving its
highlights and shadows. The backdrop colour is not replaced but is
mixed with the source colour to reflect the lightness or darkness of the
backdrop.

Darken

NOTE 6 Selects the darker of the backdrop and source colours.

NOTE 7 The backdrop is replaced with the source where the source is darker;
otherwise, it is left unchanged.

Lighten

NOTE 8 Selects the lighter of the backdrop and source colours.

NOTE 9 The backdrop is replaced with the source where the source is lighter;
otherwise, it is left unchanged.

ColorDodge

NOTE 10 Brightens the backdrop colour to reflect the source colour. Painting
with black produces no changes.

ColorBurn

NOTE 11 Darkens the backdrop colour to reflect the source colour. Painting
with white produces no change.

HardLight

NOTE 12 Multiplies or screens the colours, depending on the source colour
value. The effect is similar to shining a harsh spotlight on the
backdrop.

Table 136 – Standard separable blend modes (continued)

Name Result

B cb cs,() 1 1 cb–() 1 cs–()×[]–=

cb cs cb cs×()–+=

B cb cs,() HardLight cs cb,()=

B cb cs,() min cb cs,()=

B cb cs,() max cb cs,()=

B cb cs,()
min 1 cb 1 cs–()⁄,() if cs 1<

1 if cs =⎩
⎨
⎧

=

B cb cs,()
1 min 1 1 cb–() cs⁄,()– if cs 0>

0 if cs =⎩
⎨
⎧

=

B cb cs,()
Multiply cb 2 cs×,() if cs 0.5≤

Screen cb 2 cs 1–×,() if cs 0.5>⎩
⎨
⎧

=

PDF 32000-1:2008

326 © Adobe Systems Incorporated 2008 – All rights reserved

Table 137 lists the standard nonseparable blend modes. Since the nonseparable blend modes consider all
colour components in combination, their computation depends on the blending colour space in which the
components are interpreted. They may be applied to all multiple-component colour spaces that are allowed as
blending colour spaces (see “Blending Colour Space”).

NOTE 2 All of these blend modes conceptually entail the following steps:

a) Convert the backdrop and source colours from the blending colour space to an intermediate HSL (hue-
saturation-luminosity) representation.

b) Create a new colour from some combination of hue, saturation, and luminosity components selected from
the backdrop and source colours.

c) Convert the result back to the original (blending) colour space.

However, the following formulas given do not actually perform these conversions. Instead, they start with
whichever colour (backdrop or source) is providing the hue for the result; then they adjust this colour to have
the proper saturation and luminosity.

The nonseparable blend mode formulas make use of several auxiliary functions. These functions operate on
colours that are assumed to have red, green, and blue components. Blending of CMYK colour spaces requires
special treatment, as described in this sub-clause.

These functions shall have the following definitions:

SoftLight

where

NOTE 13 Darkens or lightens the colours, depending on the source colour
value. The effect is similar to shining a diffused spotlight on the
backdrop.

Difference

NOTE 14 Subtracts the darker of the two constituent colours from the lighter
colour:

NOTE 15 Painting with white inverts the backdrop colour; painting with black
produces no change.

Exclusion

NOTE 16 Produces an effect similar to that of the Difference mode but lower in
contrast. Painting with white inverts the backdrop colour; painting with
black produces no change.

Table 136 – Standard separable blend modes (continued)

Name Result

B cb cs,()
cb 1 2 cs×–() cb 1 cb–()××– if cs 0.5≤

cb 2 cs 1–×() D cb() cb–()×+ if cs 0.5>⎩
⎨
⎧

=

D x()
16 x 12–×() x 4+×() x× if x 0.25≤

x if x 0.25>⎩
⎨
⎧

=

B cb cs,() cb cs–=

B cb cs,() cb cs 2 cb c×× s–+=

Lum C() 0.3 Cred× 0.59 Cgreen× 0.11 Cblue×+ +=

© Adobe Systems Incorporated 2008 – All rights reserved 327

PDF 32000-1:2008

The subscripts min, mid, and max (in the next function) refer to the colour components having the minimum,
middle, and maximum values upon entry to the function.

Table 137 – Standard nonseparable blend modes

Name Result

Hue

NOTE 1 Creates a colour with the hue of the source colour and the saturation
and luminosity of the backdrop colour.

Saturation

NOTE 2 Creates a colour with the saturation of the source colour and the hue
and luminosity of the backdrop colour. Painting with this mode in an
area of the backdrop that is a pure gray (no saturation) produces no
change.

SetLum C l,()
let d l Lum C()
Cred

–
Cred d

Cgreen

+
Cgreen d

Cblue

+
Cblue d

returnClipColor C()
+

=
=

=
=

ClipColor C()
let l Lum C()
let n min Cred Cgreen Cblue, ,()
let x max Cred Cgreen Cblue, ,()
if n 0.0
 Cred

<
l Cred l–() l×() l n–()⁄()

 Cgreen

+
l Cgreen l–() l×() l n–()⁄()

 Cblue

+
l Cblue l–() l×() l n–()⁄()

if x 1.0
 Cred

>
+

l Cred l–() 1 l–()×() x l–()⁄()
 Cgreen

+
l Cgreen l–() 1 l–()×() x l–()⁄()

 Cblue

+
l Cblue l–() 1 l–()×() x l–()⁄()

return C
+

=
=
=

=
=

=

=
=

=

Sat C() max Cred Cgreen Cblue, ,() min Cred Cgreen Cblue, ,()–=

SetSat C s,()
if Cmax Cmin
 Cmid

>
Cmid Cmin–() s×() Cmax Cmin–()⁄()

 Cmax s
else
 Cmid Cmax 0.0
Cmin 0.0
return C

=
=

= =
=

B Cb Cs,() SetLum SetSat Cs Sat Cb(),() Lum Cb(),()=

B Cb Cs,() SetLum SetSat Cb Sat Cs(),() Lum Cb(),()=

PDF 32000-1:2008

328 © Adobe Systems Incorporated 2008 – All rights reserved

The formulas in this sub-clause apply to RGB spaces. Blending in CMYK spaces (including both DeviceCMYK
and ICCBased calibrated CMYK spaces) shall be handled in the following way:

• The C, M, and Y components shall be converted to their complementary R, G, and B components in the
usual way. The preceding formulas shall be applied to the RGB colour values. The results shall be
converted back to C, M, and Y.

• For the K component, the result shall be the K component of Cb for the Hue, Saturation, and Color blend
modes; it shall be the K component of Cs for the Luminosity blend mode.

11.3.6 Interpretation of Alpha

The colour compositing formula

produces a result colour that is a weighted average of the backdrop colour, the source colour, and the blended
B (Cb , Cs) term, with the weighting determined by the backdrop and source alphas αβ and αs . For the simplest
blend mode, Normal, defined by

the compositing formula collapses to a simple weighted average of the backdrop and source colours, controlled
by the backdrop and source alpha values. For more interesting blend functions, the backdrop and source
alphas control whether the effect of the blend mode is fully realized or is toned down by mixing the result with
the backdrop and source colours.

The result alpha, αρ , actually represents a computed result, described in 11.3.7, "Shape and Opacity
Computations." The result colour shall be normalized by the result alpha, ensuring that when this colour and
alpha are subsequently used together in another compositing operation, the colour’s contribution is correctly
represented.

NOTE 1 If αρ is zero, the result colour is undefined.

NOTE 2 The preceding formula represents a simplification of the following formula, which presents the relative
contributions of backdrop, source, and blended colours in a more straightforward way:

Color

NOTE 3 Creates a colour with the hue and saturation of the source colour and
the luminosity of the backdrop colour. This preserves the gray levels
of the backdrop and is useful for colouring monochrome images or
tinting colour images.

Luminosity

NOTE 4 Creates a colour with the luminosity of the source colour and the hue
and saturation of the backdrop colour. This produces an inverse effect
to that of the Color mode.

Table 137 – Standard nonseparable blend modes (continued)

Name Result

B Cb Cs,() SetLum Cs Lum Cb(),()=

B Cb Cs,() SetLum Cb Lum Cs(),()=

Cr 1
αs
αr
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

Cb×
αs
αr
------ 1 αb–() Cs× αb B Cb Cs,()×+[]×+=

B cb
· cs,() cs=

αr Cr× 1 αs–() αb Cb××[] 1 αb–() αs Cs××[] αb αs B Cb Cs,()××[+ +=

© Adobe Systems Incorporated 2008 – All rights reserved 329

PDF 32000-1:2008

(The simplification requires a substitution based on the alpha compositing formula, which is presented in the
next sub-clause.) Thus, mathematically, the backdrop and source alphas control the influence of the backdrop
and source colours, respectively, while their product controls the influence of the blend function. An alpha
value of αs = 0.0 or αβ = 0.0 results in no blend mode effect; setting αs = 1.0 and αβ = 1.0 results in maximum
blend mode effect.

11.3.7 Shape and Opacity Computations

11.3.7.1 General

As stated earlier, the alpha values that control the compositing process shall be defined as the product of
shape and opacity:

This sub-clause examines the various shape and opacity values individually. Once again, keep in mind that
conceptually these values are computed for every point on the page.

11.3.7.2 Source Shape and Opacity

Shape and opacity values may come from several sources. The transparency model provides for three
independent sources for each. However, the PDF representation imposes some limitations on the ability to
specify all of these sources independently (see “Specifying Shape and Opacity”).

• Object shape. Elementary objects such as strokes, fills, and text have an intrinsic shape, whose value shall
be 1.0 for points inside the object and 0.0 outside. Similarly, an image with an explicit mask (see “Explicit
Masking”) has a shape that shall be 1.0 in the unmasked portions and 0.0 in the masked portions. The
shape of a group object shall be the union of the shapes of the objects it contains.

NOTE 1 Mathematically, elementary objects have “hard” edges, with a shape value of either 0.0 or 1.0 at every point.
However, when such objects are rasterized to device pixels, the shape values along the boundaries may be
anti-aliased, taking on fractional values representing fractional coverage of those pixels. When such anti-
aliasing is performed, it is important to treat the fractional coverage as shape rather than opacity.

• Mask shape. Shape values for compositing an object may be taken from an additional source, or soft
mask, independent of the object itself, as described in 11.5, "Soft Masks."

NOTE 2 The use of a soft mask to modify the shape of an object or group, called soft clipping, can produce effects such
as a gradual transition between an object and its backdrop, as in a vignette.

• Constant shape. The source shape may be modified at every point by a scalar shape constant.

NOTE 3 This is merely a convenience, since the same effect could be achieved with a shape mask whose value is the
same everywhere.

• Object opacity. Elementary objects have an opacity of 1.0 everywhere. The opacity of a group object shall
be the result of the opacity computations for all of the objects it contains.

• Mask opacity. Opacity values, like shape values, may be provided by a soft mask independent of the object
being composited.

• Constant opacity. The source opacity may be modified at every point by a scalar opacity constant.

NOTE 4 It is useful to think of this value as the “current opacity,” analogous to the current colour used when painting
elementary objects.

αb fb qb×=

αr fr qr×=

αs fs qs×=

PDF 32000-1:2008

330 © Adobe Systems Incorporated 2008 – All rights reserved

All of the shape and opacity inputs shall have values in the range 0.0 to 1.0 (inclusive), with a default value of
1.0.

The three shape inputs shall be multiplied together, producing an intermediate value called the source shape.

The three opacity inputs shall be multiplied together, producing an intermediate value called the source opacity.

Where the variables have the meanings shown in Table 138.

NOTE 5 The effect of each of these inputs is that the painting operation becomes more transparent as the input values
decreases.

When an object is painted with a tiling pattern, the object shape and object opacity for points in the object’s
interior are determined by those of corresponding points in the pattern, rather than being 1.0 everywhere (see
“Patterns and Transparency”).

11.3.7.3 Result Shape and Opacity

In addition to a result colour, the painting operation also shall compute an associated result shape and result
opacity. These computations shall be based on the union function

where b and s shall be the backdrop and source values to be composited.

NOTE 1 This is a generalization of the conventional concept of union for opaque shapes, and it can be thought of as an
“inverted multiplication”—a multiplication with the inputs and outputs complemented. The result tends toward
1.0: if either input is 1.0, the result is 1.0.

The result shape and opacity shall be given by

Table 138 – Variables used in the source shape and opacity formulas

Variable Meaning

Source shape

Object shape

Mask shape

Constant shape

Source opacity

Object opacity

Mask opacity

Constant opacity

fs fj fm fk××=

qs qj qm qk××=

fs

fj

fm

fk

qs

qj

qm

qk

Union b s,() 1 1 b–() 1 s–()×[]–=
b s b s×()–+=

© Adobe Systems Incorporated 2008 – All rights reserved 331

PDF 32000-1:2008

where the variables have the meanings shown in Table 139.

These formulas shall be interpreted as follows:

• The result shape shall be the union of the backdrop and source shapes.

• The result opacity shall be the union of the backdrop and source opacities, weighted by their respective
shapes. The result shall then be divided by (normalized by) the result shape.

NOTE 2 Since alpha is just the product of shape and opacity, it can easily be shown that

This formula can be used whenever the independent shape and opacity are not needed.

11.3.8 Summary of Basic Compositing Computations

This sub-clause is a summary of all the computations presented in this sub-clause. They are given in an order
such that no variable is used before it is computed; also, some of the formulas have been rearranged to
simplify them. See Tables 135, 138, and 139 for the meanings of the variables used in these formulas.

Table 139 – Variables used in the result shape and opacity formulas

Variable Meaning

Result shape

Backdrop shape

Source shape

Result opacity

Backdrop opacity

Source opacity

fr Union fb fs,()=

qr
Union fb qb× fs qs×,()

fr
--=

fr

fb

fs

qr

qb

qs

αr Union αb αs,()=

Union b s,() 1 1 b–() 1 s–()×[]–=
b s b s×()–+=

fs fj fm fk××=
qs qj qm qk××=
fr Union fb

· fs,()=

PDF 32000-1:2008

332 © Adobe Systems Incorporated 2008 – All rights reserved

11.4 Transparency Groups

11.4.1 General

A transparency group is a sequence of consecutive objects in a transparency stack that shall be collected
together and composited to produce a single colour, shape, and opacity at each point. The result shall then be
treated as if it were a single object for subsequent compositing operations. Groups may be nested within other
groups to form a tree-structured group hierarchy.

NOTE This facilitates creating independent pieces of artwork, each composed of multiple objects, and then combining
them, possibly with additional transparency effects applied during the combination.

The objects contained within a group shall be treated as a separate transparency stack called the group stack.
The objects in the stack shall be composited against an initial backdrop (discussed later), producing a
composite colour, shape, and opacity for the group as a whole. The result is an object whose shape is the
union of the shapes of its constituent objects and whose colour and opacity are the result of the compositing
operations. This object shall then be composited with the group’s backdrop in the usual way.

In addition to its computed colour, shape, and opacity, the group as a whole may have several further attributes:

• All of the input variables that affect the compositing computation for individual objects may also be applied
when compositing the group with its backdrop. These variables include mask and constant shape, mask
and constant opacity, and blend mode.

• The group may be isolated or non-isolated, which shall determine the initial backdrop against which its
stack is composited.

• The group may be knockout or non-knockout, which shall determine whether the objects within its stack
are composited with one another or only with the group’s backdrop.

• An isolated group may specify its own blending colour space, independent of that of the group’s backdrop.

• Instead of being composited onto the current page, a group’s results may be used as a source of shape or
opacity values for creating a soft mask (see “Soft Masks”).

11.4.2 Notation for Group Compositing Computations

This sub-clause introduces some notation for dealing with group compositing. Subsequent sub-clauses
describe the group compositing formulas for a non-isolated, non-knockout group and the special properties of
isolated and knockout groups.

αb fb qb×=
αs fs qs×=
αr Union αb αs,()=

qr
αr
fr
------=

Cr 1
αs
αr
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

Cb×
αs
αr
------ 1 αb–() Cs× αb B Cb Cs,()×+[]×+=

© Adobe Systems Incorporated 2008 – All rights reserved 333

PDF 32000-1:2008

Since we are now dealing with multiple objects at a time, it is useful to have some notation for distinguishing
among them. Accordingly, the variables introduced earlier are altered to include a second-level subscript
denoting an object’s position in the transparency stack.

 stands for the source colour of the ith object in the stack. The subscript 0 represents the initial backdrop;

subscripts 1 to n denote the bottommost to topmost objects in an n-element stack. In addition, the subscripts b
and r are dropped from the variables Cb , fβ , qβ , αβ , Cr , fρ , qρ , and αρ ; other variables retain their mnemonic
subscripts.

These conventions permit the compositing formulas to be restated as recurrence relations among the elements
of a stack. For instance, the result of the colour compositing computation for object i is denoted by Ci (formerly
Cr). This computation takes as one of its inputs the immediate backdrop colour, which is the result of the colour
compositing computation for object i − 1; this is denoted by Ci − 1 (formerly Cb).

The revised formulas for a simple n-element stack (not including any groups) shall be, for i = 1, … , n:

where the variables have the meanings shown in Table 140.

NOTE Compare these formulas with those shown in 11.3.8, "Summary of Basic Compositing Computations."

Table 140 – Revised variables for the basic compositing formulas

Variable Meaning

Source shape for object i

Object shape for object i

Mask shape for object i

Constant shape for object i

Result shape after compositing object i

Csi

fsi
fji

fmi
fki

××=

qsi
qji

qmi
qki

××=

αsi
fsi

qsi
×=

αi Union αi 1– αsi
,()=

fi Union fi 1– fsi
,()=

qi
αi
fi
-----=

Ci 1
αsi
αi
-------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

Ci 1–×
αsi
αi
------- 1 αi 1––() Csi

× αi 1– Bi Ci 1– Csi
,()×+[]×+=

fsi

fji

fmi

fki

fi

PDF 32000-1:2008

334 © Adobe Systems Incorporated 2008 – All rights reserved

11.4.3 Group Structure and Nomenclature

As stated earlier, the elements of a group shall be treated as a separate transparency stack, referred to as the
group stack. These objects shall be composited against a selected initial backdrop and the resulting colour,
shape, and opacity shall then be treated as if they belonged to a single object. The resulting object is in turn
composited with the group’s backdrop in the usual way.

NOTE This computation entails interpreting the stack as a tree. For an n-element group that begins at position i in the
stack, it treats the next n objects as an n-element substack, whose elements are given an independent
numbering of 1 to n. These objects are then removed from the object numbering in the parent (containing)
stack and replaced by the group object, numbered i, followed by the remaining objects to be painted on top of
the group, renumbered starting at i + 1. This operation applies recursively to any nested subgroups.

The term element (denoted Ei) refers to a member of some group; it can be either an individual object or a
contained subgroup.

From the perspective of a particular element in a nested group, there are three different backdrops of interest:

• The group backdrop is the result of compositing all elements up to but not including the first element in the
group. (This definition is altered if the parent group is a knockout group; see 11.4.6, "Knockout Groups")

• The initial backdrop is a backdrop that is selected for compositing the group’s first element. This is either
the same as the group backdrop (for a non-isolated group) or a fully transparent backdrop (for an isolated
group).

• The immediate backdrop is the result of compositing all elements in the group up to but not including the
current element.

When all elements in a group have been composited, the result shall be treated as if the group were a single
object, which shall then be composited with the group backdrop. This operation shall occur whether the initial

Source opacity for object i

Object opacity for object i

Mask opacity for object i

Constant opacity for object i

Result opacity after compositing object i

Source alpha for object i

Result alpha after compositing object i

Source colour for object i

Result colour after compositing object i

Blend function for object i

Table 140 – Revised variables for the basic compositing formulas (continued)

Variable Meaning

qsi

qji

qmi

qki

qi

αsi

αi

Csi

Ci

Bi Ci 1– Csi
,()

© Adobe Systems Incorporated 2008 – All rights reserved 335

PDF 32000-1:2008

backdrop chosen for compositing the elements of the group was the group backdrop or a transparent backdrop.
A conforming reader shall ensure that the backdrop’s contribution to the overall result is applied only once.

11.4.4 Group Compositing Computations

The colour and opacity of a group shall be defined by the group compositing function:

where the variables have the meanings shown in Table 141.

NOTE 1 The opacity is not given explicitly as an argument or result of this function. Almost all of the computations use
the product of shape and opacity (alpha) rather than opacity alone; therefore, it is usually convenient to work
directly with shape and alpha rather than shape and opacity. When needed, the opacity can be computed by
dividing the alpha by the associated shape.

The result of applying the group compositing function shall then be treated as if it were a single object, which in
turn is composited with the group’s backdrop according to the formulas defined in this sub-clause. In those
formulas, the colour, shape, and alpha (C, f, and α) calculated by the group compositing function shall be used,
respectively, as the source colour Cs , the object shape fj , and the object alpha αj .

The group compositing formulas for a non-isolated, non-knockout group are defined as follows:

• Initialization:

• For each group element Ei ∈ G (i = 1, … , n):

Table 141 – Arguments and results of the group compositing function

Variable Meaning

The transparency group: a compound object consisting of all
elements E1, … , En of the group—the n constituent objects’
colours, shapes, opacities, and blend modes

Colour of the group’s backdrop

Computed colour of the group, which shall be used as the
source colour when the group is treated as an object

Computed shape of the group, which shall be used as the
object shape when the group is treated as an object

Alpha of the group’s backdrop

Computed alpha of the group, which shall be used as the
object alpha when the group is treated as an object

C f α, ,〈 〉 Composite C0 α0 G, ,()=

G

C0

C

f

α0

α

fg0
αg0

0.0= =

Csi
fji

αji
, ,〈 〉

Composite Ci 1– αi 1– Ei, ,()

intrinsic color, shape, and shape opacity×() of Ei⎩
⎨
⎧

=
if Ei is a group
otherwise

fsi
fji

fmi
fki

××=

αsi
αji

fmi
qmi

×() fki
qki

×()××=

PDF 32000-1:2008

336 © Adobe Systems Incorporated 2008 – All rights reserved

• Result:

where the variables have the meanings shown in Table 142 (in addition to those in Table 141).

For an element Ei that is an elementary object, the colour, shape, and alpha values , , and are intrinsic

attributes of the object. For an element that is a group, the group compositing function shall be applied
recursively to the subgroup and the resulting C, f, and α values shall be used for its , , and in the

calculations for the parent group.

Table 142 – Variables used in the group compositing formulas

Variable Meaning

Element i of the group: a compound variable representing the
element’s colour, shape, opacity, and blend mode

Source shape for element Ei

Object shape for element Ei

Mask shape for element Ei

Constant shape for element Ei

Group shape: the accumulated source shapes of group
elements E1 to Ei , excluding the initial backdrop

Mask opacity for element Ei

Constant opacity for element Ei

Source alpha for element Ei

Object alpha for element Ei : the product of its object shape
and object opacity

fgi
Union fgi 1–

fsi
,()=

αgi
Union αgi 1–

αsi
,()=

αi Union α0 αgi
,()=

Ci 1
αsi
αi
-------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

Ci 1–×
αsi
αi
------- 1 αi 1––() Csi

× αi 1– Bi Ci 1– Csi
,()×+()×+=

C Cn Cn C0–()
α0
αgn

-------- α0–
⎝ ⎠
⎜ ⎟
⎛ ⎞

×+=

f fgn
=

α αgn
=

Csi
fji

αji

Csi
fji

αji

Ei

fsi

fji

fmi

fki

fgi

qmi

qki

αsi

αji

© Adobe Systems Incorporated 2008 – All rights reserved 337

PDF 32000-1:2008

NOTE 2 The elements of a group are composited onto a backdrop that includes the group’s initial backdrop. This is
done to achieve the correct effects of the blend modes, most of which are dependent on both the backdrop and
source colours being blended. This feature is what distinguishes non-isolated groups from isolated groups,
discussed in the next sub-clause.

NOTE 3 Special attention should be directed to the formulas at the end that compute the final results C, f, and α, of the
group compositing function. Essentially, these formulas remove the contribution of the group backdrop from
the computed results. This ensures that when the group is subsequently composited with that backdrop
(possibly with additional shape or opacity inputs or a different blend mode), the backdrop’s contribution is
included only once.

For colour, the backdrop removal is accomplished by an explicit calculation, whose effect is essentially the
reverse of compositing with the Normal blend mode. The formula is a simplification of the following formulas,
which present this operation more intuitively:

where is the backdrop fraction, the relative contribution of the backdrop colour to the overall colour.

NOTE 4 For shape and alpha, backdrop removal is accomplished by maintaining two sets of variables to hold the
accumulated values. There is never any need to compute the corresponding complete shape, fi , that includes
the backdrop contribution.

The group shape and alpha, and , shall accumulate only the shape and alpha of the group elements,

excluding the group backdrop. Their final values shall become the group results returned by the group
compositing function. The complete alpha, αi , includes the backdrop contribution as well; its value is used in
the colour compositing computations.

NOTE 5 As a result of these corrections, the effect of compositing objects as a group is the same as that of compositing
them separately (without grouping) if the following conditions hold:

The group is non-isolated and has the same knockout attribute as its parent group (see 11.4.5, "Isolated
Groups," and “Knockout Groups”).

When compositing the group’s results with the group backdrop, the Normal blend mode is used, and the
shape and opacity inputs are always 1.0.

Group alpha: the accumulated source alphas of group
elements E1 to Ei, excluding the initial backdrop

Accumulated alpha after compositing element Ei , including
the initial backdrop

Source colour for element Ei

Accumulated colour after compositing element Ei , including
the initial backdrop

Blend function for element Ei

Table 142 – Variables used in the group compositing formulas (continued)

Variable Meaning

αgi

αi

Csi

Ci

Bi Ci 1– Csi
,()

φb

1 αgn
–() α0×

Union α0 αgn
,()

--------------------------------------=

C
Cn φb C0×–

1 φb–
-------------------------------=

φb

fgi
αgi

PDF 32000-1:2008

338 © Adobe Systems Incorporated 2008 – All rights reserved

11.4.5 Isolated Groups

An isolated group is one whose elements shall be composited onto a fully transparent initial backdrop rather
than onto the group’s backdrop. The resulting source colour, object shape, and object alpha for the group shall
be therefore independent of the group backdrop. The only interaction with the group backdrop shall occur when
the group’s computed colour, shape, and alpha are composited with it.

In particular, the special effects produced by the blend modes of objects within the group take into account only
the intrinsic colours and opacities of those objects; they shall not be influenced by the group’s backdrop.

EXAMPLE Applying the Multiply blend mode to an object in the group produces a darkening effect on other objects
lower in the group’s stack but not on the group’s backdrop.

Figure L.17 in Annex L illustrates this effect for a group consisting of four overlapping circles in a light gray
colour (C = M = Y = 0.0; K = 0.15). The circles are painted within the group with opacity 1.0 in the
Multiply blend mode; the group itself is painted against its backdrop in Normal blend mode. In the top
row, the group is isolated and thus does not interact with the rainbow backdrop. In the bottom row, the
group is non-isolated and composites with the backdrop. The figure also illustrates the difference between
knockout and non-knockout groups (see “Knockout Groups”).

NOTE 1 Conceptually, the effect of an isolated group could be represented by a simple object that directly specifies a
colour, shape, and opacity at each point. This flattening of an isolated group is sometimes useful for importing
and exporting fully composited artwork in applications. Furthermore, a group that specifies an explicit blending
colour space shall be an isolated group.

For an isolated group, the group compositing formulas shall be altered by adding one statement to the
initialization:

That is, the initial backdrop on which the elements of the group are composited shall be transparent rather than
inherited from the group’s backdrop.

NOTE 2 This substitution also makes C0 undefined, but the normal compositing formulas take care of that. Also, the
result computation for C automatically simplifies to C = Cn , since there is no backdrop contribution to be
factored out.

11.4.6 Knockout Groups

In a knockout group, each individual element shall be composited with the group’s initial backdrop rather than
with the stack of preceding elements in the group. When objects have binary shapes (1.0 for inside, 0.0 for
outside), each object shall overwrite (knocks out) the effects of any earlier elements it overlaps within the same
group. At any given point, only the topmost object enclosing the point shall contribute to the result colour and
opacity of the group as a whole.

EXAMPLE Figure L.17 in Annex L about 11.4.5, "Isolated Groups," illustrates the difference between knockout and
non-knockout groups. In the left column, the four overlapping circles are defined as a knockout group and
therefore do not composite with each other within the group. In the right column, the circles form a non-
knockout group and thus do composite with each other. In each column, the upper and lower figures
depict an isolated and a non-isolated group, respectively.

NOTE 1 This model is similar to the opaque imaging model, except that the “topmost object wins” rule applies to both
the colour and the opacity. Knockout groups are useful in composing a piece of artwork from a collection of
overlapping objects, where the topmost object in any overlap completely obscures those beneath. At the same
time, the topmost object interacts with the group’s initial backdrop in the usual way, with its opacity and blend
mode applied as appropriate.

The concept of knockout is generalized to accommodate fractional shape values. In that case, the immediate
backdrop shall be only partially knocked out and shall be replaced by only a fraction of the result of compositing
the object with the initial backdrop.

α0 0.0= if the group is isolated

© Adobe Systems Incorporated 2008 – All rights reserved 339

PDF 32000-1:2008

The restated group compositing formulas deal with knockout groups by introducing a new variable, b, which is
a subscript that specifies which previous result to use as the backdrop in the compositing computations: 0 in a
knockout group or i − 1 in a non-knockout group. When b = i − 1, the formulas simplify to the ones given in
11.4.4, "Group Compositing Computations."

In the general case, the computation shall proceed in two stages:

a) Composite the source object with the group’s initial backdrop, disregarding the object’s shape and using a
source shape value of 1.0 everywhere. This produces unnormalized temporary alpha and colour results, αt
and Ct .

NOTE 2 For colour, this computation is essentially the same as the unsimplified colour compositing formula given in
11.3.6, "Interpretation of Alpha," but using a source shape of 1.0.

b) Compute a weighted average of this result with the object’s immediate backdrop, using the source shape
as the weighting factor. Then normalize the result colour by the result alpha:

This averaging computation shall be performed for both colour and alpha.

NOTE 3 The preceding formulas show this averaging directly. The formulas in 11.4.8, "Summary of Group Compositing
Computations," are slightly altered to use source shape and alpha rather than source shape and opacity,
avoiding the need to compute a source opacity value explicitly.

NOTE 4 Ct in Group Compositing Computations is slightly different from the preceding Ct: it is premultiplied by .

NOTE 5 The extreme values of the source shape produce the straightforward knockout effect. That is, a shape value of
1.0 (inside) yields the colour and opacity that result from compositing the object with the initial backdrop. A
shape value of 0.0 (outside) leaves the previous group results unchanged.

The existence of the knockout feature is the main reason for maintaining a separate shape value rather than
only a single alpha that combines shape and opacity. The separate shape value shall be computed in any
group that is subsequently used as an element of a knockout group.

A knockout group may be isolated or non-isolated; that is, isolated and knockout are independent attributes. A
non-isolated knockout group composites its topmost enclosing element with the group’s backdrop. An isolated
knockout group composites the element with a transparent backdrop.

NOTE 6 When a non-isolated group is nested within a knockout group, the initial backdrop of the inner group is the
same as that of the outer group; it is not the immediate backdrop of the inner group. This behaviour, although
perhaps unexpected, is a consequence of the group compositing formulas when b = 0.

αt Union αgb
qsi

,()=

Ct 1 qsi
–() αb Cb×× qsi

1 αb–() Csi
× αb Bi Cb Csi

,()×+()×+=

αgi
1 fsi

–() αgi 1–
× fsi

αt×+=

αi Union α0 αgi
,()=

Ci

1 fsi
–() αi 1– Ci 1–×× fsi

Ct×+

αi
--=

fsi

PDF 32000-1:2008

340 © Adobe Systems Incorporated 2008 – All rights reserved

11.4.7 Page Group

All of the elements painted directly onto a page—both top-level groups and top-level objects that are not part of
any group—shall be treated as if they were contained in a transparency group P, which in turn is composited
with a context-dependent backdrop. This group is called the page group.

The page group shall be treated in one of two distinctly different ways:

• Ordinarily, the page shall be imposed directly on an output medium, such as paper or a display screen. The
page group shall be treated as an isolated group, whose results shall then be composited with a backdrop
colour appropriate for the medium. The backdrop is nominally white, although varying according to the
actual properties of the medium. However, some conforming readers may choose to provide a different
backdrop, such as a checker board or grid to aid in visualizing the effects of transparency in the artwork.

• A “page” of a PDF file may be treated as a graphics object to be used as an element of a page of some
other document.

EXAMPLE This case arises, for example, when placing a PDF file containing a piece of artwork produced by a
drawing program into a page layout produced by a layout program. In this situation, the PDF “page” is not
composited with the media colour; instead, it is treated as an ordinary transparency group, which can be
either isolated or non-isolated and is composited with its backdrop in the normal way.

The remainder of this sub-clause pertains only to the first use of the page group, where it is to be imposed
directly on the medium.

The colour C of the page at a given point shall be defined by a simplification of the general group compositing
formula:

where the variables have the meanings shown in Table 143. The first formula computes the colour and alpha
for the group given a transparent backdrop—in effect, treating P as an isolated group. The second formula
composites the results with the context-dependent backdrop (using the equivalent of the Normal blend mode).

Table 143 – Variables used in the page group compositing formulas

Variable Meaning

The page group, consisting of all elements E1, … , En in the
page’s top-level stack

Computed colour of the page group

Computed shape of the page group

Computed alpha of the page group

Computed colour of the page

Initial colour of the page (nominally white but may vary
depending on the properties of the medium or the needs of
the application)

An undefined colour (which is not used, since the α0
argument of Composite is 0)

Cg fg αg, ,〈 〉 Composite U· 0 P, ,()=

C 1 αg–() W× αg Cg×+=

P

Cg

fg

αg

C

W

U

© Adobe Systems Incorporated 2008 – All rights reserved 341

PDF 32000-1:2008

If not otherwise specified, the page group’s colour space shall be inherited from the native colour space of the
output device—that is, a device colour space, such as DeviceRGB or DeviceCMYK. An explicit colour space
should be specified, particularly a CIE-based space, to ensure more predictable results of the compositing
computations within the page group. In this case, all page-level compositing shall be done in the specified
colour space, and the entire result shall then be converted to the native colour space of the output device
before being composited with the context-dependent backdrop.

NOTE This case also arises when the page is not actually being rendered but is converted to a flattened
representation in an opaque imaging model, such as PostScript.

11.4.8 Summary of Group Compositing Computations

This sub-clause is a restatement of the group compositing formulas that also takes isolated groups and
knockout groups into account. See Tables 141 and 142 in 11.4.4, "Group Compositing Computations," for the
meanings of the variables.

Initialization:

For each group element Ei ∈ G (i = 1, … , n):

C f α, ,〈 〉 Composite C0 α0 G, ,()=

fg0
αg0

0= =

α0 0 if the group is isolated=

b
0

i 1–⎩
⎨
⎧

=
if the group is knockout
otherwise

Csi
fji

αji
, ,〈 〉

Composite Cb αb Ei, ,()

intrinsic color, shape, and shape opacity×() of Ei⎩
⎨
⎧

=
if Ei is a group
otherwise

fsi
fji

fmi
fki

××=

αsi
αji

fmi
qmi

×() fki
qki

×()××=

fgi
Union fgi 1–

fsi
,()=

αgi
1 fsi

–() αgi 1–
× fsi

αsi
–() αgb

× αs+ +=

αi Union α0 αgi
,()=

Ct fsi
αsi

–() αb Cb×× αsi
1 αb–() Csi

× αb Bi Cb Csi
,()×+(×+=

Ci

1 fsi
–() αi 1– Ci 1–×× Ct+

αi
---=

PDF 32000-1:2008

342 © Adobe Systems Incorporated 2008 – All rights reserved

Result:

NOTE Once again, keep in mind that these formulas are in their most general form. They can be significantly
simplified when some sources of shape and opacity are not present or when shape and opacity need not be
maintained separately. Furthermore, in each specific type of group (isolated or not, knockout or not), some
terms of these formulas cancel or drop out. An efficient implementation should use the simplified derived
formulas.

11.5 Soft Masks

11.5.1 General

As stated in earlier sub-clauses, the shape and opacity values used in compositing an object may include
components called the mask shape (fm) and mask opacity (qm), which may be supplied in a PDF file from a
source independent of the object. Such an independent source, called a soft mask, defines values that may
vary across different points on the page.

NOTE 1 The word soft emphasizes that the mask value at a given point is not limited to just 0.0 or 1.0 but can take on
intermediate fractional values as well. Such a mask is typically the only means of providing position-dependent
opacity values, since elementary objects do not have intrinsic opacity of their own.

NOTE 2 A mask used as a source of shape values is also called a soft clip, by analogy with the “hard” clipping path of
the opaque imaging model (see Section 8.5.4). The soft clip is a generalization of the hard clip: a hard clip can
be represented as a soft clip having shape values of 1.0 inside and 0.0 outside the clipping path. Everywhere
inside a hard clipping path, the source object’s colour replaces the backdrop; everywhere outside, the
backdrop shows through unchanged. With a soft clip, by contrast, a gradual transition can be created between
an object and its backdrop, as in a vignette.

A mask may be defined by creating a transparency group and painting objects into it, thereby defining colour,
shape, and opacity in the usual way. The resulting group may then be used to derive the mask in either of two
ways, as described in the following sub-clauses.

11.5.2 Deriving a Soft Mask from Group Alpha

In the first method of defining a soft mask, the colour, shape, and opacity of a transparency group G shall be
first computed by the usual formula

where C0 and α0 represent an arbitrary backdrop whose value does not contribute to the eventual result. The
C, f, and α results shall be the group’s colour, shape, and alpha, respectively, with the backdrop factored out.

The mask value at each point shall then be derived from the alpha of the group. The alpha value shall be
passed through a separately specified transfer function, allowing the masking effect to be customized.

NOTE Since the group’s colour is not used in this case, there is no need to compute it.

C Cn Cn C0–()
α0
αgn

-------- α0–
⎝ ⎠
⎜ ⎟
⎛ ⎞

×+=

f fgn
=

α αgn
=

C f α, ,〈 〉 Composite C0 α0 G, ,()=

© Adobe Systems Incorporated 2008 – All rights reserved 343

PDF 32000-1:2008

11.5.3 Deriving a Soft Mask from Group Luminosity

The second method of deriving a soft mask from a transparency group shall begin by compositing the group
with a fully opaque backdrop of a specified colour. The mask value at any given point shall then be defined to
be the luminosity of the resulting colour.

NOTE 1 This allows the mask to be derived from the shape and colour of an arbitrary piece of artwork drawn with
ordinary painting operators.

The colour C used to create the mask from a group G shall be defined by

where C0 is the selected backdrop colour.

G may be any kind of group—isolated or not, knockout or not—producing various effects on the C result in
each case. The colour C shall then be converted to luminosity in one of the following ways, depending on the
group’s colour space:

• For CIE-based spaces, convert to the CIE 1931 XYZ space and use the Y component as the luminosity.
This produces a colourimetrically correct luminosity.

NOTE 2 In the case of a PDF CalRGB space, the formula is

using components of the Gamma and Matrix entries of the colour space dictionary (see Table 64 in “CIE-
Based Colour Spaces”). An analogous computation applies to other CIE-based colour spaces.

• For device colour spaces, convert the colour to DeviceGray by implementation-defined means and use
the resulting gray value as the luminosity, with no compensation for gamma or other colour calibration.

NOTE 3 This method makes no pretence of colourimetric correctness; it merely provides a numerically simple means to
produce continuous-tone mask values. The following are formulas for converting from DeviceRGB and
DeviceCMYK, respectively:

Following this conversion, the result shall be passed through a separately specified transfer function, allowing
the masking effect to be customized.

NOTE 4 The backdrop colour most likely to be useful is black, which causes any areas outside the group’s shape to
have zero luminosity values in the resulting mask. If the contents of the group are viewed as a positive mask,
this produces the results that would be expected with respect to points outside the shape.

Cg fg αg, ,〈 〉 Composite C0
· 1 G, ,()=

C 1 αg–() C0× αg Cg×+=

Y YA A
GR× YB B

GG× YC C
G

×+ +=

Y 0.30 R× 0.59 G× 0.11 B×+ +=

Y 0.30 1 C–()× 1 K–()×=

 0.59 1 M–()× 1 K–()×+

 0.11 1 Y–()× 1 K–()×+

PDF 32000-1:2008

344 © Adobe Systems Incorporated 2008 – All rights reserved

11.6 Specifying Transparency in PDF

11.6.1 General

The preceding sub-clauses have presented the transparent imaging model at an abstract level, with little
mention of its representation in PDF. This sub-clause describes the facilities available for specifying
transparency in PDF.

11.6.2 Specifying Source and Backdrop Colours

Single graphics objects, as defined in “Graphics Objects”, shall be treated as elementary objects for
transparency compositing purposes (subject to special treatment for text objects, as described in “Text
Knockout”). That is, all of a given object shall be considered to be one element of a transparency stack.
Portions of an object shall not be composited with one another, even if they are described in a way that would
seem to cause overlaps (such as a self-intersecting path, combined fill and stroke of a path, or a shading
pattern containing an overlap or fold-over). An object’s source colour Cs , used in the colour compositing
formula, shall be specified in the same way as in the opaque imaging model: by means of the current colour in
the graphics state or the source samples in an image. The backdrop colour Cb shall be the result of previous
painting operations.

11.6.3 Specifying Blending Colour Space and Blend Mode

The blending colour space shall be an attribute of the transparency group within which an object is painted; its
specification is described in 11.6.6, "Transparency Group XObjects." The page as a whole shall also be treated
as a group, the page group (see “Page Group”), with a colour space attribute of its own. If not otherwise
specified, the page group’s colour space shall be inherited from the native colour space of the output device.

The blend mode B (Cb , Cs) shall be determined by the current blend mode parameter in the graphics state (see
“Graphics State”), which is specified by the BM entry in a graphics state parameter dictionary (“Graphics State
Parameter Dictionaries”). Its value shall be either a name object, designating one of the standard blend modes
listed in Tables 136 and 137 in 11.3.5, "Blend Mode," or an array of such names. In the latter case, the
application shall use the first blend mode in the array that it recognizes (or Normal if it recognizes none of
them).

NOTE New blend modes may be introduced in the future, and conforming readers that do not recognize them should
have reasonable fallback behavior.

The current blend mode shall always apply to process colour components; but only sometimes may apply to spot colorants,
see 11.7.4.2, "Blend Modes and Overprinting," for details.

11.6.4 Specifying Shape and Opacity

11.6.4.1 General

As discussed under 11.3.7.2, "Source Shape and Opacity," the shape (f) and opacity (q) values used in the
compositing computation shall come from one or more of the following sources:

• The intrinsic shape (fj) and opacity (qj) of the object being composited

• A separate shape (fm) or opacity (qm) mask independent of the object itself

• A scalar shape (fk) or opacity (qk) constant to be added at every point

The following sub-clauses describe how each of these shape and opacity sources shall be specified in PDF.

© Adobe Systems Incorporated 2008 – All rights reserved 345

PDF 32000-1:2008

11.6.4.2 Object Shape and Opacity

The shape value fj of an object painted with PDF painting operators shall be defined as follows:

• For objects defined by a path or a glyph and painted in a uniform colour with a path-painting or text-
showing operator (“Path-Painting Operators”, and “Text-Showing Operators”), the shape shall always be
1.0 inside and 0.0 outside the path.

• For images (“Images”), the shape shall be 1.0 inside the image rectangle and 0.0 outside it. This may be
further modified by an explicit or colour key mask (“Explicit Masking” and “Colour Key Masking”).

• For image masks (“Stencil Masking”), the shape shall be 1.0 for painted areas and 0.0 for masked areas.

• For objects painted with a tiling pattern (“Tiling Patterns”) or a shading pattern (“Shading Patterns”), the
shape shall be further constrained by the objects that define the pattern (see “Patterns and
Transparency”).

• For objects painted with the sh operator (“Shading Operator”), the shape shall be 1.0 inside and 0.0
outside the bounds of the shading’s painting geometry, disregarding the Background entry in the shading
dictionary (see “Shading Dictionaries”).

All elementary objects shall have an intrinsic opacity qj of 1.0 everywhere. Any desired opacity less than 1.0
shall be applied by means of an opacity mask or constant, as described in the following sub-clauses.

11.6.4.3 Mask Shape and Opacity

At most one mask input—called a soft mask, or alpha mask—shall be provided to any PDF compositing
operation. The mask may serve as a source of either shape (fm) or opacity (qm) values, depending on the
setting of the alpha source parameter in the graphics state (see “Graphics State”). This is a boolean flag, set
with the AIS (“alpha is shape”) entry in a graphics state parameter dictionary (“Graphics State Parameter
Dictionaries”): true if the soft mask contains shape values, false for opacity.

The soft mask shall be specified in one of the following ways:

• The current soft mask parameter in the graphics state, set with the SMask entry in a graphics state
parameter dictionary, contains a soft-mask dictionary (see “Soft-Mask Dictionaries”) defining the contents
of the mask. The name None may be specified in place of a soft-mask dictionary, denoting the absence of
a soft mask. In this case, the mask shape or opacity shall be implicitly 1.0 everywhere.

• An image XObject may contain its own soft-mask image in the form of a subsidiary image XObject in the
SMask entry of the image dictionary (see “Image Dictionaries”). This mask, if present, shall override any
explicit or colour key mask specified by the image dictionary’s Mask entry. Either form of mask in the
image dictionary shall override the current soft mask in the graphics state.

• An image XObject that has a JPXDecode filter as its data source may specify an SMaskInData entry,
indicating that the soft mask is embedded in the data stream (see “JPXDecode Filter”).

NOTE The current soft mask in the graphics state is intended to be used to clip only a single object at a time (either
an elementary object or a transparency group). If a soft mask is applied when painting two or more overlapping
objects, the effect of the mask multiplies with itself in the area of overlap (except in a knockout group),
producing a result shape or opacity that is probably not what is intended. To apply a soft mask to multiple
objects, it is usually best to define the objects as a transparency group and apply the mask to the group as a
whole. These considerations also apply to the current alpha constant (see the next sub-clause).

PDF 32000-1:2008

346 © Adobe Systems Incorporated 2008 – All rights reserved

11.6.4.4 Constant Shape and Opacity

The current alpha constant parameter in the graphics state (see “Graphics State”) shall be two scalar
values—one for strokes and one for all other painting operations—to be used for the constant shape (fk) or
constant opacity (qk) component in the colour compositing formulas.

NOTE 1 This parameter is analogous to the current colour used when painting elementary objects.

The nonstroking alpha constant shall also be applied when painting a transparency group’s results onto its
backdrop.

The stroking and nonstroking alpha constants shall be set, respectively, by the CA and ca entries in a graphics
state parameter dictionary (see “Graphics State Parameter Dictionaries”). As described previously for the soft
mask, the alpha source flag in the graphics state shall determine whether the alpha constants are interpreted
as shape values (true) or opacity values (false).

NOTE 2 The note at the end of 11.6.4.3, "Mask Shape and Opacity," applies to the current alpha constant parameter as
well as the current soft mask.

11.6.5 Specifying Soft Masks

11.6.5.1 General

As noted under 11.6.4.3, "Mask Shape and Opacity," soft masks for use in compositing computations may be
specified in one of the following ways:

• As a soft-mask dictionary in the current soft mask parameter of the graphics state; see 11.6.5.2, "Soft-
Mask Dictionaries," for more details.

• As a soft-mask image associated with a sampled image; see 11.6.5.3, "Soft-Mask Images," for more
details.

• (PDF 1.5) as a mask channel embedded in JPEG2000 encoded data; see “JPXDecode Filter”, and the
SMaskInData entry of Table 89 for more details.

11.6.5.2 Soft-Mask Dictionaries

The most common way of defining a soft mask is with a soft-mask dictionary specified as the current soft mask
in the graphics state (see “Graphics State”). Table 144 shows the contents of this type of dictionary.

The mask values shall be derived from those of a transparency group, using one of the two methods described
in 11.5.2, "Deriving a Soft Mask from Group Alpha," and 11.5.3, "Deriving a Soft Mask from Group Luminosity."
The group shall be defined by a transparency group XObject (see “Transparency Group XObjects”) designated
by the G entry in the soft-mask dictionary. The S (subtype) entry shall specify which of the two derivation
methods to use:

• If the subtype is Alpha, the transparency group XObject G shall be evaluated to compute a group alpha
only. The colours of the constituent objects shall be ignored and the colour compositing computations shall
not be performed. The transfer function TR shall then be applied to the computed group alpha to produce
the mask values. Outside the bounding box of the transparency group, the mask value shall be the result of
applying the transfer function to the input value 0.0.

• If the subtype is Luminosity, the transparency group XObject G shall be composited with a fully opaque
backdrop whose colour is everywhere defined by the soft-mask dictionary’s BC entry. The computed result
colour shall then be converted to a single-component luminosity value, and the transfer function TR shall
be applied to this luminosity to produce the mask values. Outside the transparency group’s bounding box,
the mask value shall be derived by transforming the BC colour to luminosity and applying the transfer
function to the result.

© Adobe Systems Incorporated 2008 – All rights reserved 347

PDF 32000-1:2008

The mask’s coordinate system shall be defined by concatenating the transformation matrix specified by the
Matrix entry in the transparency group’s form dictionary (see “Form Dictionaries”) with the current
transformation matrix at the moment the soft mask is established in the graphics state with the gs operator.

In a transparency group XObject that defines a soft mask, spot colour components shall never be available,
even if they are available in the group or page on which the soft mask is used. If the group XObject’s content
stream specifies a Separation or DeviceN colour space that uses spot colour components, the alternate colour
space shall be substituted (see “Separation Colour Spaces” and “DeviceN Colour Spaces”).

11.6.5.3 Soft-Mask Images

The second way to define a soft mask is by associating a soft-mask image with an image XObject. This is a
subsidiary image XObject specified in the SMask entry of the parent XObject’s image dictionary (see “Image
Dictionaries”). Entries in the subsidiary image dictionary for such a soft-mask image shall have the same format
and meaning as in that of an ordinary image XObject (as described in Table 89 in “Image Dictionaries”), subject
to the restrictions listed in Table 145. This type of image dictionary may contain an additional entry, Matte.

When an image is accompanied by a soft-mask image, it is sometimes advantageous for the image data to be
preblended with some background colour, called the matte colour. Each image sample represents a weighted
average of the original source colour and the matte colour, using the corresponding mask sample as the
weighting factor. (This is a generalization of a technique commonly called premultiplied alpha.)

Table 144 – Entries in a soft-mask dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Mask for a soft-mask dictionary.

S name (Required) A subtype specifying the method to be used in deriving the
mask values from the transparency group specified by the G entry:
Alpha The group’s computed alpha shall be used,

disregarding its colour (see “Deriving a Soft Mask from
Group Alpha”).

Luminosity The group’s computed colour shall be converted to a
single-component luminosity value (see “Deriving a
Soft Mask from Group Luminosity”).

G stream (Required) A transparency group XObject (see “Transparency Group
XObjects”) to be used as the source of alpha or colour values for
deriving the mask. If the subtype S is Luminosity, the group attributes
dictionary shall contain a CS entry defining the colour space in which
the compositing computation is to be performed.

BC array (Optional) An array of component values specifying the colour to be
used as the backdrop against which to composite the transparency
group XObject G. This entry shall be consulted only if the subtype S is
Luminosity. The array shall consist of n numbers, where n is the
number of components in the colour space specified by the CS entry in
the group attributes dictionary (see “Transparency Group XObjects”).
Default value: the colour space’s initial value, representing black.

TR function or name (Optional) A function object (see “Functions”) specifying the transfer
function to be used in deriving the mask values. The function shall
accept one input, the computed group alpha or luminosity (depending
on the value of the subtype S), and shall return one output, the
resulting mask value. The input shall be in the range 0.0 to 1.0. The
computed output shall be in the range 0.0 to 1.0; if it falls outside this
range, it shall be forced to the nearest valid value. The name Identity
may be specified in place of a function object to designate the identity
function. Default value: Identity.

PDF 32000-1:2008

348 © Adobe Systems Incorporated 2008 – All rights reserved

If the image data is preblended, the matte colour shall be specified by a Matte entry in the soft-mask image
dictionary (see Table 145). The preblending computation, performed independently for each component, shall
be

where

c′ is the value to be provided in the image source data

c is the original image component value

m is the matte colour component value

α is the corresponding mask sample

This computation shall use actual colour component values, with the effects of the Filter and Decode
transformations already performed. The computation shall be the same whether the colour space is additive or
subtractive.

Table 145 – Restrictions on the entries in a soft-mask image dictionary

Key Restriction

Type If present, shall be XObject.

Subtype Shall be Image.

Width If a Matte entry (see Table 146) is present, shall be the
same as the Width value of the parent image; otherwise
independent of it. Both images shall be mapped to the
unit square in user space (as are all images), regardless
of whether the samples coincide individually.

Height Same considerations as for Width.

ColorSpace Required; shall be DeviceGray.

BitsPerComponent Required.

Intent Ignored.

ImageMask Shall be false or absent.

Mask Shall be absent.

SMask Shall be absent.

Decode Default value: [0 1].

Interpolate Optional.

Alternates Ignored.

Name Ignored.

StructParent Ignored.

ID Ignored.

OPI Ignored.

c' m α c m–()×+=

© Adobe Systems Incorporated 2008 – All rights reserved 349

PDF 32000-1:2008

When preblended image data is used in transparency blending and compositing computations, the results shall
be the same as if the original, unblended image data were used and no matte colour were specified. In
particular, the inputs to the blend function shall be the original colour values. To derive c from c′, the conforming
reader may sometimes need to invert the formula shown previously. The resulting c value shall lie within the
range of colour component values for the image colour space.

The preblending computation shall be done in the colour space specified by the parent image’s ColorSpace
entry. This is independent of the group colour space into which the image may be painted. If a colour
conversion is required, inversion of the preblending shall precede the colour conversion. If the image colour
space is an Indexed space (see “Indexed Colour Spaces”), the colour values in the colour table (not the index
values themselves) shall be preblended.

11.6.6 Transparency Group XObjects

A transparency group is represented in PDF as a special type of group XObject (see “Group XObjects”) called
a transparency group XObject. A group XObject is in turn a type of form XObject, distinguished by the presence
of a Group entry in its form dictionary (see “Form Dictionaries”). The value of this entry is a subsidiary group
attributes dictionary defining the properties of the group. The format and meaning of the dictionary’s contents
shall be determined by its group subtype, which is specified by the dictionary’s S entry. The entries for a
transparency group (subtype Transparency) are shown in Table 147.

A page object (see “Page Objects”) may also have a Group entry, whose value is a group attributes dictionary
specifying the attributes of the page group (see “Page Group”). Some of the dictionary entries are interpreted
slightly differently for a page group than for a transparency group XObject; see their descriptions in the table for
details.

Table 146 – Additional entry in a soft-mask image dictionary

Key Type Value

Matte array (Optional; PDF 1.4) An array of component values specifying the matte colour
with which the image data in the parent image shall have been preblended. The
array shall consist of n numbers, where n is the number of components in the
colour space specified by the ColorSpace entry in the parent image’s image
dictionary; the numbers shall be valid colour components in that colour space. If
this entry is absent, the image data shall not be preblended.

Table 147 – Additional entries specific to a transparency group attributes dictionary

Key Type Value

S name (Required) The group subtype, which identifies the type of group whose
attributes this dictionary describes; shall be Transparency for a
transparency group.

PDF 32000-1:2008

350 © Adobe Systems Incorporated 2008 – All rights reserved

CS name or array (Sometimes required) The group colour space, which is used for the
following purposes:
• As the colour space into which colours shall be converted when

painted into the group

• As the blending colour space in which objects shall be composited
within the group (see “Blending Colour Space”)

• As the colour space of the group as a whole when it in turn is painted
as an object onto its backdrop

The group colour space shall be any device or CIE-based colour space
that treats its components as independent additive or subtractive values
in the range 0.0 to 1.0, subject to the restrictions described in 11.3.4,
"Blending Colour Space." These restrictions exclude Lab and lightness-
chromaticity ICCBased colour spaces, as well as the special colour
spaces Pattern, Indexed, Separation, and DeviceN. Device colour
spaces shall be subject to remapping according to the DefaultGray,
DefaultRGB, and DefaultCMYK entries in the ColorSpace subdictionary
of the current resource dictionary (see “Default Colour Spaces”).
Ordinarily, the CS entry may be present only for isolated transparency
groups (those for which I is true), and even then it is optional. However,
this entry shall be present in the group attributes dictionary for any
transparency group XObject that has no parent group or page from which
to inherit—in particular, one that is the value of the G entry in a soft-mask
dictionary of subtype Luminosity (see “Soft-Mask Dictionaries”).
Additionally, the CS entry may be present in the group attributes
dictionary associated with a page object, even if I is false or absent. In
the normal case in which the page is imposed directly on the output
medium, the page group is effectively isolated regardless of the I value,
and the specified CS value shall therefore be honoured. But if the page is
in turn used as an element of some other page and if the group is non-
isolated, CS shall be ignored and the colour space shall be inherited from
the actual backdrop with which the page is composited (see “Page
Group”).
Default value: the colour space of the parent group or page into which this
transparency group is painted. (The parent’s colour space in turn may be
either explicitly specified or inherited.)
For a transparency group XObject used as an annotation appearance
(see “Appearance Streams”), the default colour space shall be inherited
from the page on which the annotation appears.

I boolean (Optional) A flag specifying whether the transparency group is isolated
(see “Isolated Groups”). If this flag is true, objects within the group shall
be composited against a fully transparent initial backdrop; if false, they
shall be composited against the group’s backdrop. Default value: false.
In the group attributes dictionary for a page, the interpretation of this entry
shall be slightly altered. In the normal case in which the page is imposed
directly on the output medium, the page group is effectively isolated and
the specified I value shall be ignored. But if the page is in turn used as an
element of some other page, it shall be treated as if it were a
transparency group XObject; the I value shall be interpreted in the normal
way to determine whether the page group is isolated.

Table 147 – Additional entries specific to a transparency group attributes dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 351

PDF 32000-1:2008

The transparency group XObject’s content stream shall define the graphics objects belonging to the group.
When applied to a transparency group XObject, the Do operator shall execute its content stream and shall
composite the resulting group colour, shape, and opacity into the group’s parent group or page as if they had
come from an elementary graphics object. Do shall perform the following actions in addition to the normal ones
for a form XObject (as described in “Form XObjects”):

• If the transparency group is non-isolated (the value of the I entry in its group attributes dictionary is false),
its initial backdrop, within the bounding box specified by the XObject’s BBox entry, shall be defined to be
the accumulated colour and alpha of the parent group or page—that is, the result of everything that has
been painted in the parent up to that point. However, if the parent is a knockout group, the initial backdrop
shall be the same as that of the parent. If the group is isolated (I is true), its initial backdrop shall be
defined to be transparent.

• Before execution of the transparency group XObject’s content stream, the current blend mode in the
graphics state shall be initialized to Normal, the current stroking and nonstroking alpha constants to 1.0,
and the current soft mask to None.

NOTE 1 The purpose of initializing these graphics state parameters at the beginning of execution is to ensure that they
are not applied twice: once when member objects are painted into the group and again when the group is
painted into the parent group or page.

• Objects painted by operators in the transparency group XObject’s content stream shall be composited into
the group according to the rules described in 11.3.3, "Basic Compositing Formula." The knockout flag (K)
in the group attributes dictionary and the transparency-related parameters of the graphics state shall be
honoured during this computation.

• If a group colour space (CS) is specified in the group attributes dictionary, all painting operators shall
convert source colours to that colour space before compositing objects into the group, and the resulting
colour at each point shall be interpreted in that colour space. If no group colour space is specified, the
prevailing colour space shall be dynamically inherited from the parent group or page. (If not otherwise
specified, the page group’s colour space shall be inherited from the native colour space of the output
device.)

• After execution of the transparency group XObject’s content stream, the graphics state shall revert to its
former state before the invocation of the Do operator (as it does for any form XObject). The group’s
shape—the union of all objects painted into the group, clipped by the group XObject’s bounding box—
shall then be painted into the parent group or page, using the group’s accumulated colour and opacity at
each point.

If the Do operator is invoked more than once for a given transparency group XObject, each invocation shall be
treated as a separate transparency group. That is, the result shall be as if the group were independently
composited with the backdrop on each invocation.

NOTE 2 Applications that perform caching of rendered form XObjects shall take this requirement into account.

The actions described previously shall occur only for a transparency group XObject—a form XObject having a
Group entry that designates a group attributes subdictionary whose group subtype (S) is Transparency. An
ordinary form XObject—one having no Group entry—shall not be subject to any grouping behaviour for

K boolean (Optional) A flag specifying whether the transparency group is a knockout
group (see “Knockout Groups”). If this flag is false, later objects within the
group shall be composited with earlier ones with which they overlap; if
true, they shall be composited with the group’s initial backdrop and shall
overwrite (“knock out”) any earlier overlapping objects. Default value:
false.

Table 147 – Additional entries specific to a transparency group attributes dictionary (continued)

Key Type Value

PDF 32000-1:2008

352 © Adobe Systems Incorporated 2008 – All rights reserved

transparency purposes. That is, the graphics objects it contains shall be composited individually, just as if they
were painted directly into the parent group or page.

11.6.7 Patterns and Transparency

In the transparent imaging model, the graphics objects making up the pattern cell of a tiling pattern (see “Tiling
Patterns”) may include transparent objects and transparency groups. Transparent compositing may occur both
within the pattern cell and between it and the backdrop wherever the pattern is painted. Similarly, a shading
pattern (“Shading Patterns”) composites with its backdrop as if the shading dictionary were applied with the sh
operator.

In both cases, the pattern definition shall be treated as if it were implicitly enclosed in a non-isolated
transparency group: a non-knockout group for tiling patterns, a knockout group for shading patterns. The
definition shall not inherit the current values of the graphics state parameters at the time it is evaluated; those
parameters shall take effect only when the resulting pattern is later used to paint an object. Instead, the
graphics state parameters shall be initialized as follows:

• As always for transparency groups, those parameters related to transparency (blend mode, soft mask, and
alpha constant) shall be initialized to their standard default values.

• All other parameters shall be initialized to their values at the beginning of the content stream (such as a
page or a form XObject) in which the pattern shall be defined as a resource. (This is the normal behaviour
for all patterns, in both the opaque and transparent imaging models.)

• In the case of a shading pattern, the parameter values may be augmented by the contents of the
ExtGState entry in the pattern dictionary (see “Shading Patterns”). Only those parameters that affect the
sh operator, such as the current transformation matrix and rendering intent, shall be used. Parameters that
affect path-painting operators shall not be used, since the execution of sh does not entail painting a path.

• If the shading dictionary has a Background entry, the pattern’s implicit transparency group shall be filled
with the specified background colour before the sh operator is invoked.

When the pattern is later used to paint a graphics object, the colour, shape, and opacity values resulting from
the evaluation of the pattern definition shall be used as the object’s source colour (Cs), object shape (fj), and
object opacity (qj) in the transparency compositing formulas. This painting operation is subject to the values of
the graphics state parameters in effect at the time, just as in painting an object with a constant colour.

NOTE 1 Unlike the opaque imaging model, in which the pattern cell of a tiling pattern may be evaluated once and then
replicated indefinitely to fill the painted area, the effect in the general transparent case is as if the pattern
definition were reexecuted independently for each tile, taking into account the colour of the backdrop at each
point. However, in the common case in which the pattern consists entirely of objects painted with the Normal
blend mode, this behaviour can be optimized by treating the pattern cell as if it were an isolated group. Since in
this case the results depend only on the colour, shape, and opacity of the pattern cell and not on those of the
backdrop, the pattern cell can be evaluated once and then replicated, just as in opaque painting.

NOTE 2 In a raster-based implementation of tiling, all tiles should be treated as a single transparency group. This
avoids artifacts due to multiple marking of pixels along the boundaries between adjacent tiles.

The foregoing discussion applies to both coloured (PaintType 1) and uncoloured (PaintType 2) tiling patterns.
In the latter case, the restriction that an uncoloured pattern’s definition shall not specify colours extends as well
to any transparency group that the definition may include. There are no corresponding restrictions, however, on
specifying transparency-related parameters in the graphics state.

© Adobe Systems Incorporated 2008 – All rights reserved 353

PDF 32000-1:2008

11.7 Colour Space and Rendering Issues

11.7.1 General

This sub-clause describes the interactions between transparency and other aspects of colour specification and
rendering in the PDF imaging model.

11.7.2 Colour Spaces for Transparency Groups

As discussed in 11.6.6, "Transparency Group XObjects," a transparency group shall either have an explicitly
declared colour space of its own or inherit that of its parent group. In either case, the colours of source objects
within the group shall be converted to the group’s colour space, if necessary, and all blending and compositing
computations shall be done in that space (see “Blending Colour Space”). The resulting colours shall then be
interpreted in that colour space when the group is subsequently composited with its backdrop.

NOTE 1 Under this arrangement, it is envisioned that all or most of a given piece of artwork will be created in a single
colour space—most likely, the working colour space of the application generating it. The use of multiple colour
spaces typically will arise only when assembling independently produced artwork onto a page. After all the
artwork has been placed on the page, the conversion from the group’s colour space to the page’s device colour
space will be done as the last step, without any further transparency compositing. The transparent imaging
model does not require that this convention be followed, however; the reason for adopting it is to avoid the loss
of colour information and the introduction of errors resulting from unnecessary colour space conversions.

Only an isolated group may have an explicitly declared colour space of its own. Non-isolated groups shall
inherit their colour space from the parent group (subject to special treatment for the page group, as described
in “Page Group”).

NOTE 2 This is because the use of an explicit colour space in a non-isolated group would require converting colours
from the backdrop’s colour space to that of the group in order to perform the compositing computations. Such
conversion may not be possible (since some colour conversions can be performed only in one direction), and
even if possible, it would entail an excessive number of colour conversions.

NOTE 3 The choice of a group colour space has significant effects on the results that are produced:

As noted in 11.3.4, "Blending Colour Space," the results of compositing in a device colour space is device-
dependent. For the compositing computations to work in a device-independent way, the group’s colour space
should be CIE-based.

A consequence of choosing a CIE-based group colour space is that only CIE-based spaces can be used to
specify the colours of objects within the group. This is because conversion from device to CIE-based colours is
not possible in general; the defined conversions work only in the opposite direction. See further discussion
subsequently.

The compositing computations and blend functions generally compute linear combinations of colour
component values, on the assumption that the component values themselves are linear. For this reason, it is
usually best to choose a group colour space that has a linear gamma function. If a nonlinear colour space is
chosen, the results are still well-defined, but the appearance may not match the user’s expectations.

NOTE 4 The CIE-based sRGB colour space (see “CIE-Based Colour Spaces”) is nonlinear and hence may be
unsuitable for use as a group colour space.

NOTE 5 Implementations of the transparent imaging model should use as much precision as possible in representing
colours during compositing computations and in the accumulated group results. To minimize the accumulation
of roundoff errors and avoid additional errors arising from the use of linear group colour spaces, more precision
is needed for intermediate results than is typically used to represent either the original source data or the final
rasterized results.

If a group’s colour space—whether specified explicitly or inherited from the parent group—is CIE-based, any
use of device colour spaces for painting objects shall be subject to special treatment. Device colours cannot be
painted directly into such a group, since there is no generally defined method for converting them to the CIE-
based colour space. This problem arises in the following cases:

PDF 32000-1:2008

354 © Adobe Systems Incorporated 2008 – All rights reserved

• DeviceGray, DeviceRGB, and DeviceCMYK colour spaces, unless remapped to default CIE-based
colour spaces (see “Default Colour Spaces”)

• Operators (such as rg) that specify a device colour space implicitly, unless that space is remapped

• Special colour spaces whose base or underlying space is a device colour space, unless that space is
remapped

The default colour space remapping mechanism should always be employed when defining a transparency
group whose colour space is CIE-based. If a device colour is specified and is not remapped, it shall be
converted to the CIE-based colour space in an implementation-dependent fashion, producing unpredictable
results.

NOTE 6 The foregoing restrictions do not apply if the group’s colour space is implicitly converted to DeviceCMYK, as
discussed in “Implicit Conversion of CIE-Based Colour Spaces”.

11.7.3 Spot Colours and Transparency

The foregoing discussion of colour spaces has been concerned with process colours—those produced by
combinations of an output device’s process colorants. Process colours may be specified directly in the device’s
native colour space (such as DeviceCMYK), or they may be produced by conversion from some other colour
space, such as a CIE-based (CalRGB or ICCBased) space. Whatever means is used to specify them, process
colours shall be subject to conversion to and from the group’s colour space.

A spot colour is an additional colour component, independent of those used to produce process colours. It may
represent either an additional separation to be produced or an additional colorant to be applied to the
composite page (see “Separation Colour Spaces” and “DeviceN Colour Spaces”). The colour component value,
or tint, for a spot colour specifies the concentration of the corresponding spot colorant. Tints are conventionally
represented as subtractive, rather than additive, values.

Spot colours are inherently device-dependent and are not always available. In the opaque imaging model, each
use of a spot colour component in a Separation or DeviceN colour space is accompanied by an alternate
colour space and a tint transformation function for mapping tint values into that space. This enables the colour
to be approximated with process colorants when the corresponding spot colorant is not available on the device.

Spot colours can be accommodated straightforwardly in the transparent imaging model (except for issues
relating to overprinting, discussed in “Overprinting and Transparency”). When an object is painted transparently
with a spot colour component that is available in the output device, that colour shall be composited with the
corresponding spot colour component of the backdrop, independently of the compositing that is performed for
process colours. A spot colour retains its own identity; it shall not be subject to conversion to or from the colour
space of the enclosing transparency group or page. If the object is an element of a transparency group, one of
two things shall happen:

• The group shall maintain a separate colour value for each spot colour component, independently of the
group’s colour space. In effect, the spot colour passes directly through the group hierarchy to the device,
with no colour conversions performed. However, it shall still be subject to blending and compositing with
other objects that use the same spot colour.

• The spot colour shall be converted to its alternate colour space. The resulting colour shall then be subject
to the usual compositing rules for process colours. In particular, spot colours shall not be available in a
transparency group XObject that is used to define a soft mask; the alternate colour space shall always be
substituted in that case.

Only a single shape value and opacity value shall be maintained at each point in the computed group results;
they shall apply to both process and spot colour components. In effect, every object shall be considered to
paint every existing colour component, both process and spot. Where no value has been explicitly specified for
a given component in a given object, an additive value of 1.0 (or a subtractive tint value of 0.0) shall be
assumed. For instance, when painting an object with a colour specified in a DeviceCMYK or ICCBased colour
space, the process colour components shall be painted as specified and the spot colour components shall be

© Adobe Systems Incorporated 2008 – All rights reserved 355

PDF 32000-1:2008

painted with an additive value of 1.0. Likewise, when painting an object with a colour specified in a Separation
colour space, the named spot colour shall be painted as specified and all other components (both process
colours and other spot colours) shall be painted with an additive value of 1.0. The consequences of this are
discussed in 11.7.4, "Overprinting and Transparency."

Under the opaque imaging model, a Separation or DeviceN colour space may specify the individual process
colour components of the output device, as if they were spot colours. However, within a transparency group,
this should be done only if the group inherits the native colour space of the output device (or is implicitly
converted to DeviceCMYK, as discussed in 8.6.5.7, "Implicit Conversion of CIE-Based Colour Spaces"). If any
other colour space has been specified for the group, the Separation or DeviceN colour space shall be
converted to its alternate colour space.

NOTE In general, within a transparency group containing an explicitly-specified colour space, the group's process
colour components are different from the device's process colour components. Conversion to the device's
process colour components occurs only after all colour compositing computations for the group have been
completed. Consequently, the device's process colour components are not accessible within the group.

For instance, outside of any transparency group, a device whose native colour space is DeviceCMYK has a
Cyan component that may be specified in a Separation or DeviceN colour space. On the other hand, within a
transparency group whose colour space is ICCBased, the group has no Cyan component available to be
painted.

11.7.4 Overprinting and Transparency

11.7.4.1 General

In the opaque imaging model, overprinting is controlled by two parameters of the graphics state: the overprint
parameter and the overprint mode (see “Overprint Control”). Painting an object causes some specific set of
device colorants to be marked, as determined by the current colour space and current colour in the graphics
state. The remaining colorants shall be either erased or left unchanged, depending on whether the overprint
parameter is false or true. When the current colour space is DeviceCMYK, the overprint mode parameter
additionally enables this selective marking of colorants to be applied to individual colour components according
to whether the component value is zero or nonzero.

NOTE 1 Because this model of overprinting deals directly with the painting of device colorants, independently of the
colour space in which source colours have been specified, it is highly device-dependent and primarily
addresses production needs rather than design intent. Overprinting is usually reserved for opaque colorants or
for very dark colours, such as black. It is also invoked during late-stage production operations such as trapping
(see “Trapping Support”), when the actual set of device colorants has already been determined.

NOTE 2 Consequently, it is best to think of transparency as taking place in appearance space, but overprinting of
device colorants in device space. This means that colorant overprint decisions should be made at output time,
based on the actual resultant colorants of any transparency compositing operation. On the other hand, effects
similar to overprinting can be achieved in a device-independent manner by taking advantage of blend modes,
as described in the next sub-clause.

11.7.4.2 Blend Modes and Overprinting

As stated in 11.7.3, "Spot Colours and Transparency," each graphics object that is painted shall affect all
existing colour components: all process colorants in the transparency group’s colour space as well as any
available spot colorants. For colour components whose value has not been specified, a source colour value of
1.0 shall be assumed; when objects are fully opaque and the Normal blend mode is used, this shall have the
effect of erasing those components. This treatment is consistent with the behaviour of the opaque imaging
model with the overprint parameter set to false.

The transparent imaging model defines some blend modes, such as Darken, that can be used to achieve
effects similar to overprinting. The blend function for Darken is

B cb cs,() min cb cs,()=

PDF 32000-1:2008

356 © Adobe Systems Incorporated 2008 – All rights reserved

In this blend mode, the result of compositing shall always be the same as the backdrop colour when the source
colour is 1.0, as it is for all unspecified colour components. When the backdrop is fully opaque, this shall leave
the result colour unchanged from that of the backdrop. This is consistent with the behaviour of the opaque
imaging model with the overprint parameter set to true.

If the object or backdrop is not fully opaque, the actions described previously are altered accordingly. That is,
the erasing effect shall be reduced, and overprinting an object with a colour value of 1.0 may affect the result
colour. While these results may or may not be useful, they lie outside the realm of the overprinting and erasing
behaviour defined in the opaque imaging model.

When process colours are overprinted or erased (because a spot colour is being painted), the blending
computations described previously shall be done independently for each component in the group’s colour
space. If that space is different from the native colour space of the output device, its components are not the
device’s actual process colorants; the blending computations shall affect the process colorants only after the
group’s results have been converted to the device colour space. Thus the effect is different from that of
overprinting or erasing the device’s process colorants directly. On the other hand, this is a fully general
operation that works uniformly, regardless of the type of object or of the computations that produced the source
colour.

NOTE 1 The discussion so far has focused on those colour components whose values are not specified and that are to
be either erased or left unchanged. However, the Normal or Darken blend modes used for these purposes
may not be suitable for use on those components whose colour values are specified. In particular, using the
Darken blend mode for such components would preclude overprinting a dark colour with a lighter one.
Moreover, some other blend mode may be specifically desired for those components.

The PDF graphics state specifies only one current blend mode parameter, which shall always apply to process
colorants and sometimes to spot colorants as well. Specifically, only separable, white-preserving blend modes
shall be used for spot colours. If the specified blend mode is not separable and white-preserving, it shall apply
only to process colour components, and the Normal blend mode shall be substituted for spot colours.

A blend mode is white-preserving if its blend function B has the property that B (1.0, 1.0) = 1.0.

NOTE 2 Of the standard separable blend modes listed in Table 136 in 11.3.5, "Blend Mode," all except Difference and
Exclusion are white-preserving. This ensures that when objects accumulate in an isolated transparency
group, the accumulated values for unspecified components remain 1.0 as long as only white-preserving blend
modes are used. The group’s results can then be overprinted using Darken (or other useful modes) while
avoiding unwanted interactions with components whose values were never specified within the group.

11.7.4.3 Compatibility with Opaque Overprinting

Because the use of blend modes to achieve effects similar to overprinting does not make direct use of the
overprint control parameters in the graphics state, such methods are usable only by transparency-aware
applications. For compatibility with the methods of overprint control used in the opaque imaging model, a
special blend mode, CompatibleOverprint, is provided that consults the overprint-related graphics state
parameters to compute its result. This mode shall apply only when painting elementary graphics objects (fills,
strokes, text, images, and shadings). It shall not be invoked explicitly and shall not be identified by any PDF
name object; rather, it shall be implicitly invoked whenever an elementary graphics object is painted while
overprinting is enabled (that is, when the overprint parameter in the graphics state is true).

NOTE 1 Earlier designs of the transparent imaging model included an additional blend mode named Compatible,
which explicitly invoked the CompatibleOverprint blend mode described here. Because CompatibleOverprint is
now invoked implicitly whenever appropriate, it is never necessary to specify the Compatible blend mode for
use in compositing.

The Compatible blend mode shall be treated as equivalent to Normal.

The value of the blend function B (cb , cs) in the CompatibleOverprint mode shall be either cb or cs , depending
on the setting of the overprint mode parameter, the current and group colour spaces, and the source colour
value cs :

© Adobe Systems Incorporated 2008 – All rights reserved 357

PDF 32000-1:2008

• If the overprint mode is 1 (nonzero overprint mode) and the current colour space and group colour space
are both DeviceCMYK, then process colour components with nonzero values shall replace the
corresponding component values of the backdrop; components with zero values leave the existing
backdrop value unchanged. That is, the value of the blend function B (cb , cs) shall be the source
component cs for any process (DeviceCMYK) colour component whose (subtractive) colour value is
nonzero; otherwise it shall be the backdrop component cb . For spot colour components, the value shall
always be cb .

• In all other cases, the value of B (cb , cs) shall be cs for all colour components specified in the current colour
space, otherwise cb .

EXAMPLE 1 If the current colour space is DeviceCMYK or CalRGB, the value of the blend function is cs for process
colour components and cb for spot components. On the other hand, if the current colour space is a
Separation space representing a spot colour component, the value is cs for that spot component and cb
for all process components and all other spot components.

NOTE 2 In the previous descriptions, the term current colour space refers to the colour space used for a painting
operation. This may be specified by the current colour space parameter in the graphics state (see “Colour
Values”), implicitly by colour operators such as rg (“Colour Operators”), or by the ColorSpace entry of an
image XObject (“Image Dictionaries”). In the case of an Indexed space, it refers to the base colour space (see
“Indexed Colour Spaces”); likewise for Separation and DeviceN spaces that revert to their alternate colour
space, as described under “Separation Colour Spaces” and “DeviceN Colour Spaces”.

If the current blend mode when CompatibleOverprint is invoked is any mode other than Normal, the object
being painted shall be implicitly treated as if it were defined in a non-isolated, non-knockout transparency group
and painted using the CompatibleOverprint blend mode. The group’s results shall then be painted using the
current blend mode in the graphics state.

NOTE 3 It is not necessary to create such an implicit transparency group if the current blend mode is Normal; simply
substituting the CompatibleOverprint blend mode while painting the object produces equivalent results. There
are some additional cases in which the implicit transparency group can be optimized out.

EXAMPLE 2 Figure L.20 in Annex L shows the effects of all four possible combinations of blending and overprinting,
using the Screen blend mode in the DeviceCMYK colour space. The label “overprint enabled” means
that the overprint parameter in the graphics state is true and the overprint mode is 1. In the upper half of
the figure, a light green oval is painted opaquely (opacity = 1.0) over a backdrop shading from pure yellow
to pure magenta. In the lower half, the same object is painted with transparency (opacity = 0.5).

11.7.4.4 Special Path-Painting Considerations

The overprinting considerations discussed in 11.7.4.3, "Compatibility with Opaque Overprinting," also affect
those path-painting operations that combine filling and stroking a path in a single operation. These include the
B, B*, b, and b* operators (see “Path-Painting Operators”) and the painting of glyphs with text rendering mode
2 or 6 (“Text Rendering Mode”). For transparency compositing purposes, the combined fill and stroke shall be
treated as a single graphics object, as if they were enclosed in a transparency group. This implicit group is
established and used as follows:

• If overprinting is enabled (the overprint parameter in the graphics state is true) and the current stroking
and nonstroking alpha constants are equal, a non-isolated, non-knockout transparency group shall be
established. Within the group, the fill and stroke shall be performed with an alpha value of 1.0 but with the
CompatibleOverprint blend mode. The group results shall then be composited with the backdrop, using the
originally specified alpha and blend mode.

• In all other cases, a non-isolated knockout group shall be established. Within the group, the fill and stroke
shall be performed with their respective prevailing alpha constants and the prevailing blend mode. The
group results shall then be composited with the backdrop, using an alpha value of 1.0 and the Normal
blend mode.

PDF 32000-1:2008

358 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 1 In the case of showing text with the combined filling and stroking text rendering modes, this behaviour is
independent of the text knockout parameter in the graphics state (see “Text Knockout”).

NOTE 2 The purpose of these rules is to avoid having a non-opaque stroke composite with the result of the fill in the
region of overlap, which would produce a double border effect that is usually undesirable. The special case
that applies when the overprint parameter is true is for backward compatibility with the overprinting behavior of
the opaque imaging model. If a desired effect cannot be achieved with a combined filling and stroking operator
or text rendering mode, it can be achieved by specifying the fill and stroke with separate path objects and an
explicit transparency group.

NOTE 3 Overprinting of the stroke over the fill does not work in the second case described previously (although either
the fill or the stroke can still overprint the backdrop). Furthermore, if the overprint graphics state parameter is
true, the results are discontinuous at the transition between equal and unequal values of the stroking and
nonstroking alpha constants. For this reason, it is best not to use overprinting for combined filling and stroking
operations if the stroking and nonstroking alpha constants are being varied independently.

11.7.4.5 Summary of Overprinting Behaviour

Tables 148 and 149 summarize the overprinting and erasing behaviour in the opaque and transparent imaging
models, respectively. Table 148 shows the overprinting rules used in the opaque model, as described in
“Overprint Control”. Table 149 shows the equivalent rules as implemented by the CompatibleOverprint blend
mode in the transparent model. The names OP and OPM in the tables refer to the overprint and overprint mode
parameters of the graphics state.

Table 148 – Overprinting behavior in the opaque imaging model

Source colour
space

Affected colour
component

Effect on colour component

OP false OP true,
OPM 0

OP true,
OPM 1

DeviceCMYK,
specified directly,
not in a sampled
image

C, M, Y, or K Paint source Paint source Paint source
if ≠ 0.0

Do not paint if = 0.0

Process colorant
other than CMYK

Paint source Paint source Paint source

Spot colorant Paint 0.0 Do not paint Do not paint

Any process colour
space (including
other cases of
DeviceCMYK)

Process colorant Paint source Paint source Paint source

Spot colorant Paint 0.0 Do not paint Do not paint

Separation or
DeviceN

Process colorant Paint 0.0 Do not paint Do not paint

Spot colorant
named in source
space

Paint source Paint source Paint source

Spot colorant not
named in source
space

Paint 0.0 Do not paint Do not paint

© Adobe Systems Incorporated 2008 – All rights reserved 359

PDF 32000-1:2008

Colour component values are represented in these tables as subtractive tint values because overprinting is
typically applied to subtractive colorants such as inks rather than to additive ones such as phosphors on a
display screen. The CompatibleOverprint blend mode is therefore described as if it took subtractive arguments
and returned subtractive results. In reality, however, CompatibleOverprint (like all blend modes) shall treat
colour components as additive values; subtractive components shall be complemented before and after
application of the blend function.

NOTE 1 This note describes an important difference between Table 148 and Table 149. In Table 148, the process
colour components being discussed are the actual device colorants—the colour components of the output
device’s native colour space (DeviceGray, DeviceRGB, or DeviceCMYK). In Table 149, the process colour
components are those of the group’s colour space, which is not necessarily the same as that of the output
device (and can even be something like CalRGB or ICCBased). For this reason, the process colour
components of the group colour space cannot be treated as if they were spot colours in a Separation or
DeviceN colour space (see “Spot Colours and Transparency”). This difference between opaque and
transparent overprinting and erasing rules arises only within a transparency group (including the page group, if
its colour space is different from the native colour space of the output device). There is no difference in the
treatment of spot colour components.

NOTE 2 Table 149 has one additional row at the bottom. It applies when painting an object that is a transparency group
rather than an elementary object (fill, stroke, text, image, or shading). As stated in 11.7.3, "Spot Colours and
Transparency," a group is considered to paint all colour components, both process and spot. Colour
components that were not explicitly painted by any object in the group have an additive colour value of 1.0
(subtractive tint 0.0). Since no information is retained about which components were actually painted within the
group, compatible overprinting is not possible in this case; the CompatibleOverprint blend mode reverts to
Normal, with no consideration of the overprint and overprint mode parameters. A transparency-aware
conforming writer can choose a more suitable blend mode, such as Darken, to produce an effect similar to
overprinting.

Table 149 – Overprinting behavior in the transparent imaging model

Source color space

Affected colour
component of
group colour
space

Value of blend function B (cb , cs) expressed as tint

OP false OP true,
OPM 0

OP true,
OPM 1

DeviceCMYK,
specified directly,
not in a sampled
image

C, M, Y, or K cs cs cs if cs ≠ 0.0
cb if cs = 0.0

Process colour
component other
than CMYK

cs cs cs

Spot colorant cs (= 0.0) cb cb

Any process colour
space (including
other cases of
DeviceCMYK)

Process colour
component

cs cs cs

Spot colorant cs (= 0.0) cb cb

Separation or
DeviceN

Process colour
component

cs (= 0.0) cb cb

Spot colorant
named in source
space

cs cs cs

Spot colorant not
named in source
space

cs (= 0.0) cb cb

A group (not an
elementary object)

All colour
components

cs cs cs

PDF 32000-1:2008

360 © Adobe Systems Incorporated 2008 – All rights reserved

11.7.5 Rendering Parameters and Transparency

11.7.5.1 General

The opaque imaging model has several graphics state parameters dealing with the rendering of colour: the
current halftone (see “Halftone Dictionaries”), transfer functions (“Transfer Functions”), rendering intent
(“Rendering Intents”), and black-generation and undercolor-removal functions (“Conversion from DeviceRGB
to DeviceCMYK”). All of these rendering parameters may be specified on a per-object basis; they control how a
particular object is rendered. When all objects are opaque, it is easy to define what this means. But when they
are transparent, more than one object may contribute to the colour at a given point; it is unclear which
rendering parameters to apply in an area where transparent objects overlap. At the same time, the transparent
imaging model should be consistent with the opaque model when only opaque objects are painted.

There are two categories of rendering parameters that are treated somewhat differently in the presence of
transparency. In the first category are halftone and transfer functions, which are applied only when the final
colour at a given point on the page is known. In the second category are rendering intent, black generation, and
undercolor removal, which are applied whenever colours are converted from one colour space to another.

11.7.5.2 Halftone and Transfer Function

When objects are transparent, rendering of an object does not occur when the object is specified but at some
later time. Hence, the implementation shall keep track of the halftone and transfer function parameters at each
point on the page from the time they are specified until the time rendering actually occurs. This means that
these rendering parameters shall be associated with regions of the page rather than with individual objects.

The halftone and transfer function to be used at any given point on the page shall be those in effect at the time
of painting the last (topmost) elementary graphics object enclosing that point, but only if the object is fully
opaque. Only elementary objects shall be relevant; the rendering parameters associated with a group object
are ignored. The topmost object at any point shall be defined to be the topmost elementary object in the entire
page stack that has a nonzero object shape value (fj) at that point (that is, for which the point is inside the
object). An object shall be considered to be fully opaque if all of the following conditions hold at the time the
object is painted:

• The current alpha constant in the graphics state (stroking or nonstroking, depending on the painting
operation) is 1.0.

• The current blend mode in the graphics state is Normal (or Compatible, which is treated as equivalent to
Normal).

• The current soft mask in the graphics state is None. If the object is an image XObject, there is not an
SMask entry in its image dictionary.

• The foregoing three conditions were also true at the time the Do operator was invoked for the group
containing the object, as well as for any direct ancestor groups.

• If the current colour is a tiling pattern, all objects in the definition of its pattern cell also satisfy the foregoing
conditions.

Together, these conditions ensure that only the object itself shall contribute to the colour at the given point,
completely obscuring the backdrop. For portions of the page whose topmost object is not fully opaque or that
are never painted at all, the default halftone and transfer function for the page shall be used.

If a graphics object is painted with overprinting enabled—that is, if the applicable (stroking or nonstroking)
overprint parameter in the graphics state is true—the halftone and transfer function to use at a given point shall
be determined independently for each colour component. Overprinting implicitly invokes the
CompatibleOverprint blend mode (see “Compatibility with Opaque Overprinting”). An object shall be considered
opaque for a given component only if CompatibleOverprint yields the source colour (not the backdrop colour)
for that component.

© Adobe Systems Incorporated 2008 – All rights reserved 361

PDF 32000-1:2008

11.7.5.3 Rendering Intent and Colour Conversions

The rendering intent, black-generation, and undercolor-removal parameters control certain colour conversions.
In the presence of transparency, they may need to be applied earlier than the actual rendering of colour onto
the page.

The rendering intent influences the conversion from a CIE-based colour space to a target colour space, taking
into account the target space’s colour gamut (the range of colours it can reproduce). Whereas in the opaque
imaging model the target space shall always be the native colour space of the output device, in the transparent
model it may instead be the group colour space of a transparency group into which an object is being painted.

The rendering intent is needed at the moment such a conversion is performed—that is, when painting an
elementary or group object specified in a CIE-based colour space into a parent group having a different colour
space.

NOTE 1 This differs from the current halftone and transfer function, whose values are used only when all colour
compositing has been completed and rasterization is being performed.

In all cases, the rendering intent to use for converting an object’s colour (whether that of an elementary object
or of a transparency group) shall be determined by the rendering intent parameter associated with the object. In
particular:

• When painting an elementary object with a CIE-based colour into a transparency group having a different
colour space, the rendering intent used shall be the current rendering intent in effect in the graphics state
at the time of the painting operation.

• When painting a transparency group whose colour space is CIE-based into a parent group having a
different colour space, the rendering intent used shall be the current rendering intent in effect at the time
the Do operator is applied to the group.

• When the colour space of the page group is CIE-based, the rendering intent used to convert colours to the
native colour space of the output device shall be the default rendering intent for the page.

NOTE 2 Since there may be one or more nested transparency groups having different CIE-based colour spaces, the
colour of an elementary source object may be converted to the device colour space in multiple stages,
controlled by the rendering intent in effect at each stage. The proper choice of rendering intent at each stage
depends on the relative gamuts of the source and target colour spaces. It is specified explicitly by the
document producer, not prescribed by the PDF specification, since no single policy for managing rendering
intents is appropriate for all situations.

A similar approach works for the black-generation and undercolor-removal functions, which shall be applied
only during conversion from DeviceRGB to DeviceCMYK colour spaces:

• When painting an elementary object with a DeviceRGB colour directly into a transparency group whose
colour space is DeviceCMYK, the functions used shall be the current black-generation and undercolor-
removal functions in effect in the graphics state at the time of the painting operation.

• When painting a transparency group whose colour space is DeviceRGB into a parent group whose colour
space is DeviceCMYK, the functions used shall be the ones in effect at the time the Do operator is applied
to the group.

• When the colour space of the page group is DeviceRGB and the native colour space of the output device
is DeviceCMYK, the functions used to convert colours to the device’s colour space shall be the default
functions for the page.

PDF 32000-1:2008

362 © Adobe Systems Incorporated 2008 – All rights reserved

12 Interactive Features

12.1 General

For purposes of the trigger events E (enter), X (exit), D (down), and U (up), the term mouse denotes a generic
pointing device with the following characteristics:

• A selection button that can be pressed, held down, and released. If there is more than one mouse button,
the selection button is typically the left button.

• A notion of location—that is, an indication of where on the screen the device is pointing. Location is
typically denoted by a screen cursor.

• A notion of focus—that is, which element in the document is currently interacting with the with the user. In
many systems, this element is denoted by a blinking caret, a focus rectangle, or a colour change.

This clause describes the PDF features that allow a user to interact with a document on the screen, using the
mouse and keyboard (with the exception of multimedia features, which are described in 13, “Multimedia
Features”):

• Preference settings to control the way the document is presented on the screen (12.2, “Viewer
Preferences”)

• Navigation facilities for moving through the document in a variety of ways (Sections 12.3, “Document-Level
Navigation” and 12.4, “Page-Level Navigation”)

• Annotations for adding text notes, sounds, movies, and other ancillary information to the document (12.5,
“Annotations”)

• Actions that can be triggered by specified events (12.6, “Actions”)

• Interactive forms for gathering information from the user (12.7, “Interactive Forms”)

• Digital signatures that authenticate the identity of a user and the validity of the document’s contents (12.8,
“Digital Signatures”)

• Measurement properties that enable the display of real-world units corresponding to objects on a page
(12.9, “Measurement Properties”)

12.2 Viewer Preferences

The ViewerPreferences entry in a document’s catalogue (see 7.7.2, “Document Catalog”) designates a viewer
preferences dictionary (PDF 1.2) controlling the way the document shall be presented on the screen or in print.
If no such dictionary is specified, conforming readers should behave in accordance with their own current user
preference settings. Table 150 shows the contents of the viewer preferences dictionary.

Table 150 – Entries in a viewer preferences dictionary

Key Type Value

HideToolbar boolean (Optional) A flag specifying whether to hide the conforming
reader’s tool bars when the document is active. Default value:
false.

HideMenubar boolean (Optional) A flag specifying whether to hide the conforming
reader’s menu bar when the document is active. Default value:
false.

© Adobe Systems Incorporated 2008 – All rights reserved 363

PDF 32000-1:2008

HideWindowUI boolean (Optional) A flag specifying whether to hide user interface
elements in the document’s window (such as scroll bars and
navigation controls), leaving only the document’s contents
displayed. Default value: false.

FitWindow boolean (Optional) A flag specifying whether to resize the document’s
window to fit the size of the first displayed page. Default value:
false.

CenterWindow boolean (Optional) A flag specifying whether to position the document’s
window in the center of the screen. Default value: false.

DisplayDocTitle boolean (Optional; PDF 1.4) A flag specifying whether the window’s title
bar should display the document title taken from the Title entry of
the document information dictionary (see 14.3.3, “Document
Information Dictionary”). If false, the title bar should instead
display the name of the PDF file containing the document. Default
value: false.

NonFullScreenPageMode name (Optional) The document’s page mode, specifying how to display
the document on exiting full-screen mode:
UseNone Neither document outline nor thumbnail images

visible
UseOutlines Document outline visible
UseThumbs Thumbnail images visible
UseOC Optional content group panel visible
This entry is meaningful only if the value of the PageMode entry
in the Catalog dictionary (see 7.7.2, “Document Catalog”) is
FullScreen; it shall be ignored otherwise. Default value: UseNone.

Direction name (Optional; PDF 1.3) The predominant reading order for text:
L2R Left to right
R2L Right to left (including vertical writing systems, such as

Chinese, Japanese, and Korean)
This entry has no direct effect on the document’s contents or page
numbering but may be used to determine the relative positioning
of pages when displayed side by side or printed n-up. Default
value: L2R.

ViewArea name (Optional; PDF 1.4) The name of the page boundary representing
the area of a page that shall be displayed when viewing the
document on the screen. The value is the key designating the
relevant page boundary in the page object (see 7.7.3, “Page Tree”
and 14.11.2, “Page Boundaries”). If the specified page boundary
is not defined in the page object, its default value shall be used,
as specified in Table 30. Default value: CropBox.
This entry is intended primarily for use by prepress applications
that interpret or manipulate the page boundaries as described in
14.11.2, “Page Boundaries.”
NOTE 1 Most conforming readers disregard it.

Table 150 – Entries in a viewer preferences dictionary (continued)

Key Type Value

PDF 32000-1:2008

364 © Adobe Systems Incorporated 2008 – All rights reserved

ViewClip name (Optional; PDF 1.4) The name of the page boundary to which the
contents of a page shall be clipped when viewing the document
on the screen. The value is the key designating the relevant page
boundary in the page object (see 7.7.3, “Page Tree” and 14.11.2,
“Page Boundaries”). If the specified page boundary is not defined
in the page object, its default value shall be used, as specified in
Table 30. Default value: CropBox.
This entry is intended primarily for use by prepress applications
that interpret or manipulate the page boundaries as described in
14.11.2, “Page Boundaries.”
NOTE 2 Most conforming readers disregard it.

PrintArea name (Optional; PDF 1.4) The name of the page boundary representing
the area of a page that shall be rendered when printing the
document. The value is the key designating the relevant page
boundary in the page object (see 7.7.3, “Page Tree” and 14.11.2,
“Page Boundaries”). If the specified page boundary is not defined
in the page object, its default value shall be used, as specified in
Table 30. Default value: CropBox.
This entry is intended primarily for use by prepress applications
that interpret or manipulate the page boundaries as described in
14.11.2, “Page Boundaries.”
NOTE 3 Most conforming readers disregard it.

PrintClip name (Optional; PDF 1.4) The name of the page boundary to which the
contents of a page shall be clipped when printing the document.
The value is the key designating the relevant page boundary in
the page object (see 7.7.3, “Page Tree” and 14.11.2, “Page
Boundaries”). If the specified page boundary is not defined in the
page object, its default value shall be used, as specified in
Table 30. Default value: CropBox.
This entry is intended primarily for use by prepress applications
that interpret or manipulate the page boundaries as described in
14.11.2, “Page Boundaries.”
NOTE 4 Most conforming readers disregard it.

PrintScaling name (Optional; PDF 1.6) The page scaling option that shall be selected
when a print dialog is displayed for this document. Valid values
are None, which indicates no page scaling, and AppDefault, which
indicates the conforming reader’s default print scaling. If this entry
has an unrecognized value, AppDefault shall be used. Default
value: AppDefault.
If the print dialog is suppressed and its parameters are provided
from some other source, this entry nevertheless shall be honored.

Duplex name (Optional; PDF 1.7) The paper handling option that shall be used
when printing the file from the print dialog. The following values
are valid:
Simplex Print single-sided
DuplexFlipShortEdge Duplex and flip on the short edge of the

sheet
DuplexFlipLongEdge Duplex and flip on the long edge of the

sheet
Default value: none

Table 150 – Entries in a viewer preferences dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 365

PDF 32000-1:2008

12.3 Document-Level Navigation

12.3.1 General

The features described in this sub-clause allow a conforming reader to present the user with an interactive,
global overview of a document in either of two forms:

• As a hierarchical outline showing the document’s internal structure

• As a collection of thumbnail images representing the pages of the document in miniature form

Each item in the outline or each thumbnail image may be associated with a corresponding destination in the
document, so that the user can jump directly to the destination by clicking with the mouse.

12.3.2 Destinations

12.3.2.1 General

A destination defines a particular view of a document, consisting of the following items:

• The page of the document that shall be displayed

• The location of the document window on that page

• The magnification (zoom) factor

Destinations may be associated with outline items (see 12.3.3, “Document Outline”), annotations (12.5.6.5,
“Link Annotations”), or actions (12.6.4.2, “Go-To Actions” and 12.6.4.3, “Remote Go-To Actions”). In each case,
the destination specifies the view of the document that shall be presented when the outline item or annotation
is opened or the action is performed. In addition, the optional OpenAction entry in a document’s catalogue
(7.7.2, “Document Catalog”) may specify a destination that shall be displayed when the document is opened. A
destination may be specified either explicitly by an array of parameters defining its properties or indirectly by
name.

PickTrayByPDFSize boolean (Optional; PDF 1.7) A flag specifying whether the PDF page size
shall be used to select the input paper tray. This setting influences
only the preset values used to populate the print dialog presented
by a conforming reader. If PickTrayByPDFSize is true, the check
box in the print dialog associated with input paper tray shall be
checked.
This setting has no effect on operating systems that do not
provide the ability to pick the input tray by size.
Default value: as defined by the conforming reader

PrintPageRange array (Optional; PDF 1.7) The page numbers used to initialize the print
dialog box when the file is printed. The array shall contain an even
number of integers to be interpreted in pairs, with each pair
specifying the first and last pages in a sub-range of pages to be
printed.The first page of the PDF file shall be denoted by 1.
Default value: as defined by the conforming reader

NumCopies integer (Optional; PDF 1.7) The number of copies that shall be printed
when the print dialog is opened for this file. Values outside this
range shall be ignored.
Default value: as defined by the conforming reader, but typically 1

Table 150 – Entries in a viewer preferences dictionary (continued)

Key Type Value

PDF 32000-1:2008

366 © Adobe Systems Incorporated 2008 – All rights reserved

12.3.2.2 Explicit Destinations

Table 151 shows the allowed syntactic forms for specifying a destination explicitly in a PDF file. In each case,
page is an indirect reference to a page object (except in a remote go-to action; see 12.6.4.3, “Remote Go-To
Actions”). All coordinate values (left, right, top, and bottom) shall be expressed in the default user space
coordinate system. The page’s bounding box is the smallest rectangle enclosing all of its contents. (If any side
of the bounding box lies outside the page’s crop box, the corresponding side of the crop box shall be used
instead; see 14.11.2, “Page Boundaries,” for further discussion of the crop box.)

No page object can be specified for a destination associated with a remote go-to action (see 12.6.4.3, “Remote
Go-To Actions”) because the destination page is in a different PDF document. In this case, the page parameter
specifies an integer page number within the remote document instead of a page object in the current
document.

Table 151 – Destination syntax

Syntax Meaning

[page /XYZ left top zoom] Display the page designated by page, with the coordinates (left, top)
positioned at the upper-left corner of the window and the contents of
the page magnified by the factor zoom. A null value for any of the
parameters left, top, or zoom specifies that the current value of that
parameter shall be retained unchanged. A zoom value of 0 has the
same meaning as a null value.

[page /Fit] Display the page designated by page, with its contents magnified just
enough to fit the entire page within the window both horizontally and
vertically. If the required horizontal and vertical magnification factors
are different, use the smaller of the two, centering the page within the
window in the other dimension.

[page /FitH top] Display the page designated by page, with the vertical coordinate top
positioned at the top edge of the window and the contents of the page
magnified just enough to fit the entire width of the page within the
window. A null value for top specifies that the current value of that
parameter shall be retained unchanged.

[page /FitV left] Display the page designated by page, with the horizontal coordinate
left positioned at the left edge of the window and the contents of the
page magnified just enough to fit the entire height of the page within
the window. A null value for left specifies that the current value of that
parameter shall be retained unchanged.

[page /FitR left bottom right top] Display the page designated by page, with its contents magnified just
enough to fit the rectangle specified by the coordinates left, bottom,
right, and top entirely within the window both horizontally and vertically.
If the required horizontal and vertical magnification factors are
different, use the smaller of the two, centering the rectangle within the
window in the other dimension.

[page /FitB] (PDF 1.1) Display the page designated by page, with its contents
magnified just enough to fit its bounding box entirely within the window
both horizontally and vertically. If the required horizontal and vertical
magnification factors are different, use the smaller of the two,
centering the bounding box within the window in the other dimension.

[page /FitBH top] (PDF 1.1) Display the page designated by page, with the vertical
coordinate top positioned at the top edge of the window and the
contents of the page magnified just enough to fit the entire width of its
bounding box within the window. A null value for top specifies that the
current value of that parameter shall be retained unchanged.

© Adobe Systems Incorporated 2008 – All rights reserved 367

PDF 32000-1:2008

12.3.2.3 Named Destinations

Instead of being defined directly with the explicit syntax shown in Table 151, a destination may be referred to
indirectly by means of a name object (PDF 1.1) or a byte string (PDF 1.2). This capability is especially useful
when the destination is located in another PDF document.

NOTE 1 A link to the beginning of Chapter 6 in another document might refer to the destination by a name, such as
Chap6 . begin, instead of by an explicit page number in the other document. Then, the location of the chapter in
the other document could change without invalidating the link. If an annotation or outline item that refers to a
named destination has an associated action, such as a remote go-to action (see 12.6.4.3, “Remote Go-To
Actions”) or a thread action (12.6.4.6, “Thread Actions”), the destination is in the file specified by the action’s F
entry, if any; if there is no F entry, the destination is in the current file.

In PDF 1.1, the correspondence between name objects and destinations shall be defined by the Dests entry in
the document catalogue (see 7.7.2, “Document Catalog”). The value of this entry shall be a dictionary in which
each key is a destination name and the corresponding value is either an array defining the destination, using
the syntax shown in Table 151, or a dictionary with a D entry whose value is such an array.

NOTE 2 The latter form allows additional attributes to be associated with the destination, as well as enabling a go-to
action (see 12.6.4.2, “Go-To Actions”) that shall be used as the target of a named destination.

In PDF 1.2 and later, the correspondence between strings and destinations may alternatively be defined by the
Dests entry in the document’s name dictionary (see 7.7.4, “Name Dictionary”). The value of this entry shall be
a name tree (7.9.6, “Name Trees”) mapping name strings to destinations. (The keys in the name tree may be
treated as text strings for display purposes.) The destination value associated with a key in the name tree may
be either an array or a dictionary, as described in the preceding paragraph.

NOTE 3 The use of strings as destination names is a PDF 1.2 feature. If compatibility with earlier versions of PDF is
required, only name objects may be used to refer to named destinations. A document that supports PDF 1.2
can contain both types. However, if backward compatibility is not a consideration, applications should use the
string form of representation in the Dests name tree.

12.3.3 Document Outline

A PDF document may contain a document outline that the conforming reader may display on the screen,
allowing the user to navigate interactively from one part of the document to another. The outline consists of a
tree-structured hierarchy of outline items (sometimes called bookmarks), which serve as a visual table of
contents to display the document’s structure to the user. The user may interactively open and close individual
items by clicking them with the mouse. When an item is open, its immediate children in the hierarchy shall
become visible on the screen; each child may in turn be open or closed, selectively revealing or hiding further
parts of the hierarchy. When an item is closed, all of its descendants in the hierarchy shall be hidden. Clicking
the text of any visible item activates the item, causing the conforming reader to jump to a destination or trigger
an action associated with the item.

The root of a document’s outline hierarchy is an outline dictionary specified by the Outlines entry in the
document catalogue (see 7.7.2, “Document Catalog”). Table 152 shows the contents of this dictionary. Each
individual outline item within the hierarchy shall be defined by an outline item dictionary (Table 153). The items
at each level of the hierarchy form a linked list, chained together through their Prev and Next entries and
accessed through the First and Last entries in the parent item (or in the outline dictionary in the case of top-

[page /FitBV left] (PDF 1.1) Display the page designated by page, with the horizontal
coordinate left positioned at the left edge of the window and the
contents of the page magnified just enough to fit the entire height of its
bounding box within the window. A null value for left specifies that the
current value of that parameter shall be retained unchanged.

Table 151 – Destination syntax (continued)

Syntax Meaning

PDF 32000-1:2008

368 © Adobe Systems Incorporated 2008 – All rights reserved

level items). When displayed on the screen, the items at a given level shall appear in the order in which they
occur in the linked list.

Table 152 – Entries in the outline dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Outlines for an outline dictionary.

First dictionary (Required if there are any open or closed outline entries; shall be an
indirect reference) An outline item dictionary representing the first top-
level item in the outline.

Last dictionary (Required if there are any open or closed outline entries; shall be an
indirect reference) An outline item dictionary representing the last top-
level item in the outline.

Count integer (Required if the document has any open outline entries) Total number
of visible outline items at all levels of the outline. The value cannot be
negative.
This entry shall be omitted if there are no open outline items.

Table 153 – Entries in an outline item dictionary

Key Type Value

Title text string (Required) The text that shall be displayed on the screen for this item.

Parent dictionary (Required; shall be an indirect reference) The parent of this item in the
outline hierarchy. The parent of a top-level item shall be the outline
dictionary itself.

Prev dictionary (Required for all but the first item at each level; shall be an indirect
reference) The previous item at this outline level.

Next dictionary (Required for all but the last item at each level; shall be an indirect
reference) The next item at this outline level.

First dictionary (Required if the item has any descendants; shall be an indirect
reference) The first of this item’s immediate children in the outline
hierarchy.

Last dictionary (Required if the item has any descendants; shall be an indirect
reference) The last of this item’s immediate children in the outline
hierarchy.

Count integer (Required if the item has any descendants) If the outline item is open,
Count is the sum of the number of visible descendent outline items at
all levels. The number of visible descendent outline items shall be
determined by the following recursive process:

Step 1. Initialize Count to zero.
Step 2. Add to Count the number of immediate children. During
repetitions of this step, update only the Count of the original
outline item.
Step 3. For each of those immediate children whose Count is
positive and non-zero, repeat steps 2 and 3.

If the outline item is closed, Count is negative and its absolute value is
the number of descendants that would be visible if the outline item
were opened.

© Adobe Systems Incorporated 2008 – All rights reserved 369

PDF 32000-1:2008

The value of the outline item dictionary’s F entry (PDF 1.4) shall be an integer interpreted as one-bit flags
specifying style characteristics for displaying the item. Bit positions within the flag word are numbered from low-
order to high-order bits, with the lowest-order bit numbered 1. Table 154 shows the meanings of the flags; all
other bits of the integer shall be 0.

EXAMPLE The following example shows a typical outline dictionary and outline item dictionary. See H.6, “Outline
Hierarchy Example” for an example of a complete outline hierarchy.

21 0 obj

<< /Count 6
 /First 22 0 R
 /Last 29 0 R
>>

endobj

22 0 obj

<< /Title (Chapter 1)
 /Parent 21 0 R
 /Next 26 0 R
 /First 23 0 R
 /Last 25 0 R
 /Count 3
 /Dest [3 0 R /XYZ 0 792 0]
>>

endobj

Dest name,
byte string, or
array

(Optional; shall not be present if an A entry is present) The destination
that shall be displayed when this item is activated (see 12.3.2,
“Destinations”).

A dictionary (Optional; PDF 1.1; shall not be present if a Dest entry is present) The
action that shall be performed when this item is activated (see 12.6,
“Actions”).

SE dictionary (Optional; PDF 1.3; shall be an indirect reference) The structure
element to which the item refers (see 14.7.2, “Structure Hierarchy”).
(PDF 1.0) An item may also specify a destination (Dest)
corresponding to an area of a page where the contents of the
designated structure element are displayed.

C array (Optional; PDF 1.4) An array of three numbers in the range 0.0 to 1.0,
representing the components in the DeviceRGB colour space of the
colour that shall be used for the outline entry’s text. Default value:
[0.0 0.0 0.0].

F integer (Optional; PDF 1.4) A set of flags specifying style characteristics for
displaying the outline item’s text (see Table 154). Default value: 0.

Table 154 – Outline item flags

Bit position Name Meaning

1 Italic If set to 1, display the item in italic.

2 Bold If set to 1, display the item in bold.

Table 153 – Entries in an outline item dictionary (continued)

Key Type Value

PDF 32000-1:2008

370 © Adobe Systems Incorporated 2008 – All rights reserved

12.3.4 Thumbnail Images

A PDF document may contain thumbnail images representing the contents of its pages in miniature form. A
conforming reader may display these images on the screen, allowing the user to navigate to a page by clicking
its thumbnail image:

NOTE Thumbnail images are not required, and may be included for some pages and not for others.

The thumbnail image for a page shall be an image XObject specified by the Thumb entry in the page object
(see 7.7.3, “Page Tree”). It has the usual structure for an image dictionary (8.9.5, “Image Dictionaries”), but
only the Width, Height, ColorSpace, BitsPerComponent, and Decode entries are significant; all of the other
entries listed in Table 89 shall be ignored if present. (If a Subtype entry is specified, its value shall be Image.)
The image’s colour space shall be either DeviceGray or DeviceRGB, or an Indexed space based on one of
these.

EXAMPLE This example shows a typical thumbnail image definition.
12 0 obj

<< /Width 76
 /Height 99
 /ColorSpace /DeviceRGB
 /BitsPerComponent 8
 /Length 13 0 R
 /Filter [/ASCII85Decode /DCTDecode]
>>

stream
s4IA>!"M;*Ddm8XA,lT0!!3,S!/(=R!<E3%!<N<(!WrK*!WrN,
… Omitted data …
endstream
endobj

13 0 obj % Length of stream
…
endobj

12.3.5 Collections

Beginning with PDF 1.7, PDF documents may specify how a conforming reader’s user interface presents
collections of file attachments, where the attachments are related in structure or content. Such a presentation is
called a portable collection.

NOTE 1 The intent of portable collections is to present, sort, and search collections of related documents embedded in
the containing PDF document, such as email archives, photo collections, and engineering bid sets. There is no
requirement that documents in a collection have an implicit relationship or even a similarity; however, showing
differentiating characteristics of related documents can be helpful for document navigation.

A collection dictionary specifies the viewing and organizational characteristics of portable collections. If this
dictionary is present in a PDF document, the conforming reader shall present the document as a portable
collection. The EmbeddedFiles name tree specifies file attachments (see 7.11.4, “Embedded File Streams”).

When a conforming reader first opens a PDF document containing a collection, it shall display the contents of
the initial document, along with a list of the documents present in the EmbeddedFiles name tree. The
document list shall include the additional document information specified by the collection schema. The initial
document may be the container PDF or one of the embedded documents.

NOTE 2 The page content in the initial document should contain information that helps the user understand what is
contained in the collection, such as a title and an introductory paragraph.

The file attachments comprising a collection shall be located in the EmbeddedFiles name tree. All attachments
in that tree are in the collection; any attachments not in that tree are not.

© Adobe Systems Incorporated 2008 – All rights reserved 371

PDF 32000-1:2008

Table 155 describes the entries in a collection dictionary.

A collection schema dictionary consists of a variable number of individual collection field dictionaries. Each
collection field dictionary has a key chosen by the conforming writer, which shall be used to associate a field
with data in a file specification. Table 156 describes the entries in a collection schema dictionary.

Table 155 – Entries in a collection dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary
describes; if present, shall be Collection for a collection
dictionary.

Schema dictionary (Optional) A collection schema dictionary (see Table 156). If
absent, the conforming reader may choose useful defaults
that are known to exist in a file specification dictionary, such
as the file name, file size, and modified date.

D byte string (Optional) A string that identifies an entry in the
EmbeddedFiles name tree, determining the document that
shall be initially presented in the user interface. If the D entry
is missing or in error, the initial document shall be the one
that contains the collection dictionary.

View name (Optional) The initial view. The following values are valid:
D The collection view shall be presented in details mode,

with all information in the Schema dictionary presented
in a multi-column format. This mode provides the most
information to the user.

T The collection view shall be presented in tile mode, with
each file in the collection denoted by a small icon and a
subset of information from the Schema dictionary. This
mode provides top-level information about the file
attachments to the user.

H The collection view shall be initially hidden, The
conforming reader shall provide means for the user to
view the collection by some explicit action.

Default value: D

Sort dictionary (Optional) A collection sort dictionary, which specifies the
order in which items in the collection shall be sorted in the
user interface (see Table 158).

Table 156 – Entries in a collection schema dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary
describes; if present, shall be CollectionSchema for a
collection schema dictionary.

Other keys dictionary (Optional) A collection field dictionary. Each key name is
chosen at the discretion of the conforming writer. The key
name shall be used to identify a corresponding collection
item dictionary referenced from the file specification
dictionary's CI entry (see CI key in Table 44).

PDF 32000-1:2008

372 © Adobe Systems Incorporated 2008 – All rights reserved

A collection field dictionary describes the attributes of a particular field in a portable collection, including the
type of data stored in the field and the lookup key used to locate the field data in the file specification dictionary.
Table 157 describes the entries in a collection field dictionary.

A collection sort dictionary identifies the fields that shall be used to sort items in the collection. The type of
sorting depends on the type of data:

• Text strings shall be ordered lexically from smaller to larger, if ascending order is specified.

NOTE 3 Lexical ordering is an implementation dependency for conforming readers.

Table 157 – Entries in a collection field dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be CollectionField for a collection field dictionary.

Subtype name (Required) The subtype of collection field or file-related field that this
dictionary describes. This entry identifies the type of data that shall
be stored in the field.
The following values identify the types of fields in the collection item
or collection subitem dictionary:
S A text field. The field data shall be stored as a PDF text string.
D A date field. The field data shall be stored as a PDF date

string.
N A number field. The field data shall be stored as a PDF

number.
The following values identify the types of file-related fields:
F The field data shall be the file name of the

embedded file stream, as identified by the UF entry
of the file specification, if present; otherwise by the F
entry of the file specification (see Table 44).

Desc The field data shall be the description of the
embedded file stream, as identified by the Desc
entry in the file specification dictionary (see
Table 44).

ModDate The field data shall be the modification date of the
embedded file stream, as identified by the ModDate
entry in the embedded file parameter dictionary (see
Table 46).

CreationDate The field data shall be the creation date of the
embedded file stream, as identified by the
CreationDate entry in the embedded file parameter
dictionary (see Table 46).

Size The field data shall be the size of the embedded file,
as identified by the Size entry in the embedded file
parameter dictionary (see Table 46).

N text string (Required) The textual field name that shall be presented to the user
by the conforming reader.

O integer (Optional) The relative order of the field name in the user interface.
Fields shall be sorted by the conforming reader in ascending order.

V boolean (Optional) The initial visibility of the field in the user interface.
Default value: true.

E boolean (Optional) A flag indicating whether the conforming reader should
provide support for editing the field value. Default value: false.

© Adobe Systems Incorporated 2008 – All rights reserved 373

PDF 32000-1:2008

• Numbers shall be ordered numerically from smaller to larger, if ascending order is specified.

• Dates shall be ordered from oldest to newest, if ascending order is specified.

Table 158 describes the entries in a collection sort dictionary.

EXAMPLE 1 This example shows a collection dictionary representing an email in-box, where each item in the
collection is an email message. The actual email messages are contained in file specification dictionaries.
The organizational data associated with each email is described in a collection schema dictionary. Most
actual organizational data (from, to, date, and subject) is provided in a collection item dictionary, but the
size data comes from the embedded file parameter dictionary.

/Collection <<
/Type /Collection
/Schema <<

/Type /CollectionSchema
/from << /Subtype /S /N (From) /O 1 /V true /E false>>
/to << /Subtype /S /N (To) /O 2 /V true /E false >>
/date << /Subtype /D /N (Date received) /O 3 /V true /E false >>
/subject << /Subtype /S /N (Subject) /O 4 /V true /E false >>
/size << /Subtype /Size /N (Size) /O 5 /V true /E false >>
>>

/D (Doc1)
/View /D
/Sort << /S /date /A false >>

>>

Table 158 – Entries in a collection sort dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be CollectionSort for a collection sort dictionary.

S name or
array

(Required) The name or names of fields that the conforming reader
shall use to sort the items in the collection. If the value is a name, it
identifies a field described in the parent collection dictionary.
If the value is an array, each element of the array shall be a name that
identifies a field described in the parent collection dictionary. The
array form shall be used to allow additional fields to contribute to the
sort, where each additional field shall be used to break ties. More
specifically, if multiple collection item dictionaries have the same
value for the first field named in the array, the values for successive
fields named in the array shall be used for sorting, until a unique order
is determined or until the named fields are exhausted.

A boolean
or array

(Optional) If the value is a boolean, it specifies whether the
conforming reader shall sort the items in the collection in ascending
order (true) or descending order (false). If the value is an array, each
element of the array shall be a boolean value that specifies whether
the entry at the same index in the S array shall be sorted in ascending
or descending order.
If the number of entries in the A array is larger than the number of
entries in the S array the extra entries in the A array shall be ignored.
If the number of entries in the A array is less than the number of
entries in the S array the missing entries in the A array shall be
assumed to be true.
Default value: true.

PDF 32000-1:2008

374 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE 2 This example shows a collection item dictionary and a collection subitem dictionary. These dictionaries
contain entries that correspond to the schema entries specified in the Example in 12.4.2, “Page Labels.”.
7.11.6, “Collection Items” specifies the collection item and collection subitem dictionaries.

/CI <<
/Type /CollectionItem
/from (Rob McAfee)
/to (Patty McAfee)
/subject <<

/Type /CollectionSubitem
/P (Re:)
/D (Let's have lunch on Friday!)

>>
/date (D:20050621094703-07’00’)

>>

12.4 Page-Level Navigation

12.4.1 General

This sub-clause describes PDF facilities that enable the user to navigate from page to page within a document:

• Page labels for numbering or otherwise identifying individual pages (see 12.4.2, “Page Labels”).

• Article threads, which chain together items of content within the document that are logically connected but
not physically sequential (see 12.4.3, “Articles”).

• Presentations that display the document in the form of a slide show, advancing from one page to the next
either automatically or under user control (see 12.4.4, “Presentations”).

For another important form of page-level navigation, see 12.5.6.5, “Link Annotations.”

12.4.2 Page Labels

Each page in a PDF document shall be identified by an integer page index that expresses the page’s relative
position within the document. In addition, a document may optionally define page labels (PDF 1.3) to identify
each page visually on the screen or in print. Page labels and page indices need not coincide: the indices shall
be fixed, running consecutively through the document starting from 0 for the first page, but the labels may be
specified in any way that is appropriate for the particular document.

NOTE 1 If the document begins with 12 pages of front matter numbered in roman numerals and the remainder of the
document is numbered in arabic, the first page would have a page index of 0 and a page label of i, the twelfth
page would have index 11 and label xii, and the thirteenth page would have index 12 and label 1.

For purposes of page labelling, a document shall be divided into labelling ranges, each of which is a series of
consecutive pages using the same numbering system. Pages within a range shall be numbered sequentially in
ascending order. A page’s label consists of a numeric portion based on its position within its labelling range,
optionally preceded by a label prefix denoting the range itself.

NOTE 2 The pages in an appendix might be labeled with decimal numeric portions prefixed with the string A-; the
resulting page labels would be A-1, A-2, and so on.

A document’s labelling ranges shall be defined by the PageLabels entry in the document catalogue (see 7.7.2,
“Document Catalog”). The value of this entry shall be a number tree (7.9.7, “Number Trees”), each of whose
keys is the page index of the first page in a labelling range. The corresponding value shall be a page label
dictionary defining the labelling characteristics for the pages in that range. The tree shall include a value for
page index 0. Table 159 shows the contents of a page label dictionary.

© Adobe Systems Incorporated 2008 – All rights reserved 375

PDF 32000-1:2008

EXAMPLE The following example shows a document with pages labeled

i, ii, iii, iv, 1, 2, 3, A-8, A-9, …

1 0 obj

<< /Type /Catalog
 /PageLabels << /Nums [0 << /S /r >> % A number tree containing

 4 << /S /D >> % three page label dictionaries
 7 << /S /D

 /P (A-)
 /St 8

 >>
]

 >>
 …
>>

endobj

12.4.3 Articles

Some types of documents may contain sequences of content items that are logically connected but not
physically sequential.

EXAMPLE 1 A news story may begin on the first page of a newsletter and run over onto one or more nonconsecutive
interior pages.

To represent such sequences of physically discontiguous but logically related items, a PDF document may
define one or more articles (PDF 1.1). The sequential flow of an article shall be defined by an article thread; the
individual content items that make up the article are called beads on the thread. Conforming readers may
provide navigation facilities to allow the user to follow a thread from one bead to the next.

The optional Threads entry in the document catalogue (see 7.7.2, “Document Catalog”) holds an array of
thread dictionaries (Table 160) defining the document’s articles. Each individual bead within a thread shall be

Table 159 – Entries in a page label dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present, shall be
PageLabel for a page label dictionary.

S name (Optional) The numbering style that shall be used for the numeric portion of each
page label:
D Decimal arabic numerals
R Uppercase roman numerals
r Lowercase roman numerals
A Uppercase letters (A to Z for the first 26 pages, AA to ZZ for the next 26, and

so on)
a Lowercase letters (a to z for the first 26 pages, aa to zz for the next 26, and so

on)
There is no default numbering style; if no S entry is present, page labels shall
consist solely of a label prefix with no numeric portion.
NOTE If the P entry (next) specifies the label prefix Contents, each page is
simply labeled Contents with no page number. (If the P entry is also missing or
empty, the page label is an empty string.)

P text string (Optional) The label prefix for page labels in this range.

St integer (Optional) The value of the numeric portion for the first page label in the range.
Subsequent pages shall be numbered sequentially from this value, which shall be
greater than or equal to 1. Default value: 1.

PDF 32000-1:2008

376 © Adobe Systems Incorporated 2008 – All rights reserved

represented by a bead dictionary (Table 161). The thread dictionary’s F entry shall refer to the first bead in the
thread; the beads shall be chained together sequentially in a doubly linked list through their N (next) and V
(previous) entries. In addition, for each page on which article beads appear, the page object (see 7.7.3, “Page
Tree”) shall contain a B entry whose value is an array of indirect references to the beads on the page, in
drawing order.

EXAMPLE 2 The following example shows a thread with three beads.

22 0 obj

<< /F 23 0 R
 /I << /Title (Man Bites Dog) >>
>>

endobj

23 0 obj

<< /T 22 0 R
 /N 24 0 R
 /V 25 0 R
 /P 8 0 R
 /R [158 247 318 905]
>>

endobj

24 0 obj

<< /T 22 0 R

Table 160 – Entries in a thread dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be Thread for a thread dictionary.

F dictionary (Required; shall be an indirect reference) The first bead in the thread.

I dictionary (Optional) A thread information dictionary containing information about the
thread, such as its title, author, and creation date. The contents of this
dictionary shall conform to the syntax for the document information dictionary
(see 14.3.3, “Document Information Dictionary”).

Table 161 – Entries in a bead dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be Bead for a bead dictionary.

T dictionary (Required for the first bead of a thread; optional for all others; shall be an
indirect reference) The thread to which this bead belongs.
(PDF 1.1) This entry shall be permitted only for the first bead of a thread.
(PDF 1.2) It shall be permitted for any bead but required only for the first.

N dictionary (Required; shall be an indirect reference) The next bead in the thread. In the
last bead, this entry shall refer to the first bead.

V dictionary (Required; shall be an indirect reference) The previous bead in the thread. In
the first bead, this entry shall refer to the last bead.

P dictionary (Required; shall be an indirect reference) The page object representing the
page on which this bead appears.

R rectangle (Required) A rectangle specifying the location of this bead on the page.

© Adobe Systems Incorporated 2008 – All rights reserved 377

PDF 32000-1:2008

 /N 25 0 R
 /V 23 0 R
 /P 8 0 R
 /R [322 246 486 904]
>>

endobj

25 0 obj

<< /T 22 0 R
 /N 23 0 R
 /V 24 0 R
 /P 10 0 R
 /R [157 254 319 903]
>>

endobj

12.4.4 Presentations

12.4.4.1 General

Some conforming readers may allow a document to be displayed in the form of a presentation or slide show,
advancing from one page to the next either automatically or under user control. In addition, PDF 1.5 introduces
the ability to advance between different states of the same page (see 12.4.4.2, “Sub-page Navigation”).

NOTE 1 PDF 1.4 introduces a different mechanism, known as alternate presentations, for slide show displays,
described in 13.5, “Alternate Presentations.”

A page object (see 7.7.3, “Page Tree”) may contain two optional entries, Dur and Trans (PDF 1.1), to specify
how to display that page in presentation mode. The Trans entry shall contain a transition dictionary describing
the style and duration of the visual transition to use when moving from another page to the given page during a
presentation. Table 162 shows the contents of the transition dictionary. (Some of the entries shown are needed
only for certain transition styles, as indicated in the table.)

The Dur entry in the page object specifies the page’s display duration (also called its advance timing): the
maximum length of time, in seconds, that the page shall be displayed before the presentation automatically
advances to the next page.

NOTE 2 The user can advance the page manually before the specified time has expired.

If no Dur entry is specified in the page object, the page shall not advance automatically.

PDF 32000-1:2008

378 © Adobe Systems Incorporated 2008 – All rights reserved

Table 162 – Entries in a transition dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present, shall
be Trans for a transition dictionary.

S name (Optional) The transition style that shall be used when moving to this page from
another during a presentation. Default value: R.
Split Two lines sweep across the screen, revealing the new page. The lines

may be either horizontal or vertical and may move inward from the
edges of the page or outward from the center, as specified by the Dm
and M entries, respectively.

Blinds Multiple lines, evenly spaced across the screen, synchronously
sweep in the same direction to reveal the new page. The lines may be
either horizontal or vertical, as specified by the Dm entry. Horizontal
lines move downward; vertical lines move to the right.

Box A rectangular box sweeps inward from the edges of the page or
outward from the center, as specified by the M entry, revealing the
new page.

Wipe A single line sweeps across the screen from one edge to the other in
the direction specified by the Di entry, revealing the new page.

Dissolve The old page dissolves gradually to reveal the new one.
Glitter Similar to Dissolve, except that the effect sweeps across the page in a

wide band moving from one side of the screen to the other in the
direction specified by the Di entry.

R The new page simply replaces the old one with no special transition
effect; the D entry shall be ignored.

Fly (PDF 1.5) Changes are flown out or in (as specified by M), in the
direction specified by Di, to or from a location that is offscreen except
when Di is None.

Push (PDF 1.5) The old page slides off the screen while the new page
slides in, pushing the old page out in the direction specified by Di.

Cover (PDF 1.5) The new page slides on to the screen in the direction
specified by Di, covering the old page.

Uncover (PDF 1.5) The old page slides off the screen in the direction
specified by Di, uncovering the new page in the direction
specified by Di.

Fade (PDF 1.5) The new page gradually becomes visible through the
old one.

D number (Optional) The duration of the transition effect, in seconds. Default value: 1.

Dm name (Optional; Split and Blinds transition styles only) The dimension in which the
specified transition effect shall occur:
H Horizontal
V Vertical
Default value: H.

M name (Optional; Split, Box and Fly transition styles only) The direction of motion for
the specified transition effect:
I Inward from the edges of the page
O Outward from the center of the page
Default value: I.

© Adobe Systems Incorporated 2008 – All rights reserved 379

PDF 32000-1:2008

NOTE 3 Figure 56 illustrates the relationship between transition duration (D in the transition dictionary) and display
duration (Dur in the page object). Note that the transition duration specified for a page (page 2 in the figure)
governs the transition to that page from another page; the transition from the page is governed by the next
page’s transition duration.

Figure 56 – Presentation timing

EXAMPLE The following example shows the presentation parameters for a page to be displayed for 5 seconds.
Before the page is displayed, there is a 3.5-second transition in which two vertical lines sweep outward
from the center to the edges of the page.

10 0 obj

<< /Type /Page
 /Parent 4 0 R
 /Contents 16 0 R
 /Dur 5
 /Trans << /Type /Trans

/D 3.5
/S /Split
/Dm /V
/M /O

 >>
>>

endobj

Di number or
name

(Optional; Wipe, Glitter, Fly, Cover, Uncover and Push transition styles only)
The direction in which the specified transition effect shall moves, expressed in
degrees counterclockwise starting from a left-to-right direction. (This differs from
the page object’s Rotate entry, which is measured clockwise from the top.)
If the value is a number, it shall be one of:
 0 Left to right
 90 Bottom to top (Wipe only)
180 Right to left (Wipe only)
270 Top to bottom
315 Top-left to bottom-right (Glitter only)
If the value is a name, it shall be None, which is relevant only for the Fly
transition when the value of SS is not 1.0.
Default value: 0.

SS number (Optional; PDF 1.5; Fly transition style only) The starting or ending scale at
which the changes shall be drawn. If M specifies an inward transition, the scale
of the changes drawn shall progress from SS to 1.0 over the course of the
transition. If M specifies an outward transition, the scale of the changes drawn
shall progress from 1.0 to SS over the course of the transition
Default: 1.0.

B boolean (Optional; PDF 1.5; Fly transition style only) If true, the area that shall be flown
in is rectangular and opaque. Default: false.

Table 162 – Entries in a transition dictionary (continued)

Key Type Value

Transition from
page 1 to page 2 Page 2 displayed

Transition from
page 2 to page 3

Transition duration
for page 2

Display duration for page 2 Transition duration
for page 3

.

PDF 32000-1:2008

380 © Adobe Systems Incorporated 2008 – All rights reserved

12.4.4.2 Sub-page Navigation

Sub-page navigation (PDF 1.5) provides the ability to navigate not only between pages but also between
different states of the same page.

NOTE 1 A single page in a PDF presentation could have a series of bullet points that could be individually turned on
and off. In such an example, the bullets would be represented by optional content (see 8.11.2, “Optional
Content Groups”), and each state of the page would be represented as a navigation node.

NOTE 2 Conforming readers should save the state of optional content groups when a user enters presentation mode
and restore it when presentation mode ends. This ensures, for example, that transient changes to bullets do
not affect the printing of the document.

A navigation node dictionary (see Table 163) specifies actions to execute when the user makes a navigation
request.

EXAMPLE Pressing an arrow key.

The navigation nodes on a page form a doubly linked list by means of their Next and Prev entries. The primary
node on a page shall be determined by the optional PresSteps entry in a page dictionary (see Table 30).

NOTE 3 A conforming reader should respect navigation nodes only when in presentation mode (see 12.4.4,
“Presentations”).

A conforming reader shall maintain a current navigation node. When a user navigates to a page, if the page
dictionary has a PresSteps entry, the node specified by that entry shall become the current node. (Otherwise,
there is no current node.) If the user requests to navigate forward (such as an arrow key press) and there is a
current navigation node, the following shall occur:

a) The sequence of actions specified by NA (if present) shall be executed.

If NA specifies an action that navigates to another page, the following actions for navigating to another
page take place, and Next should not be present.

b) The node specified by Next (if present) shall become the new current navigation node.

Similarly, if the user requests to navigate backward and there is a current navigation node, the following shall
occur:

a) The sequence of actions specified by PA (if present) shall be executed.

Table 163 – Entries in a navigation node dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; shall be
NavNode for a navigation node dictionary.

NA dictionary (Optional) An action (which may be the first in a sequence of actions) that
shall be executed when a user navigates forward.

PA dictionary (Optional) An action (which may be the first in a sequence of actions) that
shall be executed when a user navigates backward.

Next dictionary (Optional) The next navigation node, if any.

Prev dictionary (Optional) The previous navigation node, if any.

Dur number (Optional) The maximum number of seconds before the conforming reader
shall automatically advance forward to the next navigation node. If this entry
is not specified, no automatic advance shall occur.

© Adobe Systems Incorporated 2008 – All rights reserved 381

PDF 32000-1:2008

If PA specifies an action that navigates to another page, the following actions for navigating to another
page take place, and Prev should not be present.

b) The node specified by Prev (if present) shall become the new current navigation node.

Transition effects, similar to the page transitions described earlier, may be specified as transition actions that
are part of the NA or PA sequence; see 12.6.4.14, “Transition Actions.”

If the user requests to navigate to another page (regardless of whether there is a current node) and that page’s
dictionary contains a PresSteps entry, the following shall occur:

a) The navigation node represented by PresSteps shall become the current node.

b) If the navigation request was forward, or if the navigation request was for random access (such as by
clicking on a link), the actions specified by NA shall be executed and the node specified by Next shall
become the new current node, as described previously.

If the navigation request was backward, the actions specified by PA shall be executed and the node
specified by Prev shall become the new current node, as described previously.

c) The conforming reader shall make the new page the current page and shall display it. Any page transitions
specified by the Trans entry of the page dictionary shall be performed.

12.5 Annotations

12.5.1 General

An annotation associates an object such as a note, sound, or movie with a location on a page of a PDF
document, or provides a way to interact with the user by means of the mouse and keyboard. PDF includes a
wide variety of standard annotation types, described in detail in 12.5.6, “Annotation Types.”

Many of the standard annotation types may be displayed in either the open or the closed state. When closed,
they appear on the page in some distinctive form, such as an icon, a box, or a rubber stamp, depending on the
specific annotation type. When the user activates the annotation by clicking it, it exhibits its associated object,
such as by opening a pop-up window displaying a text note (Figure 57) or by playing a sound or a movie.

PDF 32000-1:2008

382 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 57 – Open annotation

Conforming readers may permit the user to navigate through the annotations on a page by using the keyboard
(in particular, the tab key). Beginning with PDF 1.5, PDF producers may make the navigation order explicit with
the optional Tabs entry in a page object (see Table 30). The following are the possible values for this entry:

• R (row order): Annotations shall be visited in rows running horizontally across the page. The direction
within a row shall be determined by the Direction entry in the viewer preferences dictionary (see 12.2,
“Viewer Preferences”). The first annotation that shall be visited is the first annotation in the topmost row.
When the end of a row is encountered, the first annotation in the next row shall be visited.

• C (column order): Annotations shall be visited in columns running vertically up and down the page.
Columns shall be ordered by the Direction entry in the viewer preferences dictionary (see 12.2, “Viewer
Preferences”). The first annotation that shall be visited is the one at the top of the first column. When the
end of a column is encountered, the first annotation in the next column shall be visited.

• S (structure order): Annotations shall be visited in the order in which they appear in the structure tree (see
14.7, “Logical Structure”). The order for annotations that are not included in the structure tree shall be
determined in a manner of the conforming reader's choosing.

These descriptions assume the page is being viewed in the orientation specified by the Rotate entry.

Conceptually, the behaviour of each annotation type may be implemented by a software module called an
annotation handler. A conforming reader shall provide annotation handlers for all of the conforming annotation
types. The set of annotation types is extensible. A conforming reader shall provide certain expected behaviour
for all annotation types that it does not recognize, as documented in 12.5.2, “Annotation Dictionaries.”

12.5.2 Annotation Dictionaries

The optional Annots entry in a page object (see 7.7.3, “Page Tree”) holds an array of annotation dictionaries,
each representing an annotation associated with the given page. Table 164 shows the required and optional
entries that are common to all annotation dictionaries. The dictionary may contain additional entries specific to
a particular annotation type; see the descriptions of individual annotation types in 12.5.6, “Annotation Types,”
for details. A given annotation dictionary shall be referenced from the Annots array of only one page. This
requirement applies only to the annotation dictionary itself, not to subsidiary objects, which may be shared
among multiple annotations.

WE HAVE BEEN TRACKING GREAT EMPLOYEES SINCE 1981,
when we began research on our book The 100 Best
Companies to Work for in America. From our database of
more than 1,000 companies, we selected 238 as the most
viable candidates for this list. Of this group, 161 agreed to
participate. (To be eligible, a company must be at least ten
years old and have a minimum of 500 employees.)
 We asked each candidate company to distribute to 225
randomly selected employees the Great Place to Work
Trust Index. This employee survey was designed by the
Great Place to Work Institute of San Francisco to evaluate
trust in management, pride in work/company, and
camaraderie. Responses were returned directly to us.
 Each company was also required to fill out the Hewitt
People Practices Inventory, a comprehensive 29-page
questionnaire designed by our partner in this project,
Hewitt Associates of Lincolnshire, Ill., a leading
management consulting firm. Finally we asked each of our
candidates to send us additional corporate materials, such

This is the text associated with the
highlight annotation.

Comment

© Adobe Systems Incorporated 2008 – All rights reserved 383

PDF 32000-1:2008

Table 164 – Entries common to all annotation dictionaries

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Annot for an annotation dictionary.

Subtype name (Required) The type of annotation that this dictionary describes; see
Table 169 for specific values.

Rect rectangle (Required) The annotation rectangle, defining the location of the
annotation on the page in default user space units.

Contents text string (Optional) Text that shall be displayed for the annotation or, if this type of
annotation does not display text, an alternate description of the
annotation’s contents in human-readable form. In either case, this text is
useful when extracting the document’s contents in support of
accessibility to users with disabilities or for other purposes (see 14.9.3,
“Alternate Descriptions”). See 12.5.6, “Annotation Types” for more
details on the meaning of this entry for each annotation type.

P dictionary (Optional except as noted below; PDF 1.3; not used in FDF files) An
indirect reference to the page object with which this annotation is
associated.
This entry shall be present in screen annotations associated with
rendition actions (PDF 1.5; see 12.5.6.18, “Screen Annotations” and
12.6.4.13, “Rendition Actions”).

NM text string (Optional; PDF 1.4) The annotation name, a text string uniquely
identifying it among all the annotations on its page.

M date or
text string

(Optional; PDF 1.1) The date and time when the annotation was most
recently modified. The format should be a date string as described in
7.9.4, “Dates,” but conforming readers shall accept and display a string
in any format.

F integer (Optional; PDF 1.1) A set of flags specifying various characteristics of
the annotation (see 12.5.3, “Annotation Flags”). Default value: 0.

AP dictionary (Optional; PDF 1.2) An appearance dictionary specifying how the
annotation shall be presented visually on the page (see 12.5.5,
“Appearance Streams”). Individual annotation handlers may ignore this
entry and provide their own appearances.

AS name (Required if the appearance dictionary AP contains one or more
subdictionaries; PDF 1.2) The annotation’s appearance state, which
selects the applicable appearance stream from an appearance
subdictionary (see Section 12.5.5, “Appearance Streams”).

PDF 32000-1:2008

384 © Adobe Systems Incorporated 2008 – All rights reserved

12.5.3 Annotation Flags

The value of the annotation dictionary’s F entry is an integer interpreted as one-bit flags specifying various
characteristics of the annotation. Bit positions within the flag word shall be numbered from low-order to high-
order, with the lowest-order bit numbered 1. Table 165 shows the meanings of the flags; all other bits of the
integer shall be set to 0.

Border array (Optional) An array specifying the characteristics of the annotation’s
border, which shall be drawn as a rounded rectangle.
(PDF 1.0) The array consists of three numbers defining the horizontal
corner radius, vertical corner radius, and border width, all in default user
space units. If the corner radii are 0, the border has square (not rounded)
corners; if the border width is 0, no border is drawn.
(PDF 1.1) The array may have a fourth element, an optional dash array
defining a pattern of dashes and gaps that shall be used in drawing the
border. The dash array shall be specified in the same format as in the
line dash pattern parameter of the graphics state (see 8.4.3.6, “Line
Dash Pattern”).
EXAMPLE A Border value of [0 0 1 [3 2]] specifies a border 1

unit wide, with square corners, drawn with 3-unit
dashes alternating with 2-unit gaps.

NOTE (PDF 1.2) The dictionaries for some annotation types (such
as free text and polygon annotations) can include the BS
entry. That entry specifies a border style dictionary that has
more settings than the array specified for the Border entry.
If an annotation dictionary includes the BS entry, then the
Border entry is ignored.

Default value: [0 0 1].

C array (Optional; PDF 1.1) An array of numbers in the range 0.0 to 1.0,
representing a colour used for the following purposes:
The background of the annotation’s icon when closed
The title bar of the annotation’s pop-up window
The border of a link annotation
The number of array elements determines the colour space in which the
colour shall be defined:
0 No colour; transparent
1 DeviceGray
3 DeviceRGB
4 DeviceCMYK

StructParent integer (Required if the annotation is a structural content item; PDF 1.3) The
integer key of the annotation’s entry in the structural parent tree (see
14.7.4.4, “Finding Structure Elements from Content Items”).

OC dictionary (Optional; PDF 1.5) An optional content group or optional content
membership dictionary (see 8.11, “Optional Content”) specifying the
optional content properties for the annotation. Before the annotation is
drawn, its visibility shall be determined based on this entry as well as the
annotation flags specified in the F entry (see 12.5.3, “Annotation Flags”).
If it is determined to be invisible, the annotation shall be skipped, as if it
were not in the document.

Table 164 – Entries common to all annotation dictionaries (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 385

PDF 32000-1:2008

Table 165 – Annotation flags

Bit
position

Name Meaning

1 Invisible If set, do not display the annotation if it does not belong to one of the
standard annotation types and no annotation handler is available. If
clear, display such an unknown annotation using an appearance
stream specified by its appearance dictionary, if any (see 12.5.5,
“Appearance Streams”).

2 Hidden (PDF 1.2) If set, do not display or print the annotation or allow it to
interact with the user, regardless of its annotation type or whether an
annotation handler is available.
NOTE 1 In cases where screen space is limited, the ability to hide

and show annotations selectively can be used in
combination with appearance streams (see 12.5.5,
“Appearance Streams”) to display auxiliary pop-up
information similar in function to online help systems.

3 Print (PDF 1.2) If set, print the annotation when the page is printed. If clear,
never print the annotation, regardless of whether it is displayed on the
screen.
NOTE 2 This can be useful for annotations representing interactive

pushbuttons, which would serve no meaningful purpose
on the printed page.

4 NoZoom (PDF 1.3) If set, do not scale the annotation’s appearance to match the
magnification of the page. The location of the annotation on the page
(defined by the upper-left corner of its annotation rectangle) shall
remain fixed, regardless of the page magnification. See further
discussion following this Table.

5 NoRotate (PDF 1.3) If set, do not rotate the annotation’s appearance to match
the rotation of the page. The upper-left corner of the annotation
rectangle shall remain in a fixed location on the page, regardless of the
page rotation. See further discussion following this Table.

6 NoView (PDF 1.3) If set, do not display the annotation on the screen or allow it
to interact with the user. The annotation may be printed (depending on
the setting of the Print flag) but should be considered hidden for
purposes of on-screen display and user interaction.

7 ReadOnly (PDF 1.3) If set, do not allow the annotation to interact with the user.
The annotation may be displayed or printed (depending on the settings
of the NoView and Print flags) but should not respond to mouse clicks
or change its appearance in response to mouse motions.
This flag shall be ignored for widget annotations; its function is
subsumed by the ReadOnly flag of the associated form field (see
Table 221).

8 Locked (PDF 1.4) If set, do not allow the annotation to be deleted or its
properties (including position and size) to be modified by the user.
However, this flag does not restrict changes to the annotation’s
contents, such as the value of a form field.

9 ToggleNoView (PDF 1.5) If set, invert the interpretation of the NoView flag for certain
events.
NOTE 3 A typical use is to have an annotation that appears only

when a mouse cursor is held over it.

10 LockedContents (PDF 1.7) If set, do not allow the contents of the annotation to be
modified by the user. This flag does not restrict deletion of the
annotation or changes to other annotation properties, such as position
and size.

PDF 32000-1:2008

386 © Adobe Systems Incorporated 2008 – All rights reserved

If the NoZoom flag is set, the annotation shall always maintain the same fixed size on the screen and shall be
unaffected by the magnification level at which the page itself is displayed. Similarly, if the NoRotate flag is set,
the annotation shall retain its original orientation on the screen when the page is rotated (by changing the
Rotate entry in the page object; see 7.7.3, “Page Tree”).

In either case, the annotation’s position shall be determined by the coordinates of the upper-left corner of its
annotation rectangle, as defined by the Rect entry in the annotation dictionary and interpreted in the default
user space of the page. When the default user space is scaled or rotated, the positions of the other three
corners of the annotation rectangle are different in the altered user space than they were in the original user
space. The conforming reader shall perform this alteration automatically. However, it shall not actually change
the annotation’s Rect entry, which continues to describe the annotation’s relationship with the unscaled,
unrotated user space.

NOTE Figure 58 shows how an annotation whose NoRotate flag is set remains upright when the page it is on is
rotated 90 degrees clockwise. The upper-left corner of the annotation remains at the same point in default user
space; the annotation pivots around that point.

Figure 58 – Coordinate adjustment with the NoRotate flag

12.5.4 Border Styles

An annotation may optionally be surrounded by a border when displayed or printed. If present, the border shall
be drawn completely inside the annotation rectangle. In PDF 1.1, the characteristics of the border shall be
specified by the Border entry in the annotation dictionary (see Table 164). Beginning with PDF 1.2, the border
characteristics for some types of annotations may instead be specified in a border style dictionary designated
by the annotation’s BS entry. Such dictionaries may also be used to specify the width and dash pattern for the
lines drawn by line, square, circle, and ink annotations. Table 166 summarizes the contents of the border style
dictionary. If neither the Border nor the BS entry is present, the border shall be drawn as a solid line with a
width of 1 point.

Table 166 – Entries in a border style dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be Border for a border style dictionary.

W number (Optional) The border width in points. If this value is 0, no border shall drawn.
Default value: 1.

Before page rotation

abcdefghijklm
nopqrstuvwxyz

(0, 0)

After page rotation

abcdefghijklm
nopqrstuvw

xyz

(0, 0)

© Adobe Systems Incorporated 2008 – All rights reserved 387

PDF 32000-1:2008

Beginning with PDF 1.5, some annotations (square, circle, and polygon) may have a BE entry, which is a
border effect dictionary that specifies an effect that shall be applied to the border of the annotations. Beginning
with PDF 1.6, the free text annotation may also have a BE entry. Table 167 describes the entries in a border
effect dictionary.

12.5.5 Appearance Streams

Beginning with PDF 1.2, an annotation may specify one or more appearance streams as an alternative to the
simple border and colour characteristics available in earlier versions. Appearance streams enable the
annotation to be presented visually in different ways to reflect its interactions with the user. Each appearance
stream is a form XObject (see 8.10, “Form XObjects”): a self-contained content stream that shall be rendered
inside the annotation rectangle.

The algorithm outlined in this sub-clause shall be used to map from the coordinate system of the appearance
XObject (as defined by its Matrix entry; see Table 97) to the annotation’s rectangle in default user space:

S name (Optional) The border style:
S (Solid) A solid rectangle surrounding the annotation.
D (Dashed) A dashed rectangle surrounding the annotation. The dash

pattern may be specified by the D entry.
B (Beveled) A simulated embossed rectangle that appears to be raised

above the surface of the page.
I (Inset) A simulated engraved rectangle that appears to be recessed

below the surface of the page.
U (Underline) A single line along the bottom of the annotation rectangle.
A conforming reader shall tolerate other border styles that it does not
recognize and shall use the default value.

D array (Optional) A dash array defining a pattern of dashes and gaps that shall be
used in drawing a dashed border (border style D in the S entry). The dash
array shall be specified in the same format as in the line dash pattern
parameter of the graphics state (see 8.4.3.6, “Line Dash Pattern”). The dash
phase is not specified and shall be assumed to be 0.
EXAMPLE A D entry of [3 2] specifies a border drawn with 3-point

dashes alternating with 2-point gaps.

Default value: [3].

Table 167 – Entries in a border effect dictionary

Key Type Value

S name (Optional) A name representing the border effect to apply. Possible values
are:
S No effect: the border shall be as described by the annotation dictionary’s

BS entry.
C The border should appear “cloudy”. The width and dash array specified by

BS shall be honored.
Default value: S.

I number (Optional; valid only if the value of S is C) A number describing the intensity of
the effect, in the range 0 to 2. Default value: 0.

Table 166 – Entries in a border style dictionary (continued)

Key Type Value

PDF 32000-1:2008

388 © Adobe Systems Incorporated 2008 – All rights reserved

Algorithm: Appearance streams

a) The appearance’s bounding box (specified by its BBox entry) shall be transformed, using Matrix, to
produce a quadrilateral with arbitrary orientation. The transformed appearance box is the smallest upright
rectangle that encompasses this quadrilateral.

b) A matrix A shall be computed that scales and translates the transformed appearance box to align with the
edges of the annotation’s rectangle (specified by the Rect entry). A maps the lower-left corner (the corner
with the smallest x and y coordinates) and the upper-right corner (the corner with the greatest x and y
coordinates) of the transformed appearance box to the corresponding corners of the annotation’s
rectangle.

c) Matrix shall be concatenated with A to form a matrix AA that maps from the appearance’s coordinate
system to the annotation’s rectangle in default user space:

AA = Matrix ¥ A

The annotation may be further scaled and rotated if either the NoZoom or NoRotate flag is set (see 12.5.3,
“Annotation Flags”). Any transformation applied to the annotation as a whole shall also applied to the
appearance within it.

Starting with PDF 1.4, an annotation appearance may include transparency. If the appearance’s stream
dictionary does not contain a Group entry, it shall be treated as a non-isolated, non-knockout transparency
group. Otherwise, the isolated and knockout values specified in the group dictionary (see 11.6.6,
“Transparency Group XObjects”) shall be used.

The transparency group shall be composited with a backdrop consisting of the page content along with any
previously painted annotations, using a blend mode of Normal, an alpha constant of 1.0, and a soft mask of
None.

NOTE 1 If a transparent annotation appearance is painted over an annotation that is drawn without using an
appearance stream, the effect is implementation-dependent. This is because such annotations are sometimes
drawn by means that do not conform to the PDF imaging model. Also, the effect of highlighting a transparent
annotation appearance is implementation-dependent.

An annotation may define as many as three separate appearances:

• The normal appearance shall be used when the annotation is not interacting with the user. This
appearance is also used for printing the annotation.

• The rollover appearance shall be used when the user moves the cursor into the annotation’s active area
without pressing the mouse button.

• The down appearance shall be used when the mouse button is pressed or held down within the
annotation’s active area.

NOTE 2 As used here, the term mouse denotes a generic pointing device that controls the location of a cursor on the
screen and has at least one button that can be pressed, held down, and released. See 12.6.3, “Trigger
Events,” for further discussion.

The normal, rollover, and down appearances shall be defined in an appearance dictionary, which in turn is the
value of the AP entry in the annotation dictionary (see Table 164). Table 168 shows the contents of the
appearance dictionary.

© Adobe Systems Incorporated 2008 – All rights reserved 389

PDF 32000-1:2008

Each entry in the appearance dictionary may contain either a single appearance stream or an appearance
subdictionary. In the latter case, the subdictionary shall define multiple appearance streams corresponding to
different appearance states of the annotation.

EXAMPLE An annotation representing an interactive check box may have two appearance states named On and Off.
Its appearance dictionary may be defined as

/AP << /N << /On formXObject1

 /Off formXObject2
 >>

 /D << /On formXObject3
 /Off formXObject4

 >>
 >>

where formXObject1 and formXObject2 define the check box’s normal appearance in its checked and
unchecked states, and formXObject3 and formXObject4 provide visual feedback, such as emboldening its
outline, when the user clicks it. (No R entry is defined because no special appearance is needed when the
user moves the cursor over the check box without pressing the mouse button.) The choice between the
checked and unchecked appearance states is determined by the AS entry in the annotation dictionary
(see Table 164).

NOTE 3 If a conforming reader does not have native support for a particular annotation type conforming readers shall
display the annotation with its normal (N) appearance. Conforming readers shall also attempt to provide
reasonable behavior (such as displaying nothing) if an annotation’s AS entry designates an appearance state
for which no appearance is defined in the appearance dictionary.

For convenience in managing appearance streams that are used repeatedly, the AP entry in a PDF document’s
name dictionary (see 7.7.4, “Name Dictionary”) may contain a name tree mapping name strings to appearance
streams. The name strings have no standard meanings; no PDF objects may refer to appearance streams by
name.

12.5.6 Annotation Types

12.5.6.1 General

PDF supports the standard annotation types listed in Table 169. The following sub-clauses describe each of
these types in detail.

The values in the first column of Table 169 represent the value of the annotation dictionary’s Subtype entry.
The third column indicates whether the annotation is a markup annotation, as described in 12.5.6.2, “Markup
Annotations.” The sub-clause also provides more information about the value of the Contents entry for
different annotation types.

Table 168 – Entries in an appearance dictionary

Key Type Value

N stream or dictionary (Required) The annotation’s normal appearance.

R stream or dictionary (Optional) The annotation’s rollover appearance. Default value: the
value of the N entry.

D stream or dictionary (Optional) The annotation’s down appearance. Default value: the value
of the N entry.

PDF 32000-1:2008

390 © Adobe Systems Incorporated 2008 – All rights reserved

Table 169 – Annotation types

Annotation type Description Markup Discussed in sub-clause

Text Text annotation Yes 12.5.6.4, “Text Annotations”

Link Link annotation No 12.5.6.5, “Link Annotations”

FreeText (PDF 1.3) Free text annotation Yes 12.5.6.6, “Free Text Annotations”

Line (PDF 1.3) Line annotation Yes 12.5.6.7, “Line Annotations”

Square (PDF 1.3) Square annotation Yes 12.5.6.8, “Square and Circle
Annotations”

Circle (PDF 1.3) Circle annotation Yes 12.5.6.8, “Square and Circle
Annotations”

Polygon (PDF 1.5) Polygon annotation Yes 12.5.6.9, “Polygon and Polyline
Annotations”

PolyLine (PDF 1.5) Polyline annotation Yes 12.5.6.9, “Polygon and Polyline
Annotations”

Highlight (PDF 1.3) Highlight annotation Yes 12.5.6.10, “Text Markup Annotations”

Underline (PDF 1.3) Underline
annotation

Yes 12.5.6.10, “Text Markup Annotations”

Squiggly (PDF 1.4) Squiggly-underline
annotation

Yes 12.5.6.10, “Text Markup Annotations”

StrikeOut (PDF 1.3) Strikeout annotation Yes 12.5.6.10, “Text Markup Annotations”

Stamp (PDF 1.3) Rubber stamp
annotation

Yes 12.5.6.12, “Rubber Stamp Annotations”

Caret (PDF 1.5) Caret annotation Yes 12.5.6.11, “Caret Annotations”

Ink (PDF 1.3) Ink annotation Yes 12.5.6.13, “Ink Annotations”

Popup (PDF 1.3) Pop-up annotation No 12.5.6.14, “Pop-up Annotations”

FileAttachment (PDF 1.3) File attachment
annotation

Yes 12.5.6.15, “File Attachment Annotations”

Sound (PDF 1.2) Sound annotation Yes 12.5.6.16, “Sound Annotations”

Movie (PDF 1.2) Movie annotation No 12.5.6.17, “Movie Annotations”

Widget (PDF 1.2) Widget annotation No 12.5.6.19, “Widget Annotations”

Screen (PDF 1.5) Screen annotation No 12.5.6.18, “Screen Annotations”

PrinterMark (PDF 1.4) Printer’s mark
annotation

No 12.5.6.20, “Printer’s Mark Annotations”

TrapNet (PDF 1.3) Trap network
annotation

No 12.5.6.21, “Trap Network Annotations”

Watermark (PDF 1.6) Watermark
annotation

No 12.5.6.22, “Watermark Annotations”

3D (PDF 1.6) 3D annotation No 13.6.2, “3D Annotations”

Redact (PDF 1.7) Redact annotation Yes 12.5.6.23, “Redaction Annotations”

© Adobe Systems Incorporated 2008 – All rights reserved 391

PDF 32000-1:2008

12.5.6.2 Markup Annotations

As mentioned in 12.5.2, “Annotation Dictionaries,” the meaning of an annotation’s Contents entry varies by
annotation type. Typically, it is the text that shall be displayed for the annotation or, if the annotation does not
display text, an alternate description of the annotation’s contents in human-readable form. In either case, the
Contents entry is useful when extracting the document’s contents in support of accessibility to users with
disabilities or for other purposes (see 14.9.3, “Alternate Descriptions”).

Many annotation types are defined as markup annotations because they are used primarily to mark up PDF
documents (see Table 170). These annotations have text that appears as part of the annotation and may be
displayed in other ways by a conforming reader, such as in a Comments pane.

Markup annotations may be divided into the following groups:

• Free text annotations display text directly on the page. The annotation’s Contents entry specifies the
displayed text.

• Most other markup annotations have an associated pop-up window that may contain text. The annotation’s
Contents entry specifies the text that shall be displayed when the pop-up window is opened. These
include text, line, square, circle, polygon, polyline, highlight, underline, squiggly-underline, strikeout, rubber
stamp, caret, ink, and file attachment annotations.

• Sound annotations do not have a pop-up window but may also have associated text specified by the
Contents entry.

When separating text into paragraphs, a CARRIAGE RETURN (0Dh) shall be used and not, for example, a
LINE FEED character (0Ah).

NOTE 1 A subset of markup annotations is called text markup annotations (see 12.5.6.10, “Text Markup Annotations”).

The remaining annotation types are not considered markup annotations:

• The pop-up annotation type shall not appear by itself; it shall be associated with a markup annotation that uses it to
display text.

NOTE 2 If an annotation has no parent, the Contents entry shall represent the text of the annotation, otherwise it shall
be ignored by a conforming reader.

• For all other annotation types (Link, Movie, Widget, PrinterMark, and TrapNet), the Contents entry shall
provide an alternate representation of the annotation’s contents in human-readable form, which is useful
when extracting the document’s contents in support of accessibility to users with disabilities or for other
purposes (see 14.9.3, “Alternate Descriptions”).

Table 170 lists entries that apply to all markup annotations.

Table 170 – Additional entries specific to markup annotations

Key Type Value

T text string (Optional; PDF 1.1) The text label that shall be displayed in the title bar of
the annotation’s pop-up window when open and active. This entry shall
identify the user who added the annotation.

Popup dictionary (Optional; PDF 1.3) An indirect reference to a pop-up annotation for
entering or editing the text associated with this annotation.

PDF 32000-1:2008

392 © Adobe Systems Incorporated 2008 – All rights reserved

CA number (Optional; PDF 1.4) The constant opacity value that shall be used in
painting the annotation (see Sections 11.2, “Overview of Transparency,”
and 11.3.7, “Shape and Opacity Computations”). This value shall apply to
all visible elements of the annotation in its closed state (including its
background and border) but not to the pop-up window that appears when
the annotation is opened.
The specified value shall not used if the annotation has an appearance
stream (see 12.5.5, “Appearance Streams”); in that case, the appearance
stream shall specify any transparency. (However, if the compliant viewer
regenerates the annotation’s appearance stream, it may incorporate the
CA value into the stream’s content.)
The implicit blend mode (see 11.3.5, “Blend Mode””) is Normal. Default
value: 1.0.
If no explicit appearance stream is defined for the annotation, it may be
painted by implementation-dependent means that do not necessarily
conform to the PDF imaging model; in this case, the effect of this entry is
implementation-dependent as well.

RC text string
or text
stream

(Optional; PDF 1.5) A rich text string (see 12.7.3.4, “Rich Text Strings”)
that shall be displayed in the pop-up window when the annotation is
opened.

CreationDate date (Optional; PDF 1.5) The date and time (7.9.4, “Dates”) when the
annotation was created.

IRT dictionary (Required if an RT entry is present, otherwise optional; PDF 1.5) A
reference to the annotation that this annotation is “in reply to.” Both
annotations shall be on the same page of the document. The relationship
between the two annotations shall be specified by the RT entry.
If this entry is present in an FDF file (see 12.7.7, “Forms Data Format”), its
type shall not be a dictionary but a text string containing the contents of
the NM entry of the annotation being replied to, to allow for a situation
where the annotation being replied to is not in the same FDF file.

Subj text string (Optional; PDF 1.5) Text representing a short description of the subject
being addressed by the annotation.

RT name (Optional; meaningful only if IRT is present; PDF 1.6) A name specifying
the relationship (the “reply type”) between this annotation and one
specified by IRT. Valid values are:
R The annotation shall be considered a reply to the annotation

specified by IRT. Conforming readers shall not display replies
to an annotation individually but together in the form of
threaded comments.

Group The annotation shall be grouped with the annotation specified
by IRT; see the discussion following this Table.

Default value: R.

IT name (Optional; PDF 1.6) A name describing the intent of the markup
annotation. Intents allow conforming readers to distinguish between
different uses and behaviors of a single markup annotation type. If this
entry is not present or its value is the same as the annotation type, the
annotation shall have no explicit intent and should behave in a generic
manner in a conforming reader.
Free text annotations (Table 174), line annotations (Table 175), polygon
annotations (Table 178), and (PDF 1.7) polyline annotations (Table 178)
have defined intents, whose values are enumerated in the corresponding
tables.

Table 170 – Additional entries specific to markup annotations (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 393

PDF 32000-1:2008

In PDF 1.6, a set of annotations may be grouped so that they function as a single unit when a user interacts
with them. The group consists of a primary annotation, which shall not have an IRT entry, and one or more
subordinate annotations, which shall have an IRT entry that refers to the primary annotation and an RT entry
whose value is Group.

Some entries in the primary annotation are treated as “group attributes” that shall apply to the group as a
whole; the corresponding entries in the subordinate annotations shall be ignored. These entries are Contents
(or RC and DS), M, C, T, Popup, CreationDate, Subj, and Open. Operations that manipulate any annotation
in a group, such as movement, cut, and copy, shall be treated by conforming readers as acting on the entire
group.

NOTE 3 A primary annotation may have replies that are not subordinate annotations; that is, that do not have an RT
value of Group.

12.5.6.3 Annotation States

Beginning with PDF 1.5, annotations may have an author-specific state associated with them. The state is not
specified in the annotation itself but in a separate text annotation that refers to the original annotation by means
of its IRT (“in reply to”) entry (see Table 173). States shall be grouped into a number of state models, as shown
in Table 171.

Annotations shall be thought of as initially being in the default state for each state model. State changes made
by a user shall be indicated in a text annotation with the following entries:

• The T entry (see Table 170) shall specify the user.

• The IRT entry (see Table 173) shall refer to the original annotation.

• State and StateModel (see Table 172) shall update the state of the original annotation for the specified
user.

ExData dictionary (Optional; PDF 1.7) An external data dictionary specifying data that shall
be associated with the annotation. This dictionary contains the following
entries:
Type (optional) If present, shall be ExData.
Subtype (required) a name specifying the type of data that the markup

annotation shall be associated with. The only defined value is
Markup3D. Table 298 lists the values that correspond to a
subtype of Markup3D.

Table 171 – Annotation states

State model State Description

Marked Marked The annotation has been marked by the user.

Unmarked The annotation has not been marked by the user (the default).

Review Accepted The user agrees with the change.

Rejected The user disagrees with the change.

Cancelled The change has been cancelled.

Completed The change has been completed.

None The user has indicated nothing about the change (the default).

Table 170 – Additional entries specific to markup annotations (continued)

Key Type Value

PDF 32000-1:2008

394 © Adobe Systems Incorporated 2008 – All rights reserved

Additional state changes shall be made by adding text annotations in reply to the previous reply for a given
user.

12.5.6.4 Text Annotations

A text annotation represents a “sticky note” attached to a point in the PDF document. When closed, the
annotation shall appear as an icon; when open, it shall display a pop-up window containing the text of the note
in a font and size chosen by the conforming reader. Text annotations shall not scale and rotate with the page;
they shall behave as if the NoZoom and NoRotate annotation flags (see Table 165) were always set. Table 172
shows the annotation dictionary entries specific to this type of annotation.

EXAMPLE The following example shows the definition of a text annotation.

22 0 obj

<< /Type /Annot
 /Subtype /Text
 /Rect [266 116 430 204]
 /Contents (The quick brown fox ate the lazy mouse .)
>>

endobj

12.5.6.5 Link Annotations

A link annotation represents either a hypertext link to a destination elsewhere in the document (see 12.3.2,
“Destinations”) or an action to be performed (12.6, “Actions”). Table 173 shows the annotation dictionary
entries specific to this type of annotation.

Table 172 – Additional entries specific to a text annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Text for a text annotation.

Open boolean (Optional) A flag specifying whether the annotation shall initially be
displayed open. Default value: false (closed).

Name name (Optional) The name of an icon that shall be used in displaying the
annotation. Conforming readers shall provide predefined icon
appearances for at least the following standard names:

Comment, Key, Note, Help, NewParagraph, Paragraph, Insert
Additional names may be supported as well. Default value: Note.
The annotation dictionary’s AP entry, if present, shall take precedence
over the Name entry; see Table 168 and 12.5.5, “Appearance Streams.”

State text string (Optional; PDF 1.5) The state to which the original annotation shall be set;
see 12.5.6.3, “Annotation States.”
Default: “Unmarked” if StateModel is “Marked”; “None” if StateModel is
“Review”.

StateModel text string (Required if State is present, otherwise optional; PDF 1.5) The state
model corresponding to State; see 12.5.6.3, “Annotation States.”

Table 173 – Additional entries specific to a link annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Link for a link annotation.

A dictionary (Optional; PDF 1.1) An action that shall be performed when the link
annotation is activated (see 12.6, “Actions”).

© Adobe Systems Incorporated 2008 – All rights reserved 395

PDF 32000-1:2008

EXAMPLE The following example shows a link annotation that jumps to a destination elsewhere in the document.

93 0 obj

<< /Type /Annot
 /Subtype /Link
 /Rect [71 717 190 734]
 /Border [16 16 1]
 /Dest [3 0 R /FitR –4 399 199 533]
>>

endobj

12.5.6.6 Free Text Annotations

A free text annotation (PDF 1.3) displays text directly on the page. Unlike an ordinary text annotation (see
12.5.6.4, “Text Annotations”), a free text annotation has no open or closed state; instead of being displayed in a
pop-up window, the text shall be always visible. Table 174 shows the annotation dictionary entries specific to

Dest array, name or
byte string

(Optional; not permitted if an A entry is present) A destination that shall
be displayed when the annotation is activated (see 12.3.2,
“Destinations”).

H name (Optional; PDF 1.2) The annotation’s highlighting mode, the visual effect
that shall be used when the mouse button is pressed or held down
inside its active area:
N (None) No highlighting.
I (Invert) Invert the contents of the annotation rectangle.
O I(Outline) Invert the annotation’s border.
P (Push) Display the annotation as if it were being pushed

below the surface of the page.
Default value: I.

PA dictionary (Optional; PDF 1.3) A URI action (see 12.6.4.7, “URI Actions”) formerly
associated with this annotation. When Web Capture (14.10, “ Web
Capture”) changes an annotation from a URI to a go-to action (12.6.4.2,
“Go-To Actions”), it uses this entry to save the data from the original URI
action so that it can be changed back in case the target page for the go-
to action is subsequently deleted.

QuadPoints array (Optional; PDF 1.6) An array of 8 × n numbers specifying the
coordinates of n quadrilaterals in default user space that comprise the
region in which the link should be activated. The coordinates for each
quadrilateral are given in the order
x1 y1 x2 y2 x3 y3 x4 y4

specifying the four vertices of the quadrilateral in counterclockwise
order. For orientation purposes, such as when applying an underline
border style, the bottom of a quadrilateral is the line formed by (x1 , y1)
and (x2 , y2).

If this entry is not present or the conforming reader does not recognize
it, the region specified by the Rect entry should be used. QuadPoints
shall be ignored if any coordinate in the array lies outside the region
specified by Rect.

BS dictionary (Optional; PDF 1.6) A border style dictionary (see Table 166) specifying
the line width and dash pattern to be used in drawing the annotation’s
border.
The annotation dictionary’s AP entry, if present, takes precedence over
the BS entry; see Table 164 and 12.5.5, “Appearance Streams”.

Table 173 – Additional entries specific to a link annotation (continued)

Key Type Value

PDF 32000-1:2008

396 © Adobe Systems Incorporated 2008 – All rights reserved

this type of annotation. 12.7.3.3, “Variable Text” describes the process of using these entries to generate the
appearance of the text in these annotations.

Table 174 – Additional entries specific to a free text annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
FreeText for a free text annotation.

DA string (Required) The default appearance string that shall be used in formatting
the text (see 12.7.3.3, “Variable Text”).
The annotation dictionary’s AP entry, if present, shall take precedence
over the DA entry; see Table 168 and 12.5.5, “Appearance Streams.”

Q integer (Optional; PDF 1.4) A code specifying the form of quadding (justification)
that shall be used in displaying the annotation’s text:
0 Left-justified
1 Centered
2 Right-justified
Default value: 0 (left-justified).

RC text string
or text
stream

(Optional; PDF 1.5) A rich text string (see 12.7.3.4, “Rich Text Strings”)
that shall be used to generate the appearance of the annotation.

DS text string (Optional; PDF 1.5) A default style string, as described in 12.7.3.4, “Rich
Text Strings.”

CL array (Optional; meaningful only if IT is FreeTextCallout; PDF 1.6) An array of
four or six numbers specifying a callout line attached to the free text
annotation. Six numbers [x1 y1 x2 y2 x3 y3] represent the starting,
knee point, and ending coordinates of the line in default user space, as
shown in Figure 8.4. Four numbers [x1 y1 x2 y2] represent the starting
and ending coordinates of the line.

IT name (Optional; PDF 1.6) A name describing the intent of the free text
annotation (see also the IT entry in Table 170). The following values shall
be valid:
FreeText The annotation is intended to function as a plain

free-text annotation. A plain free-text annotation
is also known as a text box comment.

FreeTextCallout The annotation is intended to function as a
callout. The callout is associated with an area on
the page through the callout line specified in CL.

FreeTextTypeWriter The annotation is intended to function as a click-
to-type or typewriter object and no callout line is
drawn.

Default value: FreeText

BE dictionary (Optional; PDF 1.6) A border effect dictionary (see Table 167) used in
conjunction with the border style dictionary specified by the BS entry.

© Adobe Systems Incorporated 2008 – All rights reserved 397

PDF 32000-1:2008

Figure 59 – Free text annotation with callout

12.5.6.7 Line Annotations

The purpose of a line annotation (PDF 1.3) is to display a single straight line on the page. When opened, it shall
display a pop-up window containing the text of the associated note. Table 175 shows the annotation dictionary
entries specific to this type of annotation.

RD rectangle (Optional; PDF 1.6) A set of four numbers describing the numerical
differences between two rectangles: the Rect entry of the annotation and
a rectangle contained within that rectangle. The inner rectangle is where
the annotation’s text should be displayed. Any border styles and/or border
effects specified by BS and BE entries, respectively, shall be applied to
the border of the inner rectangle.
The four numbers correspond to the differences in default user space
between the left, top, right, and bottom coordinates of Rect and those of
the inner rectangle, respectively. Each value shall be greater than or
equal to 0. The sum of the top and bottom differences shall be less than
the height of Rect, and the sum of the left and right differences shall be
less than the width of Rect.

BS dictionary (Optional; PDF 1.6) A border style dictionary (see Table 166) specifying
the line width and dash pattern that shall be used in drawing the
annotation’s border.
The annotation dictionary’s AP entry, if present, takes precedence over
the BS entry; see Table 164 and 12.5.5, “Appearance Streams”.

LE name (Optional; meaningful only if CL is present; PDF 1.6) A name specifying
the line ending style that shall be used in drawing the callout line specified
in CL. The name shall specify the line ending style for the endpoint
defined by the pairs of coordinates (x1, y1). Table 176 shows the possible
line ending styles.
Default value: None.

Table 174 – Additional entries specific to a free text annotation (continued)

Key Type Value

Free text with callouts

x3, y3

x2, y2

x1, y1

PDF 32000-1:2008

398 © Adobe Systems Incorporated 2008 – All rights reserved

Table 175 – Additional entries specific to a line annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Line for a line annotation.

L array (Required) An array of four numbers, [x1 y1 x2 y2], specifying the
starting and ending coordinates of the line in default user space.
If the LL entry is present, this value shall represent the endpoints of the
leader lines rather than the endpoints of the line itself; see Figure 60.

BS dictionary (Optional) A border style dictionary (see Table 166) specifying the width
and dash pattern that shall be used in drawing the line.
The annotation dictionary’s AP entry, if present, shall take precedence
over the L and BS entries; see Table 168 and 12.5.5, “Appearance
Streams.”

LE array (Optional; PDF 1.4) An array of two names specifying the line ending
styles that shall be used in drawing the line. The first and second
elements of the array shall specify the line ending styles for the endpoints
defined, respectively, by the first and second pairs of coordinates, (x1 , y1)
and (x2 , y2), in the L array. Table 176 shows the possible values. Default
value: [/None /None].

IC array (Optional; PDF 1.4) An array of numbers in the range 0.0 to 1.0 specifying
the interior color that shall be used to fill the annotation’s line endings
(see Table 176). The number of array elements shall determine the colour
space in which the colour is defined:
0 No colour; transparent
1 DeviceGray
3 DeviceRGB
4 DeviceCMYK

LL number (Required if LLE is present, otherwise optional; PDF 1.6) The length of
leader lines in default user space that extend from each endpoint of the
line perpendicular to the line itself, as shown in Figure 60. A positive value
shall mean that the leader lines appear in the direction that is clockwise
when traversing the line from its starting point to its ending point (as
specified by L); a negative value shall indicate the opposite direction.
Default value: 0 (no leader lines).

LLE number (Optional; PDF 1.6) A non-negative number that shall represents the
length of leader line extensions that extend from the line proper 180
degrees from the leader lines, as shown in Figure 60.
Default value: 0 (no leader line extensions).

Cap boolean (Optional; PDF 1.6) If true, the text specified by the Contents or RC
entries shall be replicated as a caption in the appearance of the line, as
shown in Figure 61 and Figure 62. The text shall be rendered in a manner
appropriate to the content, taking into account factors such as writing
direction.
Default value: false.

IT name (Optional; PDF 1.6) A name describing the intent of the line annotation
(see also Table 170). Valid values shall be LineArrow, which means that
the annotation is intended to function as an arrow, and LineDimension,
which means that the annotation is intended to function as a dimension
line.

© Adobe Systems Incorporated 2008 – All rights reserved 399

PDF 32000-1:2008

Figure 60 – Leader lines

LLO number (Optional; PDF 1.7) A non-negative number that shall represent the
length of the leader line offset, which is the amount of empty space
between the endpoints of the annotation and the beginning of the leader
lines.

CP name (Optional; meaningful only if Cap is true; PDF 1.7) A name describing the
annotation’s caption positioning. Valid values are Inline, meaning the
caption shall be centered inside the line, and Top, meaning the caption
shall be on top of the line.
Default value: Inline

Measure dictionary (Optional; PDF 1.7) A measure dictionary (see Table 261) that shall
specify the scale and units that apply to the line annotation.

CO array (Optional; meaningful only if Cap is true; PDF 1.7) An array of two
numbers that shall specify the offset of the caption text from its normal
position. The first value shall be the horizontal offset along the annotation
line from its midpoint, with a positive value indicating offset to the right
and a negative value indicating offset to the left. The second value shall
be the vertical offset perpendicular to the annotation line, with a positive
value indicating a shift up and a negative value indicating a shift down.
Default value: [0, 0] (no offset from normal positioning)

Table 175 – Additional entries specific to a line annotation (continued)

Key Type Value

/LLE 10 -- 10 point leader
line extension

/LL 50 -- 50 point leader line

/LLO 10 -- 10 point leader
line offset

/LL -50 -- 50 point inverse
leader line

/LLE 10 -- 10 point leader
line extension

/LLO 10 -- 10 point leader
line offset

PDF 32000-1:2008

400 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 61 illustrates the effect of including a caption to a line annotation, which is specified by setting Cap to
true.

Figure 61 – Lines with captions appearing as part of the line

Figure 62 illustrates the effect of applying a caption to a line annotation that has a leader offset.

Figure 62 – Line with a caption appearing as part of the offset

Table 176 – Line ending styles

Name Appearance Description

Square A square filled with the annotation’s interior color, if any

Circle A circle filled with the annotation’s interior color, if any

Diamond A diamond shape filled with the annotation’s interior color, if any

OpenArrow Two short lines meeting in an acute angle to form an open
arrowhead

ClosedArrow Two short lines meeting in an acute angle as in the OpenArrow style
and connected by a third line to form a triangular closed arrowhead
filled with the annotation’s interior color, if any

None No line ending

This is an inside caption

This is a caption that is longer than the line

This is a top caption

This is an offset caption
/CO [30, 15] -- 30 point horizontal offset along the annotation line
and 15 point vertical offset perpendicular to the annotation line

© Adobe Systems Incorporated 2008 – All rights reserved 401

PDF 32000-1:2008

12.5.6.8 Square and Circle Annotations

Square and circle annotations (PDF 1.3) shall display, respectively, a rectangle or an ellipse on the page. When
opened, they shall display a pop-up window containing the text of the associated note. The rectangle or ellipse
shall be inscribed within the annotation rectangle defined by the annotation dictionary’s Rect entry (see
Table 168).

Figure 63 shows two annotations, each with a border width of 18 points. Despite the names square and circle,
the width and height of the annotation rectangle need not be equal. Table 177 shows the annotation dictionary
entries specific to these types of annotations.

Figure 63 – Square and circle annotations

Butt (PDF 1.5) A short line at the endpoint perpendicular to the line itself

ROpenArrow (PDF 1.5) Two short lines in the reverse direction from OpenArrow

RClosedArrow (PDF 1.5) A triangular closed arrowhead in the reverse direction
from ClosedArrow

Slash (PDF 1.6) A short line at the endpoint approximately 30 degrees
clockwise from perpendicular to the line itself

Table 177 – Additional entries specific to a square or circle annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Square or Circle for a square or circle annotation, respectively.

BS dictionary (Optional) A border style dictionary (see Table 166) specifying the line
width and dash pattern that shall be used in drawing the rectangle or
ellipse.
The annotation dictionary’s AP entry, if present, shall take precedence
over the Rect and BS entries; see Table 168 and 12.5.5, “Appearance
Streams.”

Table 176 – Line ending styles (continued)

Name Appearance Description

18 pt 18 pt

Rect

Square annotation Circle annotation

PDF 32000-1:2008

402 © Adobe Systems Incorporated 2008 – All rights reserved

12.5.6.9 Polygon and Polyline Annotations

Polygon annotations (PDF 1.5) display closed polygons on the page. Such polygons may have any number of
vertices connected by straight lines. Polyline annotations (PDF 1.5) are similar to polygons, except that the first
and last vertex are not implicitly connected.

IC array (Optional; PDF 1.4) An array of numbers that shall be in the range 0.0 to
1.0 and shall specify the interior color with which to fill the annotation’s
rectangle or ellipse. The number of array elements determines the colour
space in which the colour shall be defined:
0 No colour; transparent
1 DeviceGray
3 DeviceRGB
4 DeviceCMYK

BE dictionary (Optional; PDF 1.5) A border effect dictionary describing an effect applied
to the border described by the BS entry (see Table 167).

RD rectangle (Optional; PDF 1.5) A set of four numbers that shall describe the
numerical differences between two rectangles: the Rect entry of the
annotation and the actual boundaries of the underlying square or circle.
Such a difference may occur in situations where a border effect
(described by BE) causes the size of the Rect to increase beyond that of
the square or circle.
The four numbers shall correspond to the differences in default user
space between the left, top, right, and bottom coordinates of Rect and
those of the square or circle, respectively. Each value shall be greater
than or equal to 0. The sum of the top and bottom differences shall be
less than the height of Rect, and the sum of the left and right differences
shall be less than the width of Rect.

Table 178 – Additional entries specific to a polygon or polyline annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Polygon or PolyLine for a polygon or polyline annotation, respectively.

Vertices array (Required) An array of numbers (see Table 174) specifying the width and
dash pattern that shall represent the alternating horizontal and vertical
coordinates, respectively, of each vertex, in default user space.

LE array (Optional; meaningful only for polyline annotations) An array of two
names that shall specify the line ending styles. The first and second
elements of the array shall specify the line ending styles for the endpoints
defined, respectively, by the first and last pairs of coordinates in the
Vertices array. Table 176 shows the possible values. Default value: [/
None /None].

BS dictionary (Optional) A border style dictionary (see Table 166) specifying the width
and dash pattern that shall be used in drawing the line.
The annotation dictionary’s AP entry, if present, shall take precedence
over the Vertices and BS entries; see Table 168 and 12.5.5,
“Appearance Streams.”

Table 177 – Additional entries specific to a square or circle annotation (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 403

PDF 32000-1:2008

12.5.6.10 Text Markup Annotations

Text markup annotations shall appear as highlights, underlines, strikeouts (all PDF 1.3), or jagged (“squiggly”)
underlines (PDF 1.4) in the text of a document. When opened, they shall display a pop-up window containing
the text of the associated note. Table 179 shows the annotation dictionary entries specific to these types of
annotations.

IC array (Optional; PDF 1.4) An array of numbers that shall be in the range 0.0 to
1.0 and shall specify the interior color with which to fill the annotation’s
line endings (see Table 176). The number of array elements determines
the colour space in which the colour shall be defined:
0 No colour; transparent
1 DeviceGray
3 DeviceRGB
4 DeviceCMYK

BE dictionary (Optional; meaningful only for polygon annotations) A border effect
dictionary that shall describe an effect applied to the border described by
the BS entry (see Table 167).

IT name (Optional; PDF 1.6) A name that shall describe the intent of the polygon
or polyline annotation (see also Table 170). The following values shall be
valid:
PolygonCloud The annotation is intended to function as a cloud

object.
PolyLineDimension (PDF 1.7) The polyline annotation is intended to

function as a dimension.
PolygonDimension (PDF 1.7) The polygon annotation is intended to

function as a dimension.

Measure dictionary (Optional; PDF 1.7) A measure dictionary (see Table 261) that shall
specify the scale and units that apply to the annotation.

Table 179 – Additional entries specific to text markup annotations

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall
be Highlight, Underline, Squiggly, or StrikeOut for a highlight,
underline, squiggly-underline, or strikeout annotation, respectively.

QuadPoints array (Required) An array of 8 × n numbers specifying the coordinates of n
quadrilaterals in default user space. Each quadrilateral shall
encompasses a word or group of contiguous words in the text
underlying the annotation. The coordinates for each quadrilateral shall
be given in the order
x1 y1 x2 y2 x3 y3 x4 y4

specifying the quadrilateral’s four vertices in counterclockwise order
(see Figure 64). The text shall be oriented with respect to the edge
connecting points (x1 , y1) and (x2 , y2).

The annotation dictionary’s AP entry, if present, shall take precedence
over QuadPoints; see Table 168 and 12.5.5, “Appearance Streams.”

Table 178 – Additional entries specific to a polygon or polyline annotation (continued)

Key Type Value

PDF 32000-1:2008

404 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 64 – QuadPoints specification

12.5.6.11 Caret Annotations

A caret annotation (PDF 1.5) is a visual symbol that indicates the presence of text edits. Table 180 lists the
entries specific to caret annotations.

12.5.6.12 Rubber Stamp Annotations

A rubber stamp annotation (PDF 1.3) displays text or graphics intended to look as if they were stamped on the
page with a rubber stamp. When opened, it shall display a pop-up window containing the text of the associated
note. Table 181 shows the annotation dictionary entries specific to this type of annotation.

Table 180 – Additional entries specific to a caret annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Caret for a caret annotation.

RD rectangle (Optional; PDF 1.5) A set of four numbers that shall describe the
numerical differences between two rectangles: the Rect entry of the
annotation and the actual boundaries of the underlying caret. Such a
difference can occur. When a paragraph symbol specified by Sy is
displayed along with the caret.
The four numbers shall correspond to the differences in default user
space between the left, top, right, and bottom coordinates of Rect and
those of the caret, respectively. Each value shall be greater than or equal
to 0. The sum of the top and bottom differences shall be less than the
height of Rect, and the sum of the left and right differences shall be less
than the width of Rect.

Sy name (Optional) A name specifying a symbol that shall be associated with the
caret:
P A new paragraph symbol (¶) should be associated with the

caret.
None No symbol should be associated with the caret.
Default value: None.

Jupiter
(x3

, y3
)

(x2
, y2

)

(x1
, y1

)

(x4
, y4

)

© Adobe Systems Incorporated 2008 – All rights reserved 405

PDF 32000-1:2008

12.5.6.13 Ink Annotations

An ink annotation (PDF 1.3) represents a freehand “scribble” composed of one or more disjoint paths. When
opened, it shall display a pop-up window containing the text of the associated note. Table 182 shows the
annotation dictionary entries specific to this type of annotation.

12.5.6.14 Pop-up Annotations

A pop-up annotation (PDF 1.3) displays text in a pop-up window for entry and editing. It shall not appear alone
but is associated with a markup annotation, its parent annotation, and shall be used for editing the parent’s text.
It shall have no appearance stream or associated actions of its own and shall be identified by the Popup entry
in the parent’s annotation dictionary (see Table 174). Table 183 shows the annotation dictionary entries specific
to this type of annotation.

Table 181 – Additional entries specific to a rubber stamp annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Stamp for a rubber stamp annotation.

Name name (Optional) The name of an icon that shall be used in displaying the
annotation. Conforming readers shall provide predefined icon
appearances for at least the following standard names:

Approved, Experimental, NotApproved, AsIs, Expired ,
NotForPublicRelease, Confidential, Final, Sold, Departmental,
ForComment, TopSecret, Draft, ForPublicRelease

Additional names may be supported as well. Default value: Draft.
The annotation dictionary’s AP entry, if present, shall take precedence
over the Name entry; see Table 168 and 12.5.5, “Appearance Streams.”

Table 182 – Additional entries specific to an ink annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Ink for an ink annotation.

InkList array (Required) An array of n arrays, each representing a stroked path. Each
array shall be a series of alternating horizontal and vertical coordinates in
default user space, specifying points along the path. When drawn, the
points shall be connected by straight lines or curves in an
implementation-dependent way.

BS dictionary (Optional) A border style dictionary (see Table 166) specifying the line
width and dash pattern that shall be used in drawing the paths.
The annotation dictionary’s AP entry, if present, shall take precedence
over the InkList and BS entries; see Table 168 and 12.5.5, “Appearance
Streams.”

PDF 32000-1:2008

406 © Adobe Systems Incorporated 2008 – All rights reserved

12.5.6.15 File Attachment Annotations

A file attachment annotation (PDF 1.3) contains a reference to a file, which typically shall be embedded in the
PDF file (see 7.11.4, “Embedded File Streams”).

NOTE A table of data might use a file attachment annotation to link to a spreadsheet file based on that data; activating
the annotation extracts the embedded file and gives the user an opportunity to view it or store it in the file
system. Table 184 shows the annotation dictionary entries specific to this type of annotation.

The Contents entry of the annotation dictionary may specify descriptive text relating to the attached file.
Conforming readers shall use this entry rather than the optional Desc entry (PDF 1.6) in the file specification
dictionary (see Table 44) identified by the annotation’s FS entry.

12.5.6.16 Sound Annotations

A sound annotation (PDF 1.2) shall analogous to a text annotation except that instead of a text note, it contains
sound recorded from the computer’s microphone or imported from a file. When the annotation is activated, the
sound shall be played. The annotation shall behave like a text annotation in most ways, with a different icon (by
default, a speaker) to indicate that it represents a sound. Table 185 shows the annotation dictionary entries
specific to this type of annotation. Sound objects are discussed in 13.3, “Sounds.”

Table 183 – Additional entries specific to a pop-up annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall
be Popup for a pop-up annotation.

Parent dictionary (Optional; shall be an indirect reference) The parent annotation with
which this pop-up annotation shall be associated.
If this entry is present, the parent annotation’s Contents, M, C, and T
entries (see Table 168) shall override those of the pop-up annotation
itself.

Open boolean (Optional) A flag specifying whether the pop-up annotation shall
initially be displayed open. Default value: false (closed).

Table 184 – Additional entries specific to a file attachment annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall
be FileAttachment for a file attachment annotation.

FS file specification (Required) The file associated with this annotation.

Name name (Optional) The name of an icon that shall be used in displaying the
annotation. Conforming readers shall provide predefined icon
appearances for at least the following standard names:
GraphPushPin
PaperclipTag
Additional names may be supported as well. Default value: PushPin.
The annotation dictionary’s AP entry, if present, shall take precedence
over the Name entry; see Table 168 and 12.5.5, “Appearance
Streams.”

© Adobe Systems Incorporated 2008 – All rights reserved 407

PDF 32000-1:2008

12.5.6.17 Movie Annotations

A movie annotation (PDF 1.2) contains animated graphics and sound to be presented on the computer screen
and through the speakers. When the annotation is activated, the movie shall be played. Table 186 shows the
annotation dictionary entries specific to this type of annotation. Movies are discussed in 13.4, “Movies.”

12.5.6.18 Screen Annotations

A screen annotation (PDF 1.5) specifies a region of a page upon which media clips may be played. It also
serves as an object from which actions can be triggered. 12.6.4.13, “Rendition Actions” discusses the
relationship between screen annotations and rendition actions. Table 187 shows the annotation dictionary
entries specific to this type of annotation.

Table 185 – Additional entries specific to a sound annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Sound for a sound annotation.

Sound stream (Required) A sound object defining the sound that shall be played when
the annotation is activated (see 13.3, “Sounds”).

Name name (Optional) The name of an icon that shall be used in displaying the
annotation. Conforming readers shall provide predefined icon
appearances for at least the standard names Speaker and Mic. Additional
names may be supported as well. Default value: Speaker.
The annotation dictionary’s AP entry, if present, shall take precedence
over the Name entry; see Table 168 and 12.5.5, “Appearance Streams.”

Table 186 – Additional entries specific to a movie annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Movie for a movie annotation.

T text string (Optional) The title of the movie annotation. Movie actions (12.6.4.9,
“Movie Actions”) may use this title to reference the movie annotation.

Movie dictionary (Required) A movie dictionary that shall describe the movie’s static
characteristics (see 13.4, “Movies”).

A boolean or
dictionary

(Optional) A flag or dictionary specifying whether and how to play the
movie when the annotation is activated. If this value is a dictionary, it shall
be a movie activation dictionary (see 13.4, “Movies”) specifying how to
play the movie. If the value is the boolean true, the movie shall be played
using default activation parameters. If the value is false, the movie shall
not be played. Default value: true.

Table 187 – Additional entries specific to a screen annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Screen for a screen annotation.

T text string (Optional) The title of the screen annotation.

MK dictionary (Optional) An appearance characteristics dictionary (see Table 189). The
I entry of this dictionary provides the icon used in generating the
appearance referred to by the screen annotation’s AP entry.

PDF 32000-1:2008

408 © Adobe Systems Incorporated 2008 – All rights reserved

In addition to the entries in Table 187, screen annotations may use the common entries in the annotation
dictionary (see Table 164) in the following ways:

• The P entry shall be used for a screen annotation referenced by a rendition action. It shall reference a valid
page object, and the annotation shall be present in the page’s Annots array for the action to be valid.

• The AP entry refers to an appearance dictionary (see Table 168) whose normal appearance provides the
visual appearance for a screen annotation that shall be used for printing and default display when a media
clip is not being played. If AP is not present, the screen annotation shall not have a default visual
appearance and shall not be printed.

12.5.6.19 Widget Annotations

Interactive forms (see 12.7, “Interactive Forms”) use widget annotations (PDF 1.2) to represent the appearance
of fields and to manage user interactions. As a convenience, when a field has only a single associated widget
annotation, the contents of the field dictionary (12.7.3, “Field Dictionaries”) and the annotation dictionary may
be merged into a single dictionary containing entries that pertain to both a field and an annotation.

NOTE This presents no ambiguity, since the contents of the two kinds of dictionaries do not conflict.

Table 188 shows the annotation dictionary entries specific to this type of annotation; interactive forms and fields
are discussed at length in 12.7, “Interactive Forms.”

A dictionary (Optional; PDF 1.1) An action that shall be performed when the
annotation is activated (see 12.6, “Actions”).

AA dictionary (Optional; PDF 1.2) An additional-actions dictionary defining the screen
annotation’s behaviour in response to various trigger events (see 12.6.3,
“Trigger Events”).

Table 188 – Additional entries specific to a widget annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Widget for a widget annotation.

H name (Optional) The annotation’s highlighting mode, the visual effect that shall
be used when the mouse button is pressed or held down inside its active
area:
N (None) No highlighting.
I (Invert) Invert the contents of the annotation rectangle.
O (Outline) Invert the annotation’s border.
P (Push) Display the annotation’s down appearance, if any (see

12.5.5, “Appearance Streams”). If no down appearance is defined,
the contents of the annotation rectangle shall be offset to appear
as if it were being pushed below the surface of the page.

T (Toggle) Same as P (which is preferred).
A highlighting mode other than P shall override any down appearance
defined for the annotation. Default value: I.

MK dictionary (Optional) An appearance characteristics dictionary (see Table 189) that
shall be used in constructing a dynamic appearance stream specifying
the annotation’s visual presentation on the page.
The name MK for this entry is of historical significance only and has no
direct meaning.

Table 187 – Additional entries specific to a screen annotation (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 409

PDF 32000-1:2008

The MK entry may be used to provide an appearance characteristics dictionary containing additional
information for constructing the annotation’s appearance stream. Table 189 shows the contents of this
dictionary.

A dictionary (Optional; PDF 1.1) An action that shall be performed when the
annotation is activated (see 12.6, “Actions”).

AA dictionary (Optional; PDF 1.2) An additional-actions dictionary defining the
annotation’s behaviour in response to various trigger events (see 12.6.3,
“Trigger Events”).

BS dictionary (Optional; PDF 1.2) A border style dictionary (see Table 166) specifying
the width and dash pattern that shall be used in drawing the annotation’s
border.
The annotation dictionary’s AP entry, if present, shall take precedence
over the L and BS entries; see Table 168 and 12.5.5, “Appearance
Streams.”

Parent dictionary (Required if this widget annotation is one of multiple children in a field;
absent otherwise) An indirect reference to the widget annotation’s parent
field. A widget annotation may have at most one parent; that is, it can be
included in the Kids array of at most one field

Table 189 – Entries in an appearance characteristics dictionary

Key Type Value

R integer (Optional) The number of degrees by which the widget annotation shall
be rotated counterclockwise relative to the page. The value shall be a
multiple of 90. Default value: 0.

BC array (Optional) An array of numbers that shall be in the range 0.0 to 1.0
specifying the colour of the widget annotation’s border. The number of
array elements determines the colour space in which the colour shall be
defined:
0 No colour; transparent
1 DeviceGray
3 DeviceRGB
4 DeviceCMYK

BG array (Optional) An array of numbers that shall be in the range 0.0 to 1.0
specifying the colour of the widget annotation’s background. The number
of array elements shall determine the colour space, as described for BC.

CA text string (Optional; button fields only) The widget annotation’s normal caption,
which shall be displayed when it is not interacting with the user.
Unlike the remaining entries listed in this Table, which apply only to
widget annotations associated with pushbutton fields (see Pushbuttons in
12.7.4.2, “Button Fields”), the CA entry may be used with any type of
button field, including check boxes (see Check Boxes in 12.7.4.2, “Button
Fields”) and radio buttons (Radio Buttons in 12.7.4.2, “Button Fields”).

RC text string (Optional; pushbutton fields only) The widget annotation’s rollover
caption, which shall be displayed when the user rolls the cursor into its
active area without pressing the mouse button.

AC text string (Optional; pushbutton fields only) The widget annotation’s alternate
(down) caption, which shall be displayed when the mouse button is
pressed within its active area.

Table 188 – Additional entries specific to a widget annotation (continued)

Key Type Value

PDF 32000-1:2008

410 © Adobe Systems Incorporated 2008 – All rights reserved

12.5.6.20 Printer’s Mark Annotations

A printer’s mark annotation (PDF 1.4) represents a graphic symbol, such as a registration target, colour bar, or
cut mark, that may be added to a page to assist production personnel in identifying components of a multiple-
plate job and maintaining consistent output during production. See 14.11.3, “Printer’s Marks,” for further
discussion.

12.5.6.21 Trap Network Annotations

A trap network annotation (PDF 1.3) may be used to define the trapping characteristics for a page of a PDF
document.

NOTE Trapping is the process of adding marks to a page along colour boundaries to avoid unwanted visual artifacts
resulting from misregistration of colorants when the page is printed.

A page shall have no more than one trap network annotation, whose Subtype entry has the value TrapNet and
which shall always be the last element in the page object’s Annots array (see 7.7.3.3, “Page Objects”). See
14.11.6, “Trapping Support,” for further discussion.

12.5.6.22 Watermark Annotations

A watermark annotation (PDF 1.6) shall be used to represent graphics that shall be printed at a fixed size and
position on a page, regardless of the dimensions of the printed page. The FixedPrint entry of a watermark
annotation dictionary (see Table 190) shall be a dictionary that contains values for specifying the size and
position of the annotation (see Table 191).

I stream (Optional; pushbutton fields only; shall be an indirect reference) A form
XObject defining the widget annotation’s normal icon, which shall be
displayed when it is not interacting with the user.

RI stream (Optional; pushbutton fields only; shall be an indirect reference) A form
XObject defining the widget annotation’s rollover icon, which shall be
displayed when the user rolls the cursor into its active area without
pressing the mouse button.

IX stream (Optional; pushbutton fields only; shall be an indirect reference) A form
XObject defining the widget annotation’s alternate (down) icon, which
shall be displayed when the mouse button is pressed within its active
area.

IF dictionary (Optional; pushbutton fields only) An icon fit dictionary (see Table 247)
specifying how the widget annotation’s icon shall be displayed within its
annotation rectangle. If present, the icon fit dictionary shall apply to all of
the annotation’s icons (normal, rollover, and alternate).

TP integer (Optional; pushbutton fields only) A code indicating where to position the
text of the widget annotation’s caption relative to its icon:
0 No icon; caption only
1 No caption; icon only
2 Caption below the icon
3 Caption above the icon
4 Caption to the right of the icon
5 Caption to the left of the icon
6 Caption overlaid directly on the icon
Default value: 0.

Table 189 – Entries in an appearance characteristics dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 411

PDF 32000-1:2008

Watermark annotations shall have no pop-up window or other interactive elements. When displaying a
watermark annotation on-screen, conforming readers shall use the dimensions of the media box as the page
size so that the scroll and zoom behaviour is the same as for other annotations.

NOTE Since many printing devices have non printable margins, such margins should be taken into consideration
when positioning watermark annotations near the edge of a page.

When rendering a watermark annotation with a FixedPrint entry, the following behaviour shall occur:

• The annotation’s rectangle (as specified by its Rect entry) shall be translated to the origin and transformed
by the Matrix entry of its FixedPrint dictionary to produce a quadrilateral with arbitrary orientation.

• The transformed annotation rectangle shall be defined as the smallest upright rectangle that encompasses
this quadrilateral; it shall be used in place of the annotation rectangle referred to in steps 2 and 3 of
"Algorithm: Appearance streams".

In addition, given a matrix B that maps a scaled and rotated page into the default user space, a new matrix shall
be computed that cancels out B and translates the origin of the printed page to the origin of the default user
space. This transformation shall be applied to ensure the correct scaling and alignment.

Table 190 – Additional entries specific to a watermark annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
Watermark for a watermark annotation.

FixedPrint dictionary (Optional) A fixed print dictionary (see Table 191) that specifies how this
annotation shall be drawn relative to the dimensions of the target media. If
this entry is not present, the annotation shall be drawn without any special
consideration for the dimensions of the target media.
If the dimensions of the target media are not known at the time of
drawing, drawing shall be done relative to the dimensions specified by the
page’s MediaBox entry (see Table 30).

Table 191 – Entries in a fixed print dictionary

Key Type Value

Type name (Required) Shall be FixedPrint.

Matrix array (Optional) The matrix used to transform the annotation’s rectangle before
rendering.
Default value: the identity matrix [1 0 0 1 0 0].
When positioning content near the edge of a page, this entry should be
used to provide a reasonable offset to allow for nonburnable margins.

H number (Optional) The amount to translate the associated content horizontally, as
a percentage of the width of the target media (or if unknown, the width of
the page’s MediaBox). 1.0 represents 100% and 0.0 represents 0%.
Negative values should not be used, since they may cause content to be
drawn off the page.
Default value: 0.

V number (Optional) The amount to translate the associated content vertically, as a
percentage of the height of the target media (or if unknown, the height of
the page’s MediaBox). 1.0 represents 100% and 0.0 represents 0%.
Negative values should not be used, since they may cause content to be
drawn off the page.
Default value: 0.

PDF 32000-1:2008

412 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE The following example shows a watermark annotation that prints a text string one inch from the left and
one inch from the top of the printed page.

8 0 obj % Watermark appearance

<<
/Length ...
/Subtype /Form
/Resources ...
/BBox ...

>>
stream
...

BT
/F1 1 Tf
36 0 0 36 0 -36 Tm
(Do Not Build) Tx
ET
...

endstream
endobj

9 0 obj % Watermark annotation

<<
/Rect ...
/Type /Annot
/Subtype /Watermark
/FixedPrint 10 0 R
/AP <</N 8 0 R>>

>>

% in the page dictionary

/Annots [9 0 R]

10 0 obj % Fixed print dictionary

<<
/Type /FixedPrint
/Matrix [1 0 0 1 72 -72] % Translate one inch right and one inch down
/H 0
/V 1.0 % Translate the full height of the page vertically

>>
endobj

In situations other than the usual case where the PDF page size equals the printed page size, watermark
annotations with a FixedPrint entry shall be printed in the following manner:

• When page tiling is selected in a conforming reader (that is, a single PDF page is printed on multiple
pages), the annotations shall be printed at the specified size and position on each page to ensure that any
enclosed content is present and legible on each printed page.

• When n-up printing is selected (that is, multiple PDF pages are printed on a single page), the annotations
shall be printed at the specified size and shall be positioned as if the dimensions of the printed page were
limited to a single portion of the page. This ensures that any enclosed content does not overlap content
from other pages, thus rendering it illegible.

12.5.6.23 Redaction Annotations

A redaction annotation (PDF 1.7) identifies content that is intended to be removed from the document. The
intent of redaction annotations is to enable the following process:

a) Content identification. A user applies redact annotations that specify the pieces or regions of content that
should be removed. Up until the next step is performed, the user can see, move and redefine these
annotations.

© Adobe Systems Incorporated 2008 – All rights reserved 413

PDF 32000-1:2008

b) Content removal. The user instructs the viewer application to apply the redact annotations, after which the
content in the area specified by the redact annotations is removed. In the removed content’s place, some
marking appears to indicate the area has been redacted. Also, the redact annotations are removed from
the PDF document.

Redaction annotations provide a mechanism for the first step in the redaction process (content identification).
This allows content to be marked for redaction in a non-destructive way, thus enabling a review process for
evaluating potential redactions prior to removing the specified content.

Redaction annotations shall provide enough information to be used in the second phase of the redaction
process (content removal). This phase is application-specific and requires the conforming reader to remove all
content identified by the redaction annotation, as well as the annotation itself.

Conforming readers that support redaction annotations shall provide a mechanism for applying content
removal, and they shall remove all traces of the specified content. If a portion of an image is contained in a
redaction region, that portion of the image data shall be destroyed; clipping or image masks shall not be used
to hide that data. Such conforming readers shall also be diligent in their consideration of all content that can
exist in a PDF document, including XML Forms Architecture (XFA) content and Extensible Metadata Platform
(XMP) content.

Table 192 – Additional entries specific to a redaction annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall
be Redact for a redaction annotation.

QuadPoints array (Optional) An array of 8 x n numbers specifying the coordinates of n
quadrilaterals in default user space, as described in Table 175 for text
markup annotations. If present, these quadrilaterals denote the
content region that is intended to be removed. If this entry is not
present, the Rect entry denotes the content region that is intended to
be removed.

IC array (Optional) An array of three numbers in the range 0.0 to 1.0
specifying the components, in the DeviceRGB colour space, of the
interior colour with which to fill the redacted region after the affected
content has been removed. If this entry is absent, the interior of the
redaction region is left transparent. This entry is ignored if the RO
entry is present.

RO stream (Optional) A form XObject specifying the overlay appearance for this
redaction annotation. After this redaction is applied and the affected
content has been removed, the overlay appearance should be drawn
such that its origin lines up with the lower-left corner of the annotation
rectangle. This form XObject is not necessarily related to other
annotation appearances, and may or may not be present in the AP
dictionary. This entry takes precedence over the IC, OverlayText,
DA, and Q entries.

OverlayText text string (Optional) A text string specifying the overlay text that should be
drawn over the redacted region after the affected content has been
removed. This entry is ignored if the RO entry is present.

Repeat boolean (Optional) If true, then the text specified by OverlayText should be
repeated to fill the redacted region after the affected content has been
removed. This entry is ignored if the RO entry is present. Default
value: false.

DA byte string (Required if OverlayText is present, ignored otherwise) The
appearance string to be used in formatting the overlay text when it is
drawn after the affected content has been removed (see 12.7.3.3,
“Variable Text”). This entry is ignored if the RO entry is present.

PDF 32000-1:2008

414 © Adobe Systems Incorporated 2008 – All rights reserved

12.6 Actions

12.6.1 General

In addition to jumping to a destination in the document, an annotation or outline item may specify an action
(PDF 1.1) to perform, such as launching an application, playing a sound, changing an annotation’s appearance
state. The optional A entry in the annotation or outline item dictionary (see Tables 168 and 153) specifies an
action performed when the annotation or outline item is activated; in PDF 1.2, a variety of other circumstances
may trigger an action as well (see 12.6.3, “Trigger Events”). In addition, the optional OpenAction entry in a
document’s catalogue (7.7.2, “Document Catalog”) may specify an action that shall be performed when the
document is opened. PDF includes a wide variety of standard action types, described in detail in 12.6.4, “Action
Types.”

12.6.2 Action Dictionaries

An action dictionary defines the characteristics and behaviour of an action. Table 193 shows the required and
optional entries that are common to all action dictionaries. The dictionary may contain additional entries specific
to a particular action type; see the descriptions of individual action types in 12.6.4, “Action Types,” for details.

NOTE 1 The action dictionary’s Next entry (PDF 1.2) allows sequences of actions to be chained together. For example,
the effect of clicking a link annotation with the mouse might be to play a sound, jump to a new page, and start
up a movie. Note that the Next entry is not restricted to a single action but may contain an array of actions,
each of which in turn may have a Next entry of its own. The actions may thus form a tree instead of a simple
linked list. Actions within each Next array are executed in order, each followed in turn by any actions specified
in its Next entry, and so on recursively. Conforming readers should attempt to provide reasonable behavior in
anomalous situations. For example, self-referential actions should not be executed more than once, and
actions that close the document or otherwise render the next action impossible should terminate the execution
sequence. Applications should also provide some mechanism for the user to interrupt and manually terminate
a sequence of actions.

PDF 1.5 introduces transition actions, which allow the control of drawing during a sequence of actions; see
12.6.4.14, “Transition Actions.”

Q integer (Optional) A code specifying the form of quadding (justification) to be
used in laying out the overlay text:
0 Left-justified
1 Centered
2 Right-justified
This entry is ignored if the RO entry is present. Default value: 0 (left-
justified).

Table 193 – Entries common to all action dictionaries

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Action for an action dictionary.

S name (Required) The type of action that this dictionary describes; see
Table 194 for specific values.

Next dictionary or array (Optional; PDF 1.2) The next action or sequence of actions that
shall be performed after the action represented by this dictionary.
The value is either a single action dictionary or an array of action
dictionaries that shall be performed in order; see the Note for
further discussion.

Table 192 – Additional entries specific to a redaction annotation (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 415

PDF 32000-1:2008

NOTE 2 No action should modify its own action dictionary or any other in the action tree in which it resides. The effect of
such modification on subsequent execution of actions in the tree is undefined.

12.6.3 Trigger Events

An annotation, page object, or (beginning with PDF 1.3) interactive form field may include an entry named AA
that specifies an additional-actions dictionary (PDF 1.2) that extends the set of events that can trigger the
execution of an action. In PDF 1.4, the document catalogue dictionary (see 7.7.2, “Document Catalog”) may
also contain an AA entry for trigger events affecting the document as a whole. Tables 194 to 197 show the
contents of this type of dictionary.

PDF 1.5 introduces four trigger events in annotation’s additional-actions dictionary to support multimedia
presentations:

• The PO and PC entries have a similar function to the O and C entries in the page object’s additional-
actions dictionary (see Table 194). However, associating these triggers with annotations allows annotation
objects to be self-contained.

EXAMPLE Annotations containing such actions can be copied or moved between pages without requiring page
open/close actions to be changed.

• The PV and PI entries allow a distinction between pages that are open and pages that are visible. At any
one time, while more than one page may be visible, depending on the page layout.

NOTE 1 For these trigger events, the values of the flags specified by the annotation’s F entry (see 12.5.3, “Annotation
Flags”) have no bearing on whether a given trigger event occurs.

Table 194 – Entries in an annotation’s additional-actions dictionary

Key Type Value

E dictionary (Optional; PDF 1.2) An action that shall be performed when the cursor enters
the annotation’s active area.

X dictionary (Optional; PDF 1.2) An action that shall be performed when the cursor exits the
annotation’s active area.

D dictionary (Optional; PDF 1.2) An action that shall be performed when the mouse button is
pressed inside the annotation’s active area.

U dictionary (Optional; PDF 1.2) An action that shall be performed when the mouse button is
released inside the annotation’s active area.
For backward compatibility, the A entry in an annotation dictionary, if present,
takes precedence over this entry (see Table 168).

Fo dictionary (Optional; PDF 1.2; widget annotations only) An action that shall be performed
when the annotation receives the input focus.

Bl dictionary (Optional; PDF 1.2; widget annotations only) (Uppercase B, lowercase L) An
action that shall be performed when the annotation loses the input focus.

PO dictionary (Optional; PDF 1.5) An action that shall be performed when the page containing
the annotation is opened.
EXAMPLE 1 When the user navigates to it from the next or previous page

or by means of a link annotation or outline item.

The action shall be executed after the O action in the page’s additional-actions
dictionary (see Table 195) and the OpenAction entry in the document Catalog
(see Table 28), if such actions are present.

PDF 32000-1:2008

416 © Adobe Systems Incorporated 2008 – All rights reserved

PC dictionary (Optional; PDF 1.5) An action that shall be performed when the page containing
the annotation is closed.
EXAMPLE 2 When the user navigates to the next or previous page, or

follows a link annotation or outline item.

The action shall be executed before the C action in the page’s additional-
actions dictionary (see Table 195), if present.

PV dictionary (Optional; PDF 1.5) An action that shall be performed when the page containing
the annotation becomes visible.

PI dictionary (Optional; PDF 1.5) An action that shall be performed when the page containing
the annotation is no longer visible in the conforming reader’s user interface.

Table 195 – Entries in a page object’s additional-actions dictionary

Key Type Value

O dictionary (Optional; PDF 1.2) An action that shall be performed when the page is opened
(for example, when the user navigates to it from the next or previous page or by
means of a link annotation or outline item). This action is independent of any
that may be defined by the OpenAction entry in the document Catalog (see
7.7.2, “Document Catalog”) and shall be executed after such an action.

C dictionary (Optional; PDF 1.2) An action that shall be performed when the page is closed
(for example, when the user navigates to the next or previous page or follows a
link annotation or an outline item). This action applies to the page being closed
and shall be executed before any other page is opened.

Table 196 – Entries in a form field’s additional-actions dictionary

Key Type Value

K dictionary (Optional; PDF 1.3) A JavaScript action that shall be performed when the user
modifies a character in a text field or combo box or modifies the selection in a
scrollable list box. This action may check the added text for validity and reject or
modify it.

F dictionary (Optional; PDF 1.3) A JavaScript action that shall be performed before the field
is formatted to display its value. This action may modify the field’s value before
formatting.

V dictionary (Optional; PDF 1.3) A JavaScript action that shall be performed when the field’s
value is changed. This action may check the new value for validity. (The name
V stands for “validate.”)

C dictionary (Optional; PDF 1.3) A JavaScript action that shall be performed to recalculate
the value of this field when that of another field changes. (The name C stands
for “calculate.”) The order in which the document’s fields are recalculated shall
be defined by the CO entry in the interactive form dictionary (see 12.7.2,
“Interactive Form Dictionary”).

Table 194 – Entries in an annotation’s additional-actions dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 417

PDF 32000-1:2008

Conforming readers shall ensure the presence of such a device, or equivalent controls for simulating one, for
the corresponding actions to be executed correctly. Mouse-related trigger events are subject to the following
constraints:

• An E (enter) event may occur only when the mouse button is up.

• An X (exit) event may not occur without a preceding E event.

• A U (up) event may not occur without a preceding E and D event.

• In the case of overlapping or nested annotations, entering a second annotation’s active area causes an X
event to occur for the first annotation.

NOTE 2 The field-related trigger events K (keystroke), F (format), V (validate), and C (calculate) are not defined for
button fields (see 12.7.4.2, “Button Fields”). The effects of an action triggered by one of these events are
limited only by the action itself and can occur outside the described scope of the event. For example, even
though the F event is used to trigger actions that format field values prior to display, it is possible for an action
triggered by this event to perform a calculation or make any other modification to the document.

These field-related trigger events can occur either through user interaction or programmatically, such as in
response to the NeedAppearances entry in the interactive form dictionary (see 12.7.2, “Interactive Form
Dictionary”), importation of FDF data (12.7.7, “Forms Data Format”), or JavaScript actions (12.6.4.16,
“JavaScript Actions”). For example, the user’s modifying a field value can trigger a cascade of calculations and
further formatting and validation for other fields in the document.

12.6.4 Action Types

12.6.4.1 General

PDF supports the standard action types listed in Table 198. The following sub-clauses describe each of these
types in detail.

Table 197 – Entries in the document catalog’s additional-actions dictionary

Key Type Value

WC dictionary (Optional; PDF 1.4) A JavaScript action that shall be performed before closing a
document. (The name WC stands for “will close.”)

WS dictionary (Optional; PDF 1.4) A JavaScript action that shall be performed before saving a
document. (The name WS stands for “will save.”)

DS dictionary (Optional; PDF 1.4) A JavaScript action that shall be performed after saving a
document. (The name DS stands for “did save.”)

WP dictionary (Optional; PDF 1.4) A JavaScript action that shall be performed before printing
a document. (The name WP stands for “will print.”)

DP dictionary (Optional; PDF 1.4) A JavaScript action that shall be performed after printing a
document. (The name DP stands for “did print.”)

Table 198 – Action types

Action type Description Discussed in sub-clause

GoTo Go to a destination in the current document. 12.6.4.2, “Go-To Actions”

GoToR (“Go-to remote”) Go to a destination in another
document.

12.6.4.3, “Remote Go-To Actions”

GoToE (“Go-to embedded”; PDF 1.6) Go to a destination in
an embedded file.

12.6.4.4, “Embedded Go-To Actions”

PDF 32000-1:2008

418 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE The set-state action is considered obsolete and should not be used.

12.6.4.2 Go-To Actions

A go-to action changes the view to a specified destination (page, location, and magnification factor). Table 199
shows the action dictionary entries specific to this type of action.

NOTE Specifying a go-to action in the A entry of a link annotation or outline item (see Table 173 and Table 153) has
the same effect as specifying the destination directly with the Dest entry. For example, the link annotation
shown in the Example in 12.6.4.12, “Set-OCG-State Actions,” which uses a go-to action, has the same effect
as the one in the following Example, which specifies the destination directly. However, the go-to action is less
compact and is not compatible with PDF 1.0; therefore, using a direct destination is preferable.

Launch Launch an application, usually to open a file. 12.6.4.5, “Launch Actions”

Thread Begin reading an article thread. 12.6.4.6, “Thread Actions”

URI Resolve a uniform resource identifier. 12.6.4.7, “URI Actions”

Sound (PDF 1.2) Play a sound. 12.6.4.8, “Sound Actions”

Movie (PDF 1.2) Play a movie. 12.6.4.9, “Movie Actions”

Hide (PDF 1.2) Set an annotation’s Hidden flag. 12.6.4.10, “Hide Actions”

Named (PDF 1.2) Execute an action predefined by the
conforming reader.

12.6.4.11, “Named Actions”

SubmitForm (PDF 1.2) Send data to a uniform resource locator. 12.7.5.2, “Submit-Form Action”

ResetForm (PDF 1.2) Set fields to their default values. 12.7.5.3, “Reset-Form Action”

ImportData (PDF 1.2) Import field values from a file. 12.7.5.4, “Import-Data Action”

JavaScript (PDF 1.3) Execute a JavaScript script. 12.6.4.16, “JavaScript Actions”

SetOCGState (PDF 1.5) Set the states of optional content groups. 12.6.4.12, “Set-OCG-State Actions”

Rendition (PDF 1.5) Controls the playing of multimedia content. 12.6.4.13, “Rendition Actions”

Trans (PDF 1.5) Updates the display of a document, using
a transition dictionary.

12.6.4.14, “Transition Actions”

GoTo3DView (PDF 1.6) Set the current view of a 3D annotation 12.6.4.15, “Go-To-3D-View Actions,”

Table 199 – Additional entries specific to a go-to action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be GoTo
for a go-to action.

D name,
byte string,
or array

(Required) The destination to jump to (see 12.3.2, “Destinations”).

Table 198 – Action types (continued)

Action type Description Discussed in sub-clause

© Adobe Systems Incorporated 2008 – All rights reserved 419

PDF 32000-1:2008

EXAMPLE 93 0 obj
<< /Type /Annot
 /Subtype /Link
 /Rect [71 717 190 734]
 /Border [16 16 1]
 /A << /Type /Action

 /S /GoTo
 /D [3 0 R /FitR –4 399 199 533]

 >>
>>

endobj

12.6.4.3 Remote Go-To Actions

A remote go-to action is similar to an ordinary go-to action but jumps to a destination in another PDF file
instead of the current file. Table 200 shows the action dictionary entries specific to this type of action.

NOTE Remote go-to actions cannot be used with embedded files; see 12.6.4.4, “Embedded Go-To Actions.”

12.6.4.4 Embedded Go-To Actions

An embedded go-to action (PDF 1.6) is similar to a remote go-to action but allows jumping to or from a PDF file
that is embedded in another PDF file (see 7.11.4, “Embedded File Streams”). Embedded files may be
associated with file attachment annotations (see 12.5.6.15, “File Attachment Annotations”) or with entries in the
EmbeddedFiles name tree (see 7.7.4, “Name Dictionary”). Embedded files may in turn contain embedded
files. Table 201 shows the action dictionary entries specific to embedded go-to actions.

Embedded go-to actions provide a complete facility for linking between a file in a hierarchy of nested
embedded files and another file in the same or different hierarchy. The following terminology shall be used:

• The source is the document containing the embedded go-to action.

• The target is the document in which the destination lives.

• The T entry in the action dictionary is a target dictionary that locates the target in relation to the source, in
much the same way that a relative path describes the physical relationship between two files in a file
system. Target dictionaries may be nested recursively to specify one or more intermediate targets before
reaching the final one. As the hierarchy is navigated, each intermediate target shall be referred to as the
current document. Initially, the source is the current document.

Table 200 – Additional entries specific to a remote go-to action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be
GoToR for a remote go-to action.

F file specification (Required) The file in which the destination shall be located.

D name,
byte string, or
array

(Required) The destination to jump to (see 12.3.2, “Destinations”). If
the value is an array defining an explicit destination (as described
under 12.3.2.2, “Explicit Destinations”), its first element shall be a page
number within the remote document rather than an indirect reference
to a page object in the current document. The first page shall be
numbered 0.

NewWindow boolean (Optional; PDF 1.2) A flag specifying whether to open the destination
document in a new window. If this flag is false, the destination
document replaces the current document in the same window. If this
entry is absent, the conforming reader should behave in accordance
with its preference.

PDF 32000-1:2008

420 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE It is an error for a target dictionary to have an infinite cycle (for example, one where a target dictionary refers to
itself). Conforming readers should attempt to detect such cases and refuse to execute the action if found.

• A child document shall be one that is embedded within another PDF file.

• The document in which a file is embedded shall be its parent.

• A root document is one that is not embedded in another PDF file. The target and source may be contained
in root documents or embedded documents.

Table 201 – Additional entries specific to an embedded go-to action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be
GoToE for an embedded go-to action.

F file
specification

(Optional) The root document of the target relative to the root
document of the source. If this entry is absent, the source and target
share the same root document.

D name,
byte string,
or array

(Required) The destination in the target to jump to (see 12.3.2,
“Destinations”).

NewWindow boolean (Optional) If true, the destination document should be opened in a new
window; if false, the destination document should replace the current
document in the same window. If this entry is absent, the conforming
reader should act according to its preference.

T dictionary (Optional if F is present; otherwise required) A target dictionary (see
Table 202) specifying path information to the target document. Each
target dictionary specifies one element in the full path to the target and
may have nested target dictionaries specifying additional elements.

Table 202 – Entries specific to a target dictionary

Key Type Value

R name (Required) Specifies the relationship between the current document
and the target (which may be an intermediate target). Valid values are
P (the target is the parent of the current document) and C (the target is
a child of the current document).

N byte string (Required if the value of R is C and the target is located in the
EmbeddedFiles name tree; otherwise, it shall be absent) The name of
the file in the EmbeddedFiles name tree.

P integer or
byte string

(Required if the value of R is C and the target is associated with a file
attachment annotation; otherwise, it shall be absent) If the value is an
integer, it specifies the page number (zero-based) in the current
document containing the file attachment annotation. If the value is a
string, it specifies a named destination in the current document that
provides the page number of the file attachment annotation.

A integer or text
string

(Required if the value of R is C and the target is associated with a file
attachment annotation; otherwise, it shall be absent) If the value is an
integer, it specifies the index (zero-based) of the annotation in the
Annots array (see Table 30) of the page specified by P. If the value is a
text string, it specifies the value of NM in the annotation dictionary (see
Table 164).

T dictionary (Optional) A target dictionary specifying additional path information to
the target document. If this entry is absent, the current document is the
target file containing the destination.

© Adobe Systems Incorporated 2008 – All rights reserved 421

PDF 32000-1:2008

EXAMPLE The following example illustrates several possible relationships between source and target. Each object
shown is an action dictionary for an embedded go-to action.

1 0 obj % Link to a child

<< /Type /Action
/S /GoToE
/D (Chapter 1)
/T << /R /C

/N (Embedded document) >>
>>

endobj

2 0 obj % Link to the parent

<< /Type /Action
/S /GoToE
/D (Chapter 1)
/T << /R /P >>

>>
endobj

3 0 obj % Link to a sibling

<< /Type /Action
/S /GoToE
/D (Chapter 1)
/T << /R /P

/T << /R /C
/N (Another embedded document) >>

>>
>>

endobj

4 0 obj % Link to an embedded file in an external document

<< /Type /Action
/S /GoToE
/D (Chapter 1)
/F (someFile.pdf)
/T << /R /C

/N (Embedded document) >>
>>

endobj

5 0 obj % Link from an embedded file to a normal file

<< /Type /Action
/S /GoToE
/D (Chapter 1)
/F (someFile.pdf)

>>
endobj

6 0 obj % Link to a grandchild

<< /Type /Action
/S /GoToE
/D (Chapter 1)
/T << /R /C

/N (Embedded document)
/T << /R /C

/P (A destination name)
/A (annotName)

>>
>>

>>
endobj

7 0 obj % Link to a niece/nephew through the source’s parent

PDF 32000-1:2008

422 © Adobe Systems Incorporated 2008 – All rights reserved

<< /Type /Action
/S /GoToE
/D (destination)
/T << /R /P

/T << /R /C
/N (Embedded document)
/T << /R /C

/P 3
/A (annotName)

>>
>>

>>
>>

endobj

12.6.4.5 Launch Actions

A launch action launches an application or opens or prints a document. Table 203 shows the action dictionary
entries specific to this type of action.

The optional Win, Mac, and Unix entries allow the action dictionary to include platform-specific parameters for
launching the designated application. If no such entry is present for the given platform, the F entry shall be
used instead. Table 203 shows the platform-specific launch parameters for the Windows platform. Parameters
for the Mac OS and UNIX platforms are not yet defined at the time of publication.

Table 203 – Additional entries specific to a launch action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be
Launch for a launch action.

F file specification (Required if none of the entries Win, Mac, or Unix is present) The
application that shall be launched or the document that shall be
opened or printed. If this entry is absent and the conforming reader
does not understand any of the alternative entries, it shall do nothing.

Win dictionary (Optional) A dictionary containing Windows-specific launch
parameters (see Table 204).

Mac (undefined) (Optional) Mac OS–specific launch parameters; not yet defined.

Unix (undefined) (Optional) UNIX-specific launch parameters; not yet defined.

NewWindow boolean (Optional; PDF 1.2) A flag specifying whether to open the destination
document in a new window. If this flag is false, the destination
document replaces the current document in the same window. If this
entry is absent, the conforming reader should behave in accordance
with its current preference. This entry shall be ignored if the file
designated by the F entry is not a PDF document.

Table 204 – Entries in a Windows launch parameter dictionary

Key Type Value

F byte string (Required) The file name of the application that shall be launched or
the document that shall be opened or printed, in standard Windows
pathname format. If the name string includes a backslash character (\),
the backslash shall itself be preceded by a backslash.
This value shall be a simple string; it is not a file specification.

© Adobe Systems Incorporated 2008 – All rights reserved 423

PDF 32000-1:2008

12.6.4.6 Thread Actions

A thread action jumps to a specified bead on an article thread (see 12.4.3, “Articles”), in either the current
document or a different one. Table 205 shows the action dictionary entries specific to this type of action.

12.6.4.7 URI Actions

A uniform resource identifier (URI) is a string that identifies (resolves to) a resource on the Internet—typically a
file that is the destination of a hypertext link, although it may also resolve to a query or other entity. (URIs are
described in Internet RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax; see the Bibliography.)

A URI action causes a URI to be resolved. Table 206 shows the action dictionary entries specific to this type of
action.

D byte string (Optional) A bye string specifying the default directory in standard
DOS syntax.

O ASCII string (Optional) An ASCII string specifying the operation to perform:
open Open a document.
print Print a document.
If the F entry designates an application instead of a document, this
entry shall be ignored and the application shall be launched. Default
value: open.

P byte string (Optional) A parameter string that shall be passed to the application
designated by the F entry. This entry shall be omitted if F designates a
document.

Table 205 – Additional entries specific to a thread action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be
Thread for a thread action.

F file specification (Optional) The file containing the thread. If this entry is absent, the
thread is in the current file.

D dictionary, integer, or
text string

(Required) The destination thread, specified in one of the following
forms:
An indirect reference to a thread dictionary (see 12.4.3, “Articles”). In
this case, the thread shall be in the current file.
The index of the thread within the Threads array of its document’s
Catalog (see 7.7.2, “Document Catalog”). The first thread in the array
has index 0.
The title of the thread as specified in its thread information dictionary
(see Table 160). If two or more threads have the same title, the one
appearing first in the document Catalog’s Threads array shall be
used.

B dictionary or integer (Optional) The bead in the destination thread, specified in one of the
following forms:
An indirect reference to a bead dictionary (see 12.4.3, “Articles”). In
this case, the thread shall be in the current file.
The index of the bead within its thread. The first bead in a thread has
index 0.

Table 204 – Entries in a Windows launch parameter dictionary (continued)

Key Type Value

PDF 32000-1:2008

424 © Adobe Systems Incorporated 2008 – All rights reserved

If the IsMap flag is true and the user has triggered the URI action by clicking an annotation, the coordinates of
the mouse position at the time the action has been triggered shall be transformed from device space to user
space and then offset relative to the upper-left corner of the annotation rectangle (that is, the value of the Rect
entry in the annotation with which the URI action is associated).

EXAMPLE 1 If the mouse coordinates in user space are (xm , ym) and the annotation rectangle extends from (llx , lly) at
the lower-left to (urx , ury) at the upper-right, the final coordinates (xf , yf) are as follows:

If the resulting coordinates (xf , yf) are fractional, they shall be rounded to the nearest integer values. They shall
then be appended to the URI to be resolved, separated by COMMAS (2Ch) and preceded by a QUESTION
MARK (3Fh), as shown in this example:

EXAMPLE 2 http : / / www . adobe . com / intro ?100 , 200

NOTE 1 To support URI actions, a PDF document’s Catalog (see 7.7.2, “Document Catalog”) may include a URI entry
whose value is a URI dictionary. Only one entry shall be defined for such a dictionary (see Table 207).

NOTE 2 The Base entry allows the URI of the document to be recorded in situations in which the document may be
accessed out of context. For example, if a document has been moved to a new location but contains relative
links to other documents that have not been moved, the Base entry could be used to refer such links to the
true location of the other documents, rather than that of the moved document.

Table 206 – Additional entries specific to a URI action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be URI for a
URI action.

URI ASCII
string

(Required) The uniform resource identifier to resolve, encoded in 7-bit ASCII.

IsMap boolean (Optional) A flag specifying whether to track the mouse position when the URI
is resolved (see the discussion following this Table). Default value: false.
This entry applies only to actions triggered by the user’s clicking an
annotation; it shall be ignored for actions associated with outline items or with
a document’s OpenAction entry.

Table 207 – Entry in a URI dictionary

Key Type Value

Base ASCII
string

(Optional) The base URI that shall be used in resolving relative URI
references. URI actions within the document may specify URIs in partial form,
to be interpreted relative to this base address. If no base URI is specified,
such partial URIs shall be interpreted relative to the location of the document
itself. The use of this entry is parallel to that of the body element <BASE >, as
described in the HTML 4.01 Specification (see the Bibliography).

xf xm llx–=()

yf ury ym–=

© Adobe Systems Incorporated 2008 – All rights reserved 425

PDF 32000-1:2008

12.6.4.8 Sound Actions

A sound action (PDF 1.2) plays a sound through the computer’s speakers. Table 208 shows the action
dictionary entries specific to this type of action. Sounds are discussed in 13.3, “Sounds.”

12.6.4.9 Movie Actions

A movie action (PDF 1.2) can be used to play a movie in a floating window or within the annotation rectangle of
a movie annotation (see 12.5.6.17, “Movie Annotations” and 13.4, “Movies”). The movie annotation shall be
associated with the page that is the destination of the link annotation or outline item containing the movie
action, or with the page object with which the action is associated.

NOTE A movie action by itself does not guarantee that the page the movie is on will be displayed before attempting to
play the movie; such page change actions shall be done explicitly.

The contents of a movie action dictionary are identical to those of a movie activation dictionary (see Table 296),
with the additional entries shown in Table 209. The contents of the activation dictionary associated with the
movie annotation provide the default values. Any information specified in the movie action dictionary overrides
these values.

Table 208 – Additional entries specific to a sound action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be
Sound for a sound action.

Sound stream (Required) A sound object defining the sound that shall be played (see
13.3, “Sounds”).

Volume number (Optional) The volume at which to play the sound, in the range −1.0 to
1.0. Default value: 1.0.

Synchronous boolean (Optional) A flag specifying whether to play the sound synchronously
or asynchronously. If this flag is true, the conforming reader retains
control, allowing no further user interaction other than canceling the
sound, until the sound has been completely played. Default value:
false.

Repeat boolean (Optional) A flag specifying whether to repeat the sound indefinitely. If
this entry is present, the Synchronous entry shall be ignored. Default
value: false.

Mix boolean (Optional) A flag specifying whether to mix this sound with any other
sound already playing. If this flag is false, any previously playing
sound shall be stopped before starting this sound; this can be used to
stop a repeating sound (see Repeat). Default value: false.

Table 209 – Additional entries specific to a movie action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be Movie
for a movie action.

Annotation dictionary (Optional) An indirect reference to a movie annotation identifying the movie
that shall be played.

T text string (Optional) The title of a movie annotation identifying the movie that shall be
played.
The dictionary shall include either an Annotation or a T entry but not both.

PDF 32000-1:2008

426 © Adobe Systems Incorporated 2008 – All rights reserved

12.6.4.10 Hide Actions

A hide action (PDF 1.2) hides or shows one or more annotations on the screen by setting or clearing their
Hidden flags (see 12.5.3, “Annotation Flags”). This type of action can be used in combination with appearance
streams and trigger events (Sections 12.5.5, “Appearance Streams,” and 12.6.3, “Trigger Events”) to display
pop-up help information on the screen.

NOTE The E (enter) and X (exit) trigger events in an annotation’s additional-actions dictionary can be used to show
and hide the annotation when the user rolls the cursor in and out of its active area on the page. This can be
used to pop up a help label, or tool tip, describing the effect of clicking at that location on the page.

Table 210 shows the action dictionary entries specific to this type of action.

12.6.4.11 Named Actions

Table 211 lists several named actions (PDF 1.2) that conforming readers shall support; further names may be
added in the future.

Operation name (Optional) The operation that shall be performed on the movie:
PlayStart playing the movie, using the play mode specified by the
dictionary’s Mode entry (see Table 296). If the movie is currently paused, it
shall be repositioned to the beginning before playing (or to the starting point
specified by the dictionary’s Start entry, if present).
Stop Stop playing the movie.
Pause Pause a playing movie.
Resume Resume a paused movie.
Default value: Play.

Table 210 – Additional entries specific to a hide action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be Hide for
a hide action.

T dictionary,
text string, or
array

(Required) The annotation or annotations to be hidden or shown, shall be
specified in any of the following forms:
An indirect reference to an annotation dictionary
A text string giving the fully qualified field name of an interactive form field
whose associated widget annotation or annotations are to be affected (see
12.7.3.2, “Field Names”)
An array of such dictionaries or text strings

H boolean (Optional) A flag indicating whether to hide the annotation (true) or show it
(false). Default value: true.

Table 211 – Named actions

Name Action

NextPage Go to the next page of the document.

PrevPage Go to the previous page of the document.

FirstPage Go to the first page of the document.

LastPage Go to the last page of the document.

Table 209 – Additional entries specific to a movie action (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 427

PDF 32000-1:2008

NOTE Conforming readers may support additional, nonstandard named actions, but any document using them is not
portable. If the viewer encounters a named action that is inappropriate for a viewing platform, or if the viewer
does not recognize the name, it shall take no action.

Table 212 shows the action dictionary entries specific to named actions.

12.6.4.12 Set-OCG-State Actions

A set-OCG-state action (PDF 1.5) sets the state of one or more optional content groups (see 8.11, “Optional
Content”). Table 213 shows the action dictionary entries specific to this type of action.

When a set-OCG-state action is performed, the State array shall be processed from left to right. Each name
shall be applied to subsequent groups in the array until the next name is encountered, as shown in the
following example.

EXAMPLE 1 << /S /SetOCGState
/State [/OFF 2 0 R 3 0 R /Toggle 16 0 R 19 0 R /ON 5 0 R]

>>

A group may appear more than once in the State array; its state shall be set each time it is encountered, based
on the most recent name. ON, OFF and Toggle sequences have no required order. More than one sequence in
the array may contain the same name.

EXAMPLE 2 If the array contained [/OFF 1 0 R /Toggle 1 0 R], the group’s state would be ON after the action was
performed.

Table 212 – Additional entries specific to named actions

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be Named for a
named action.

N name (Required) The name of the action that shall be performed (see Table 211).

Table 213 – Additional entries specific to a set-OCG-state action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be
SetOCGState for a set-OCG-state action.

State array (Required) An array consisting of any number of sequences beginning with a
name object (ON, OFF, or Toggle) followed by one or more optional content
group dictionaries. The array elements shall be processed from left to right;
each name shall be applied to the subsequent groups until the next name is
encountered:
ON sets the state of subsequent groups to ON
OFF sets the state of subsequent groups to OFF
Toggle reverses the state of subsequent groups.

PreserveRB boolean (Optional) If true, indicates that radio-button state relationships between
optional content groups (as specified by the RBGroups entry in the current
configuration dictionary; see Table 101) should be preserved when the
states in the State array are applied. That is, if a group is set to ON (either by
ON or Toggle) during processing of the State array, any other groups
belonging to the same radio-button group shall be turned OFF. If a group is
set to OFF, there is no effect on other groups.
If PreserveRB is false, radio-button state relationships, if any, shall be
ignored.
Default value: true.

PDF 32000-1:2008

428 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE While the specification allows a group to appear more than once in the State array, this is not intended to
implement animation or any other sequential drawing operations. PDF processing applications are free to
accumulate all state changes and apply only the net changes simultaneously to all affected groups before
redrawing.

12.6.4.13 Rendition Actions

A rendition action (PDF 1.5) controls the playing of multimedia content (see 13.2, “Multimedia”). This action
may be used in the following ways:

• To begin the playing of a rendition object (see 13.2.3, “Renditions”), associating it with a screen annotation
(see 12.5.6.18, “Screen Annotations”). The screen annotation specifies where the rendition shall be played
unless otherwise specified.

• To stop, pause, or resume a playing rendition.

• To trigger the execution of a JavaScript script that may perform custom operations.

Table 214 lists the entries in a rendition action dictionary.

Either the JS entry or the OP entry shall be present. If both are present, OP is considered a fallback that shall
be executed if the conforming reader is unable to execute JavaScripts. If OP has an unrecognized value and
there is no JS entry, the action is invalid.

Table 214 – Additional entries specific to a rendition action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be Rendition
for a rendition action.

R dictionary (Required when OP is present with a value of 0 or 4; otherwise optional) A
rendition object (see 13.2.3, “Renditions”).

AN dictionary (Required if OP is present with a value of 0, 1, 2, 3 or 4; otherwise optional) An
indirect reference to a screen annotation (see 12.5.6.18, “Screen
Annotations”).

OP integer (Required if JS is not present; otherwise optional) The operation to perform
when the action is triggered. Valid values shall be:
0 If no rendition is associated with the annotation specified by AN, play the

rendition specified by R, associating it with the annotation. If a rendition
is already associated with the annotation, it shall be stopped, and the
new rendition shall be associated with the annotation.

1 Stop any rendition being played in association with the annotation
specified by AN, and remove the association. If no rendition is being
played, there is no effect.

2 Pause any rendition being played in association with the annotation
specified b y AN. If no rendition is being played, there is no effect.

3 Resume any rendition being played in association with the annotation
specified by AN. If no rendition is being played or the rendition is not
paused, there is no effect.

4 Play the rendition specified by R, associating it with the annotation
specified by AN. If a rendition is already associated with the annotation,
resume the rendition if it is paused; otherwise, do nothing.

JS text string
or stream

(Required if OP is not present; otherwise optional) A text string or stream
containing a JavaScript script that shall be executed when the action is
triggered.

© Adobe Systems Incorporated 2008 – All rights reserved 429

PDF 32000-1:2008

In some situations, a pause (OP value of 2) or resume (OP value of 3) operation may not make sense or the
player may not support it. In such cases, the user should be notified of the failure to perform the operation.

EXAMPLE A JPEG image

Before a rendition action is executed, the conforming reader shall make sure that the P entry of the screen
annotation dictionary references a valid page object and that the annotation is present in the page object’s
Annots array (see Table 30).

A rendition may play in the rectangle occupied by a screen annotation, even if the annotation itself is not visible;
for example, if its Hidden or NoView flags (see Table 165) are set. If a screen annotation is not visible because
its location on the page is not being displayed by the viewer, the rendition is not visible. However, it may
become visible if the view changes, such as by scrolling.

12.6.4.14 Transition Actions

A transition action (PDF 1.5) may be used to control drawing during a sequence of actions. As discussed in
12.6.2, “Action Dictionaries,” the Next entry in an action dictionary may specify a sequence of actions.
Conforming readers shall normally suspend drawing when such a sequence begins and resume drawing when
it ends. If a transition action is present during a sequence, the conforming reader shall render the state of the
page viewing area as it exists after completion of the previous action and display it using a transition specified
in the action dictionary (see Table 215). Once this transition completes, drawing shall be suspended again.

12.6.4.15 Go-To-3D-View Actions

A go-to-3D-view action (PDF 1.6) identifies a 3D annotation and specifies a view for the annotation to use (see
13.6, “3D Artwork”). Table 216 shows the entries in a go-to-3D-view action dictionary.

The V entry selects the view to apply to the annotation specified by TA. This view may be one of the predefined
views specified by the VA entry of the 3D stream (see Table 300) or a unique view specified here.

Table 215 – Additional entries specific to a transition action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be Trans
for a transition action.

Trans dictionary (Required) The transition to use for the update of the display (see
Table 162).

Table 216 – Additional entries specific to a go-to-3D-view action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be
GoTo3DView for a transition action.

TA dictionary (Required) The target annotation for which to set the view.

V (various) (Required) The view to use. It may be one of the following types:
A 3D view dictionary (see 13.6.4, “3D Views”).
An integer specifying an index into the VA array in the 3D stream (see
Table 300).
A text string matching the IN entry in one of the views in the VA array (see
Table 304).
A name that indicates the first (F), last (L), next (N), previous (P), or default
(D) entries in the VA array; see discussion following this Table.

PDF 32000-1:2008

430 © Adobe Systems Incorporated 2008 – All rights reserved

If the predefined view is specified by the names N (next) or P (previous), it should be interpreted in the following
way:

• When the last view applied was specified by means of the VA array, N and P indicate the next and previous
entries, respectively, in the VA array (wrapping around if necessary).

• When the last view was not specified by means of VA, using N or P should result in reverting to the default
view.

12.6.4.16 JavaScript Actions

Upon invocation of a JavaScript action, a conforming processor shall execute a script that is written in the
JavaScript programming language. Depending on the nature of the script, various interactive form fields in the
document may update their values or change their visual appearances. Mozilla Development Center’s Client-
Side JavaScript Reference and the Adobe JavaScript for Acrobat API Reference (see the Bibliography) give
details on the contents and effects of JavaScript scripts. Table 217 shows the action dictionary entries specific
to this type of action.

To support the use of parameterized function calls in JavaScript scripts, the JavaScript entry in a PDF
document’s name dictionary (see 7.7.4, “Name Dictionary”) may contain a name tree that maps name strings to
document-level JavaScript actions. When the document is opened, all of the actions in this name tree shall be
executed, defining JavaScript functions for use by other scripts in the document.

NOTE The name strings associated with individual JavaScript actions in the name dictionary serve merely as a
convenient means for organizing and packaging scripts. The names are arbitrary and need not bear any
relation to the JavaScript name space.

12.7 Interactive Forms

12.7.1 General

An interactive form (PDF 1.2)—sometimes referred to as an AcroForm—is a collection of fields for gathering
information interactively from the user. A PDF document may contain any number of fields appearing on any
combination of pages, all of which make up a single, global interactive form spanning the entire document.
Arbitrary subsets of these fields can be imported or exported from the document; see 12.7.5, “Form Actions.”

NOTE 1 Interactive forms should not be confused with form XObjects (see 8.10, “Form XObjects”). Despite the
similarity of names, the two are different, unrelated types of objects.

Each field in a document’s interactive form shall be defined by a field dictionary (see 12.7.3, “Field
Dictionaries”). For purposes of definition and naming, the fields can be organized hierarchically and can inherit
attributes from their ancestors in the field hierarchy. A field’s children in the hierarchy may also include widget
annotations (see 12.5.6.19, “Widget Annotations”) that define its appearance on the page. A field that has
children that are fields is called a non-terminal field. A field that does not have children that are fields is called a
terminal field.

Table 217 – Additional entries specific to a JavaScript action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be
JavaScript for a JavaScript action.

JS text string or
text stream

(Required) A text string or text stream containing the JavaScript script to
be executed.
PDFDocEncoding or Unicode encoding (the latter identified by the
Unicode prefix U+ FEFF) shall be used to encode the contents of the
string or stream.

© Adobe Systems Incorporated 2008 – All rights reserved 431

PDF 32000-1:2008

A terminal field may have children that are widget annotations (see 12.5.6.19, “Widget Annotations“) that define
its appearance on the page. As a convenience, when a field has only a single associated widget annotation, the
contents of the field dictionary and the annotation dictionary (12.5.2, “Annotation Dictionaries”) may be merged
into a single dictionary containing entries that pertain to both a field and an annotation. (This presents no
ambiguity, since the contents of the two kinds of dictionaries do not conflict.) If such an object defines an
appearance stream, the appearance shall be consistent with the object’s current value as a field.

NOTE 2 Fields containing text whose contents are not known in advance may need to construct their appearance
streams dynamically instead of defining them statically in an appearance dictionary; see 12.7.3.3, “Variable
Text.”

12.7.2 Interactive Form Dictionary

The contents and properties of a document’s interactive form shall be defined by an interactive form dictionary
that shall be referenced from the AcroForm entry in the document catalogue (see 7.7.2, “Document Catalog”).
Table 218 shows the contents of this dictionary.

Table 218 – Entries in the interactive form dictionary

Key Type Value

Fields array (Required) An array of references to the document’s root fields
(those with no ancestors in the field hierarchy).

NeedAppearances boolean (Optional) A flag specifying whether to construct appearance
streams and appearance dictionaries for all widget annotations
in the document (see 12.7.3.3, “Variable Text”). Default value:
false.

SigFlags integer (Optional; PDF 1.3) A set of flags specifying various document-
level characteristics related to signature fields (see Table 219,
and 12.7.4.5, “Signature Fields”). Default value: 0.

CO array (Required if any fields in the document have additional-actions
dictionaries containing a C entry; PDF 1.3) An array of indirect
references to field dictionaries with calculation actions, defining
the calculation order in which their values will be recalculated
when the value of any field changes (see 12.6.3, “Trigger
Events”).

DR dictionary (Optional) A resource dictionary (see 7.8.3, “Resource
Dictionaries”) containing default resources (such as fonts,
patterns, or colour spaces) that shall be used by form field
appearance streams. At a minimum, this dictionary shall contain
a Font entry specifying the resource name and font dictionary of
the default font for displaying text.

DA string (Optional) A document-wide default value for the DA attribute of
variable text fields (see 12.7.3.3, “Variable Text”).

Q integer (Optional) A document-wide default value for the Q attribute of
variable text fields (see 12.7.3.3, “Variable Text”).

XFA stream or array (Optional; PDF 1.5) A stream or array containing an XFA
resource, whose format shall be described by the Data Package
(XDP) Specification. (see the Bibliography).
The value of this entry shall be either a stream representing the
entire contents of the XML Data Package or an array of text
string and stream pairs representing the individual packets
comprising the XML Data Package.
See 12.7.8, “XFA Forms,” for more information.

PDF 32000-1:2008

432 © Adobe Systems Incorporated 2008 – All rights reserved

The value of the interactive form dictionary’s SigFlags entry is an unsigned 32-bit integer containing flags
specifying various document-level characteristics related to signature fields (see 12.7.4.5, “Signature Fields”).
Bit positions within the flag word shall be numbered from 1 (low-order) to 32 (high-order). Table 219 shows the
meanings of the flags; all undefined flag bits shall be reserved and shall be set to 0.

12.7.3 Field Dictionaries

12.7.3.1 General

Each field in a document’s interactive form shall be defined by a field dictionary, which shall be an indirect
object. The field dictionaries may be organized hierarchically into one or more tree structures. Many field
attributes are inheritable, meaning that if they are not explicitly specified for a given field, their values are taken
from those of its parent in the field hierarchy. Such inheritable attributes shall be designated as such in the
Tables 220 and 221. The designation (Required; inheritable) means that an attribute shall be defined for every
field, whether explicitly in its own field dictionary or by inheritance from an ancestor in the hierarchy. Table 220
shows those entries that are common to all field dictionaries, regardless of type. Entries that pertain only to a
particular type of field are described in the relevant sub-clauses in Table 220.

Table 219 – Signature flags

Bit position Name Meaning

1 SignaturesExist If set, the document contains at least one signature field. This flag
allows a conforming reader to enable user interface items (such as
menu items or pushbuttons) related to signature processing without
having to scan the entire document for the presence of signature
fields.

2 AppendOnly If set, the document contains signatures that may be invalidated if
the file is saved (written) in a way that alters its previous contents,
as opposed to an incremental update. Merely updating the file by
appending new information to the end of the previous version is
safe (see H.7, “Updating Example”). Conforming readers may use
this flag to inform a user requesting a full save that signatures will
be invalidated and require explicit confirmation before continuing
with the operation.

Table 220 – Entries common to all field dictionaries

Key Type Value

FT name (Required for terminal fields; inheritable) The type of field that this
dictionary describes:
Btn Button (see 12.7.4.2, “Button Fields”)
Tx Text (see 12.7.4.3, “Text Fields”)
Ch Choice (see 12.7.4.4, “Choice Fields”)
Sig (PDF 1.3) Signature (see 12.7.4.5, “Signature Fields”)
This entry may be present in a non-terminal field (one whose
descendants are fields) to provide an inheritable FT value. However, a
non-terminal field does not logically have a type of its own; it is merely
a container for inheritable attributes that are intended for descendant
terminal fields of any type.

Parent dictionary (Required if this field is the child of another in the field hierarchy;
absent otherwise) The field that is the immediate parent of this one
(the field, if any, whose Kids array includes this field). A field can have
at most one parent; that is, it can be included in the Kids array of at
most one other field.

© Adobe Systems Incorporated 2008 – All rights reserved 433

PDF 32000-1:2008

The value of the field dictionary’s Ff entry is an unsigned 32-bit integer containing flags specifying various
characteristics of the field. Bit positions within the flag word shall be numbered from 1 (low-order) to 32 (high-
order). The flags shown in Table 221 are common to all types of fields. Flags that apply only to specific field
types are discussed in the sub-clauses describing those types. All undefined flag bits shall be reserved and
shall be set to 0.

Kids array (Sometimes required, as described below) An array of indirect
references to the immediate children of this field.
In a non-terminal field, the Kids array shall refer to field dictionaries
that are immediate descendants of this field. In a terminal field, the
Kids array ordinarily shall refer to one or more separate widget
annotations that are associated with this field. However, if there is only
one associated widget annotation, and its contents have been merged
into the field dictionary, Kids shall be omitted.

T text string (Optional) The partial field name (see 12.7.3.2, “Field Names”).

TU text string (Optional; PDF 1.3) An alternate field name that shall be used in place
of the actual field name wherever the field shall be identified in the
user interface (such as in error or status messages referring to the
field). This text is also useful when extracting the document’s contents
in support of accessibility to users with disabilities or for other
purposes (see 14.9.3, “Alternate Descriptions”).

TM text string (Optional; PDF 1.3) The mapping name that shall be used when
exporting interactive form field data from the document.

Ff integer (Optional; inheritable) A set of flags specifying various characteristics
of the field (see Table 221). Default value: 0.

V (various) (Optional; inheritable) The field’s value, whose format varies
depending on the field type. See the descriptions of individual field
types for further information.

DV (various) (Optional; inheritable) The default value to which the field reverts when
a reset-form action is executed (see 12.7.5.3, “Reset-Form Action”).
The format of this value is the same as that of V.

AA dictionary (Optional; PDF 1.2) An additional-actions dictionary defining the field’s
behaviour in response to various trigger events (see 12.6.3, “Trigger
Events”). This entry has exactly the same meaning as the AA entry in
an annotation dictionary (see 12.5.2, “Annotation Dictionaries”).

Table 221 – Field flags common to all field types

Bit position Name Meaning

1 ReadOnly If set, the user may not change the value of the field. Any associated
widget annotations will not interact with the user; that is, they will not
respond to mouse clicks or change their appearance in response to
mouse motions. This flag is useful for fields whose values are
computed or imported from a database.

2 Required If set, the field shall have a value at the time it is exported by a submit-
form action (see 12.7.5.2, “Submit-Form Action”).

3 NoExport If set, the field shall not be exported by a submit-form action (see
12.7.5.2, “Submit-Form Action”).

Table 220 – Entries common to all field dictionaries (continued)

Key Type Value

PDF 32000-1:2008

434 © Adobe Systems Incorporated 2008 – All rights reserved

12.7.3.2 Field Names

The T entry in the field dictionary (see Table 220) holds a text string defining the field’s partial field name. The
fully qualified field name is not explicitly defined but shall be constructed from the partial field names of the field
and all of its ancestors. For a field with no parent, the partial and fully qualified names are the same. For a field
that is the child of another field, the fully qualified name shall be formed by appending the child field’s partial
name to the parent’s fully qualified name, separated by a PERIOD (2Eh) as shown:

parent’s_full_name . child’s_partial_name

EXAMPLE If a field with the partial field name PersonalData has a child whose partial name is Address, which in turn
has a child with the partial name ZipCode, the fully qualified name of this last field is

PersonalData . Address . ZipCode

Because the PERIOD is used as a separator for fully qualified names, a partial name shall not contain a
PERIOD character. Thus, all fields descended from a common ancestor share the ancestor’s fully qualified field
name as a common prefix in their own fully qualified names.

It is possible for different field dictionaries to have the same fully qualified field name if they are descendants of
a common ancestor with that name and have no partial field names (T entries) of their own. Such field
dictionaries are different representations of the same underlying field; they should differ only in properties that
specify their visual appearance. In particular, field dictionaries with the same fully qualified field name shall
have the same field type (FT), value (V), and default value (DV).

12.7.3.3 Variable Text

When the contents and properties of a field are known in advance, its visual appearance can be specified by an
appearance stream defined in the PDF file (see 12.5.5, “Appearance Streams,” and 12.5.6.19, “Widget
Annotations”). In some cases, however, the field may contain text whose value is not known until viewing time.

NOTE Examples include text fields to be filled in with text typed by the user from the keyboard, scrollable list boxes
whose contents are determined interactively at the time the document is displayed and fields containing
current dates or values calculated by a JavaScript.

In such cases, the PDF document cannot provide a statically defined appearance stream for displaying the
field. Instead, the conforming reader shall construct an appearance stream dynamically at viewing time. The
dictionary entries shown in Table 222 provide general information about the field’s appearance that can be
combined with the specific text it contains to construct an appearance stream.

Table 222 – Additional entries common to all fields containing variable text

Key Type Value

DA string (Required; inheritable) The default appearance string containing a sequence of
valid page-content graphics or text state operators that define such properties
as the field’s text size and colour.

Q integer (Optional; inheritable) A code specifying the form of quadding (justification) that
shall be used in displaying the text:
0 Left-justified
1 Centered
2 Right-justified
Default value: 0 (left-justified).

DS text string (Optional; PDF 1.5) A default style string, as described in 12.7.3.4, “Rich Text
Strings.”

© Adobe Systems Incorporated 2008 – All rights reserved 435

PDF 32000-1:2008

The new appearance stream becomes the normal appearance (N) in the appearance dictionary associated
with the field’s widget annotation (see Table 168). (If the widget annotation has no appearance dictionary, the
conforming reader shall create one and store it in the annotation dictionary’s AP entry.)

In PDF 1.5, form fields that have the RichText flag set (see Table 226) specify formatting information as
described in 12.7.3.4, “Rich Text Strings.” For these fields, the following conventions are not used, and the
entire annotation appearance shall be regenerated each time the value is changed.

For non-rich text fields, the appearance stream—which, like all appearance streams, is a form XObject—has
the contents of its form dictionary initialized as follows:

• The resource dictionary (Resources) shall be created using resources from the interactive form
dictionary’s DR entry (see Table 218).

• The lower-left corner of the bounding box (BBox) is set to coordinates (0, 0) in the form coordinate system.
The box’s top and right coordinates are taken from the dimensions of the annotation rectangle (the Rect
entry in the widget annotation dictionary).

• All other entries in the appearance stream’s form dictionary are set to their default values (see 8.10, “Form
XObjects”).

EXAMPLE The appearance stream includes the following section of marked content, which represents the portion of
the stream that draws the text:

/Tx BMC % Begin marked content with tag Tx

q % Save graphics state
… Any required graphics state changes, such as clipping …

BT % Begin text object
… Default appearance string (DA) …
… Text-positioning and text-showing operators to show the variable text …

ET % End text object
Q % Restore graphics state

EMC % End marked content

The BMC (begin marked content) and EMC (end marked content) operators are discussed in 14.6,
“Marked Content.” q (save graphics state) and Q (restore graphics state) are discussed in 8.4.4,
“Graphics State Operators.” BT (begin text object) and ET (end text object) are discussed in 9.4, “Text
Objects.” See Example 1 in 12.7.8, “XFA Forms” for an example.

The default appearance string (DA) contains any graphics state or text state operators needed to establish the
graphics state parameters, such as text size and colour, for displaying the field’s variable text. Only operators
that are allowed within text objects shall occur in this string (see Figure 9). At a minimum, the string shall
include a Tf (text font) operator along with its two operands, font and size. The specified font value shall match
a resource name in the Font entry of the default resource dictionary (referenced from the DR entry of the
interactive form dictionary; see Table 218). A zero value for size means that the font shall be auto-sized: its size
shall be computed as a function of the height of the annotation rectangle.

The default appearance string shall contain at most one Tm (text matrix) operator. If this operator is present,
the conforming reader shall replace the horizontal and vertical translation components with positioning values it
determines to be appropriate, based on the field value, the quadding (Q) attribute, and any layout rules it
employs. If the default appearance string contains no Tm operator, the viewer shall insert one in the
appearance stream (with appropriate horizontal and vertical translation components) after the default
appearance string and before the text-positioning and text-showing operators for the variable text.

RV text string
or text
stream

(Optional; PDF 1.5) A rich text string, as described in 12.7.3.4, “Rich Text
Strings.”

Table 222 – Additional entries common to all fields containing variable text (continued)

Key Type Value

PDF 32000-1:2008

436 © Adobe Systems Incorporated 2008 – All rights reserved

To update an existing appearance stream to reflect a new field value, the conforming reader shall first copy any
needed resources from the document’s DR dictionary (see Table 218) into the stream’s Resources dictionary.
(If the DR and Resources dictionaries contain resources with the same name, the one already in the
Resources dictionary shall be left intact, not replaced with the corresponding value from the DR dictionary.)
The conforming reader shall then replace the existing contents of the appearance stream from /Tx BMC to the
matching EMC with the corresponding new contents as shown in Example 1 in "Check Boxes," 12.7.4, “Field
Types.” (If the existing appearance stream contains no marked content with tag Tx, the new contents shall be
appended to the end of the original stream.)

12.7.3.4 Rich Text Strings

Beginning with PDF 1.5, the text contents of variable text form fields, as well as markup annotations, may
include formatting (style) information. These rich text strings are fully-formed XML documents that conform to
the rich text conventions specified for the XML Forms Architecture (XFA) specification, which is itself a subset
of the XHTML 1.0 specification, augmented with a restricted set of CSS2 style attributes (see the Bibliography
for references to all these standards).

Table 223 lists the XHTML elements that may appear in rich text strings. The <body> element is the root
element; its required attributes are listed in Table 224. Other elements (<p> and) contain enclosed text
that may take style attributes, which are listed in Table 225. These style attributes are CSS inline style property
declarations of the form name:value, with each declaration separated by a SEMICOLON (3Bh), as illustrated in
the Example in "Radio Buttons," 12.7.4, “Field Types.”

In PDF 1.6, PDF supports the rich text elements and attributes specified in the XML Forms Architecture (XFA)
Specification, 2.2 (see Bibliography). These rich text elements and attributes are a superset of those described
in Table 223, Table 224 and Table 225. In PDF 1.7, PDF supports the rich text elements and attributes specified
in the XML Forms Architecture (XFA) Specification, 2.4 (see Bibliography).

Table 223 – XHTML elements used in rich text strings

element Description

<body> The element at the root of the XML document. Table 224 lists the required attributes for
this element.

<p> Encloses text that shall be interpreted as a paragraph. It may take the style attributes
listed in Table 225.

<i> Encloses text that shall be displayed in an italic font.

 Encloses text that shall be displayed in a bold font.

 Groups text solely for the purpose of applying styles (using the attributes in Table 225).

Table 224 – Attributes of the <body> element

Attribute Description

xmlns The default namespaces for elements within the rich text string. Shall be
xmlns="http://www.w3.org/1999/xhtml"
xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0".

xfa:contentType Shall be "text/html".

© Adobe Systems Incorporated 2008 – All rights reserved 437

PDF 32000-1:2008

xfa:APIVersion A string that identifies the software used to generate the rich text string. It shall be of
the form software_name:software_version, where
software_name identifies the software by name. It shall not contain spaces.
software_version identifies the version of the software. It consists of a series of
integers separated by decimal points. Each integer is a version number, the leftmost
value being a major version number, with values to the right increasingly minor.
When comparing strings, the versions shall be compared in order.
NOTE “5.2” is less than “5.13” because 2 is less than 13; the string is not

treated as a decimal number. When comparing strings with different
numbers of sections, the string with fewer sections is implicitly padded
on the right with sections containing “0” to make the number of
sections equivalent.

xfa:spec The version of the XML Forms Architecture (XFA) specification to which the rich text
string complies. If the file being written conforms to PDF 1.5, then the rich text string
shall conform to XFA 2.0, and this attribute shall be XFA 2.0; if the file being written
conforms to PDF 1.6, then the rich text string shall conform to XFA 2.2, and this
attribute shall be XFA 2.2; and if the file being written conforms to PDF 1.7, then the
rich text string shall conform to XFA 2.4, and this attribute shall be XFA 2.4.

Table 225 – CSS2 style attributes used in rich text strings

Attribute Value Description

text-align keyword Horizontal alignment. Possible values: left, right, and center.

vertical-align decimal An amount by which to adjust the baseline of the enclosed text. A
positive value indicates a superscript; a negative value indicates a
subscript. The value is of the form <decimal number>pt, optionally
preceded by a sign, and followed by “pt”.
EXAMPLE -3pt, 4pt.

font-size decimal The font size of the enclosed text. The value is of the form
<decimal number>pt.

font-style keyword Specifies the font style of the enclosed text. Possible values: normal,
italic.

font-weight keyword The weight of the font for the enclosed text. Possible values: normal,
bold, 100, 200, 300, 400, 500, 600, 700, 800, 900.
normal is equivalent to 400, and bold is equivalent to 700.

font-family list A font name or list of font names that shall be used to display the
enclosed text. (If a list is provided, the first one containing glyphs for
the specified text shall be used.)

font list A shorthand CSS font property of the form
font:<font-style> <font-weight> <font-size> <font-family>

color RGB
value

The colour of the enclosed text. It can be in one of two forms:
#rrggbb with a 2-digit hexadecimal value for each component
rgb(rrr,ggg,bbb) with a decimal value for each component.
Although the values specified by the color property are interpreted as
sRGB values, they shall be transformed into values in a non-ICC
based colour space when used to generate the annotation’s
appearance.

Table 224 – Attributes of the <body> element (continued)

Attribute Description

PDF 32000-1:2008

438 © Adobe Systems Incorporated 2008 – All rights reserved

Rich text strings shall be specified by the RV entry of variable text form field dictionaries (see Table 222) and
the RC entry of markup annotation dictionaries (see Table 170). Rich text strings may be packaged as text
streams (see 7.9.3, “Text Streams”). Form fields using rich text streams should also have the RichText flag set
(see Table 228).

A default style string shall be specified by the DS entry for free text annotations (see Table 174) or variable text
form fields (see Table 222). This string specifies the default values for style attributes, which shall be used for
any style attributes that are not explicitly specified for the annotation or field. All attributes listed in Table 225
are legal in the default style string. This string, in addition to the RV or RC entry, shall be used to generate the
appearance.

NOTE 1 Markup annotations other than free text annotations (see 12.5.6.2, “Markup Annotations”) do not use a default
style string because their appearances are implemented using platform controls requiring the conforming
reader to pick an appropriate system font for display.

When a form field or annotation contains rich text strings, the flat text (character data) of the string should also
be preserved (in the V entry for form fields and the Contents entry for annotations). This enables older readers
to read and edit the data (although with loss of formatting information). The DA entry should be written out as
well when the file is saved.

When a rich text string specifies font attributes, the conforming reader shall use font name selection as
described in Section 15.3 of the CSS2 specification (see the Bibliography). Precedence should be given to the
fonts in the default resources dictionary, as specified by the DR entry in Table 218.

EXAMPLE The following example illustrates the entries in a widget annotation dictionary for rich text. The DS entry
specifies the default font. The RV entry contains two paragraphs of rich text: the first paragraph specifies
bold and italic text in the default font; the second paragraph changes the font size.

/DS (font: 18pt Arial) % Default style string using an abbreviated font

% descriptor to specify 18pt text using an Arial font

/RV (<?xml version="1.0"?><body xmlns="http://www.w3.org/1999/xtml"

xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:contentType="text/html" xfa:APIVersion="Acrobat:8.0.0" xfa:spec="2.4">
<p style="text-align:left">

<i>

Here is some bold italic text
</i>

</p>
<p style= "font-size:16pt">
This text uses default text state parameters but changes the font size to 16.

</p>
</body>)

text-decoration keyword One of the following keywords:
underline: The enclosed text shall be underlined.
line-through: The enclosed text shall have a line drawn through it.

font-stretch keyword Specifies a normal, condensed or extended face from a font family.
Supported values from narrowest to widest are ultra-condensed,
extra-condensed, condensed, semi-condensed, normal, semi-
expanded, expanded, extra-expanded, and ultra-expanded.

Table 225 – CSS2 style attributes used in rich text strings (continued)

Attribute Value Description

© Adobe Systems Incorporated 2008 – All rights reserved 439

PDF 32000-1:2008

12.7.4 Field Types

12.7.4.1 General

Interactive forms support the following field types:

• Button fields represent interactive controls on the screen that the user can manipulate with the mouse.
They include pushbuttons, check boxes, and radio buttons.

• Text fields are boxes or spaces in which the user can enter text from the keyboard.

• Choice fields contain several text items, at most one of which may be selected as the field value. They
include scrollable list boxes and combo boxes.

• Signature fields represent digital signatures and optional data for authenticating the name of the signer and
the document’s contents.

The following sub-clauses describe each of these field types in detail. Further types may be added in the future.

12.7.4.2 Button Fields

12.7.4.2.1 General

A button field (field type Btn) represents an interactive control on the screen that the user can manipulate with
the mouse. There are three types of button fields:

• A pushbutton is a purely interactive control that responds immediately to user input without retaining a
permanent value (see 12.7.4.2.2, “Pushbuttons”).

• A check box toggles between two states, on and off (see 12.7.4.2.3, “Check Boxes”).

• Radio button fields contain a set of related buttons that can each be on or off. Typically, at most one radio
button in a set may be on at any given time, and selecting any one of the buttons automatically deselects
all the others. (There are exceptions to this rule, as noted in "Radio Buttons.")

For button fields, bits 15, 16, 17, and 26 shall indicate the intended behaviour of the button field. A conforming
reader shall follow the intended behaviour, as defined in Table 226 and clauses 12.7.4.2.2, "Pushbuttons",
12.7.4.2.3, "Check Boxes" and 12.7.4.2.4, "Radio Buttons".

Table 226 – Field flags specific to button fields

Bit position Name Meaning

15 NoToggleToOff (Radio buttons only) If set, exactly one radio button shall be
selected at all times; selecting the currently selected button has no
effect. If clear, clicking the selected button deselects it, leaving no
button selected.

16 Radio If set, the field is a set of radio buttons; if clear, the field is a check
box. This flag may be set only if the Pushbutton flag is clear.

17 Pushbutton If set, the field is a pushbutton that does not retain a permanent
value.

26 RadiosInUnison (PDF 1.5) If set, a group of radio buttons within a radio button field
that use the same value for the on state will turn on and off in
unison; that is if one is checked, they are all checked. If clear, the
buttons are mutually exclusive (the same behavior as HTML radio
buttons).

PDF 32000-1:2008

440 © Adobe Systems Incorporated 2008 – All rights reserved

12.7.4.2.2 Pushbuttons

A pushbutton field shall have a field type of Btn and the Pushbutton flag (see Table 226) set to one. Because
this type of button retains no permanent value, it shall not use the V and DV entries in the field dictionary (see
Table 220).

12.7.4.2.3 Check Boxes

A check box field represents one or more check boxes that toggle between two states, on and off, when
manipulated by the user with the mouse or keyboard. Its field type shall be Btn and its Pushbutton and Radio
flags (see Table 226) shall both be clear. Each state can have a separate appearance, which shall be defined
by an appearance stream in the appearance dictionary of the field’s widget annotation (see 12.5.5,
“Appearance Streams”). The appearance for the off state is optional but, if present, shall be stored in the
appearance dictionary under the name Off. Yes should be used as the name for the on state.

The V entry in the field dictionary (see Table 220) holds a name object representing the check box’s
appearance state, which shall be used to select the appropriate appearance from the appearance dictionary.

EXAMPLE 1 This example shows a typical check box definition.

1 0 obj

<< /FT /Btn
 /T (Urgent)
 /V /Yes
 /AS /Yes
 /AP << /N << /Yes 2 0 R /Off 3 0 R>>
>>

endobj

2 0 obj

<< /Resources 20 0 R
 /Length 104
>>

stream

q
0 0 1 rg
BT

/ZaDb 12 Tf
0 0 Td
(8) Tj

ET
Q

endstream
endobj

3 0 obj

<< /Resources 20 0 R
 /Length 104
>>

stream

q
0 0 1 rg
BT

/ZaDb 12 Tf
0 0 Td
(8) Tj

ET
Q

endstream
endobj

© Adobe Systems Incorporated 2008 – All rights reserved 441

PDF 32000-1:2008

Beginning with PDF 1.4, the field dictionary for check boxes and radio buttons may contain an optional Opt
entry (see Table 227). If present, the Opt entry shall be an array of text strings representing the export value of
each annotation in the field. It may be used for the following purposes:

• To represent the export values of check box and radio button fields in non-Latin writing systems. Because
name objects in the appearance dictionary are limited to PDFDocEncoding, they cannot represent non-
Latin text.

• To allow radio buttons or check boxes to be checked independently, even if they have the same export
value.

EXAMPLE 2 A group of check boxes may be duplicated on more than one page such that the desired behavior is that
when a user checks a box, the corresponding boxes on each of the other pages are also checked. In this
case, each of the corresponding check boxes is a widget in the Kids array of a check box field.

NOTE For radio buttons, the same behavior shall occur only if the RadiosInUnison flag is set. If it is not set, at most
one radio button in a field shall be set at a time.

12.7.4.2.4 Radio Buttons

A radio button field is a set of related buttons. Like check boxes, individual radio buttons have two states, on
and off. A single radio button may not be turned off directly but only as a result of another button being turned
on. Typically, a set of radio buttons (annotations that are children of a single radio button field) have at most one
button in the on state at any given time; selecting any of the buttons automatically deselects all the others.

NOTE An exception occurs when multiple radio buttons in a field have the same on state and the RadiosInUnison flag
is set. In that case, turning on one of the buttons turns on all of them.

The field type is Btn, the Pushbutton flag (see Table 226) is clear, and the Radio flag is set. This type of button
field has an additional flag, NoToggleToOff, which specifies, if set, that exactly one of the radio buttons shall be
selected at all times. In this case, clicking the currently selected button has no effect; if the NoToggleToOff flag
is clear, clicking the selected button deselects it, leaving no button selected.

The Kids entry in the radio button field’s field dictionary (see Table 220) holds an array of widget annotations
representing the individual buttons in the set. The parent field’s V entry holds a name object corresponding to
the appearance state of whichever child field is currently in the on state; the default value for this entry is Off.

EXAMPLE This example shows the object definitions for a set of radio buttons.

10 0 obj % Radio button field

<< /FT /Btn
 /Ff … % … Radio flag = 1, Pushbutton = 0 …
 /T (Credit card)
 /V /cardbrand1
 /Kids [11 0 R

 12 0 R
]

Table 227 – Additional entry specific to check box and radio button fields

Key Type Value

Opt array of text
strings

(Optional; inheritable; PDF 1.4) An array containing one entry for each widget
annotation in the Kids array of the radio button or check box field. Each entry
shall be a text string representing the on state of the corresponding widget
annotation.
When this entry is present, the names used to represent the on state in the AP
dictionary of each annotation (for example, /1, /2) numerical position (starting with
0) of the annotation in the Kids array, encoded as a name object. This allows
distinguishing between the annotations even if two or more of them have the
same value in the Opt array.

PDF 32000-1:2008

442 © Adobe Systems Incorporated 2008 – All rights reserved

>>
endobj

11 0 obj % First radio button

<< /Parent 10 0 R
 /AS /cardbrand1
 /AP << /N << /cardbrand1 8 0 R

 /Off 9 0 R
>>

 >>
>>

endobj

12 0 obj % Second radio button

<< /Parent 10 0 R
 /AS /Off
 /AP << /N << /cardbrand2 8 0 R

 /Off 9 0 R
>>

 >>
>>

endobj

8 0 obj % Appearance stream for “on” state

<< /Resources 20 0 R
 /Length 104
>>

stream

q
0 0 1 rg
BT

/ZaDb 12 Tf
0 0 Td
(8) Tj

ET
Q

endstream
endobj

9 0 obj % Appearance stream for “off” state

<< /Resources 20 0 R
 /Length 104
>>

stream
q

0 0 1 rg
BT

/ZaDb 12 Tf
0 0 Td
(4) Tj

ET
Q

endstream
endobj

Like a check box field, a radio button field may use the optional Opt entry in the field dictionary (PDF 1.4) to
define export values for its constituent radio buttons, using Unicode (UTF-16BE) encoding for non-Latin
characters (see Table 227).

12.7.4.3 Text Fields

A text field (field type Tx) is a box or space for text fill-in data typically entered from a keyboard. The text may
be restricted to a single line or may be permitted to span multiple lines, depending on the setting of the Multiline

© Adobe Systems Incorporated 2008 – All rights reserved 443

PDF 32000-1:2008

flag in the field dictionary’s Ff entry. Table 228 shows the flags pertaining to this type of field. A text field shall
have a field type of Tx. A conforming PDF file, and a conforming processor shall obey the usage guidelines in
Table 228.

The field’s text shall be held in a text string (or, beginning with PDF 1.5, a stream) in the V (value) entry of the
field dictionary. The contents of this text string or stream shall be used to construct an appearance stream for
displaying the field, as described under 12.7.3.3, “Variable Text.” The text shall be presented in a single style
(font, size, colour, and so forth), as specified by the DA (default appearance) string.

If the FileSelect flag (PDF 1.4) is set, the field shall function as a file-select control. In this case, the field’s text
represents the pathname of a file whose contents shall be submitted as the field’s value:

• For fields submitted in HTML Form format, the submission shall use the MIME content type multipart / form-
data, as described in Internet RFC 2045, Multipurpose Internet Mail Extensions (MIME), Part One: Format
of Internet Message Bodies (see the Bibliography).

• For Forms Data Format (FDF) submission, the value of the V entry in the FDF field dictionary (see FDF
Fields in 12.7.7.3, “FDF Catalog”) shall be a file specification (7.11, “File Specifications”) identifying the
selected file.

• XML format is not supported for file-select controls; therefore, no value shall be submitted in this case.

Besides the usual entries common to all fields (see Table 220) and to fields containing variable text (see
Table 222), the field dictionary for a text field may contain the additional entry shown in Table 229.

Table 228 – Field flags specific to text fields

Bit position Name Meaning

13 Multiline If set, the field may contain multiple lines of text; if clear, the field’s
text shall be restricted to a single line.

14 Password If set, the field is intended for entering a secure password that
should not be echoed visibly to the screen. Characters typed from
the keyboard shall instead be echoed in some unreadable form,
such as asterisks or bullet characters.
NOTE To protect password confidentiality, readers should

never store the value of the text field in the PDF file if
this flag is set.

21 FileSelect (PDF 1.4) If set, the text entered in the field represents the
pathname of a file whose contents shall be submitted as the value
of the field.

23 DoNotSpellCheck (PDF 1.4) If set, text entered in the field shall not be spell-checked.

24 DoNotScroll (PDF 1.4) If set, the field shall not scroll (horizontally for single-line
fields, vertically for multiple-line fields) to accommodate more text
than fits within its annotation rectangle. Once the field is full, no
further text shall be accepted for interactive form filling; for non-
interactive form filling, the filler should take care not to add more
character than will visibly fit in the defined area.

25 Comb (PDF 1.5) May be set only if the MaxLen entry is present in the text
field dictionary (see Table 229) and if the Multiline, Password, and
FileSelect flags are clear. If set, the field shall be automatically
divided into as many equally spaced positions, or combs, as the
value of MaxLen, and the text is laid out into those combs.

26 RichText (PDF 1.5) If set, the value of this field shall be a rich text string (see
12.7.3.4, “Rich Text Strings”). If the field has a value, the RV entry
of the field dictionary (Table 222) shall specify the rich text string.

PDF 32000-1:2008

444 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE The following example shows the object definitions for a typical text field.

6 0 obj

<< /FT /Tx
 /Ff … % Set Multiline flag
 /T (Silly prose)
 /DA (0 0 1 rg /Ti 12 Tf)
 /V (The quick brown fox ate the lazy mouse)
 /AP << /N 5 0 R >>
>>

endobj

5 0 obj

<< /Resources 21 0 R
 /Length 172
>>

stream

/Tx BMC
q

BT
0 0 1 rg
/Ti 12 Tf
1 0 0 1 100 100 Tm
0 0 Td
(The quick brown fox) Tj
0 -13 Td
(ate the lazy mouse.) Tj

ET
Q

EMC
endstream
endobj

12.7.4.4 Choice Fields

A choice field shall have a field type of Ch that contains several text items, one or more of which shall be
selected as the field value. The items may be presented to the user in one of the following two forms:

• A scrollable list box

• A combo box consisting of a drop-down list. The combo box may be accompanied by an editable text box
in which the user can type a value other than the predefined choices, as directed by the value of the Edit bit
in the Ff entry.

Table 229 – Additional entry specific to a text field

Key Type Value

MaxLen integer (Optional; inheritable) The maximum length of the field’s text, in characters.

Table 230 – Field flags specific to choice fields

Bit position Name Meaning

18 Combo If set, the field is a combo box; if clear, the field is a list box.

19 Edit If set, the combo box shall include an editable text box as well
as a drop-down list; if clear, it shall include only a drop-down
list. This flag shall be used only if the Combo flag is set.

© Adobe Systems Incorporated 2008 – All rights reserved 445

PDF 32000-1:2008

The various types of choice fields are distinguished by flags in the Ff entry, as shown in Table 230. Table 231
shows the field dictionary entries specific to choice fields.

The Opt array specifies the list of options in the choice field, each of which shall be represented by a text string
that shall be displayed on the screen. Each element of the Opt array contains either this text string by itself or a
two-element array, whose second element is the text string and whose first element is a text string representing
the export value that shall be used when exporting interactive form field data from the document.

The field dictionary’s V (value) entry (see Table 220) identifies the item or items currently selected in the choice
field. If the field does not allow multiple selection—that is, if the MultiSelect flag (PDF 1.4) is not set—or if

20 Sort If set, the field’s option items shall be sorted alphabetically. This
flag is intended for use by writers, not by readers. Conforming
readers shall display the options in the order in which they
occur in the Opt array (see Table 231).

22 MultiSelect (PDF 1.4) If set, more than one of the field’s option items may
be selected simultaneously; if clear, at most one item shall be
selected.

23 DoNotSpellCheck (PDF 1.4) If set, text entered in the field shall not be spell-
checked. This flag shall not be used unless the Combo and Edit
flags are both set.

27 CommitOnSelChange (PDF 1.5) If set, the new value shall be committed as soon as a
selection is made (commonly with the pointing device). In this
case, supplying a value for a field involves three actions:
selecting the field for fill-in, selecting a choice for the fill-in
value, and leaving that field, which finalizes or “commits” the
data choice and triggers any actions associated with the entry
or changing of this data. If this flag is on, then processing does
not wait for leaving the field action to occur, but immediately
proceeds to the third step.
This option enables applications to perform an action once a
selection is made, without requiring the user to exit the field. If
clear, the new value is not committed until the user exits the
field.

Table 231 – Additional entries specific to a choice field

Key Type Value

Opt array (Optional) An array of options that shall be presented to the user. Each element
of the array is either a text string representing one of the available options or an
array consisting of two text strings: the option’s export value and the text that
shall be displayed as the name of the option.
If this entry is not present, no choices should be presented to the user.

TI integer (Optional) For scrollable list boxes, the top index (the index in the Opt array of the
first option visible in the list). Default value: 0.

I array (Sometimes required, otherwise optional; PDF 1.4) For choice fields that allow
multiple selection (MultiSelect flag set), an array of integers, sorted in ascending
order, representing the zero-based indices in the Opt array of the currently
selected option items. This entry shall be used when two or more elements in the
Opt array have different names but the same export value or when the value of
the choice field is an array. This entry should not be used for choice fields that do
not allow multiple selection. If the items identified by this entry differ from those in
the V entry of the field dictionary (see discussion following this Table), the V entry
shall be used.

Table 230 – Field flags specific to choice fields (continued)

Bit position Name Meaning

PDF 32000-1:2008

446 © Adobe Systems Incorporated 2008 – All rights reserved

multiple selection is supported but only one item is currently selected, V is a text string representing the name
of the selected item, as given in the field dictionary’s Opt array. If multiple items are selected, V is an array of
such strings. (For items represented in the Opt array by a two-element array, the name string is the second of
the two array elements.) The default value of V is null, indicating that no item is currently selected.

EXAMPLE The following example shows a typical choice field definition.

<< /FT /Ch
 /Ff …
 /T (Body Color)
 /V (Blue)
 /Opt [(Red)

 (My favorite color)
 (Blue)

]
>>

12.7.4.5 Signature Fields

A signature field (PDF 1.3) is a form field that contains a digital signature (see 12.8, “Digital Signatures”). The
field dictionary representing a signature field may contain the additional entries listed in Table 232, as well as
the standard entries described in Table 220. The field type (FT) shall be Sig, and the field value (V), if present,
shall be a signature dictionary containing the signature and specifying various attributes of the signature field
(see Table 252).

NOTE 1 This signature form field serves two primary purposes. The first is to define the form field that will provide the
visual signing properties for display but it also may hold information needed later when the actual signing takes
place, such as the signature technology to use. This carries information from the author of the document to the
software that later does the signing.

NOTE 2 Filling in (signing) the signature field entails updating at least the V entry and usually also the AP entry of the
associated widget annotation. Exporting a signature field typically exports the T, V, and AP entries.

Like any other field, a signature field may be described by a widget annotation dictionary containing entries
pertaining to an annotation as well as a field (see 12.5.6.19, “Widget Annotations”). The annotation rectangle
(Rect) in such a dictionary shall give the position of the field on its page. Signature fields that are not intended
to be visible shall have an annotation rectangle that has zero height and width. Conforming readers shall treat
such signatures as not visible. Conforming readers shall also treat signatures as not visible if either the Hidden
bit or the NoView bit of the F entry is true. The F entry is described in Table 164, and annotation flags are
described in Table 165.

The appearance dictionary (AP) of a signature field’s widget annotation defines the field’s visual appearance on
the page (see 12.5.5, “Appearance Streams”).

The signature field lock dictionary (described in Table 233) contains field names from the signature seed value
dictionary (described in Table 234) that cannot be changed through the user interface of a conforming reader.

Table 232 – Additional entries specific to a signature field

Key Type Value

Lock dictionary (Optional; shall be an indirect reference; PDF 1.5) A signature field lock
dictionary that specifies a set of form fields that shall be locked when this
signature field is signed. Table 233 lists the entries in this dictionary.

SV dictionary (Optional; shall be an indirect reference; PDF 1.5) A seed value dictionary (see
Table 234) containing information that constrains the properties of a signature
that is applied to this field.

© Adobe Systems Incorporated 2008 – All rights reserved 447

PDF 32000-1:2008

The value of the SV entry in the field dictionary is a seed value dictionary whose entries (see Table 234)
provide constraining information that shall be used at the time the signature is applied. Its Ff entry specifies
whether the other entries in the dictionary shall be honoured or whether they are merely recommendations.

The seed value dictionary may include seed values for private entries belonging to multiple handlers. A given
handler shall use only those entries that are pertinent to itself and ignore the others.

Table 233 – Entries in a signature field lock dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be SigFieldLock for a signature field lock dictionary.

Action name (Required) A name which, in conjunction with Fields, indicates the set of fields
that should be locked. The value shall be one of the following:
All All fields in the document
Include All fields specified in Fields
Exclude All fields except those specified in Fields

Fields array (Required if the value of Action is Include or Exclude) An array of text strings
containing field names.

Table 234 – Entries in a signature field seed value dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be SV for a seed value dictionary.

Ff integer (Optional) A set of bit flags specifying the interpretation of specific
entries in this dictionary. A value of 1 for the flag indicates that the
associated entry is a required constraint. A value of 0 indicates that the
associated entry is an optional constraint. Bit positions are 1 (Filter); 2
(SubFilter); 3 (V); 4 (Reasons); 5 (LegalAttestation); 6 (AddRevInfo);
and 7 (DigestMethod). Default value: 0.

Filter name (Optional) The signature handler that shall be used to sign the signature
field. Beginning with PDF 1.7, if Filter is specified and the Ff entry
indicates this entry is a required constraint, then the signature handler
specified by this entry shall be used when signing; otherwise, signing
shall not take place. If Ff indicates that this is an optional constraint, this
handler may be used if it is available. If it is not available, a different
handler may be used instead.

SubFilter array (Optional) An array of names indicating encodings to use when signing.
The first name in the array that matches an encoding supported by the
signature handler shall be the encoding that is actually used for signing.
If SubFilter is specified and the Ff entry indicates that this entry is a
required constraint, then the first matching encodings shall be used
when signing; otherwise, signing shall not take place. If Ff indicates that
this is an optional constraint, then the first matching encoding shall be
used if it is available. If none is available, a different encoding may be
used.

DigestMethod array (Optional; PDF 1.7) An array of names indicating acceptable digest
algorithms to use while signing. The value shall be one of SHA1,
SHA256, SHA384, SHA512 and RIPEMD160. The default value is
implementation-specific.
This property is only applicable if the digital credential signing contains
RSA public/private keys. If it contains DSA public/ private keys, the
digest algorithm is always SHA1 and this attribute shall be ignored.

PDF 32000-1:2008

448 © Adobe Systems Incorporated 2008 – All rights reserved

V real (Optional) The minimum required capability of the signature field seed
value dictionary parser. A value of 1 specifies that the parser shall be
able to recognize all seed value dictionary entries in a PDF 1.5 file. A
value of 2 specifies that it shall be able to recognize all seed value
dictionary entries specified.
The Ff entry indicates whether this shall be treated as a required
constraint.

Cert dictionary (Optional) A certificate seed value dictionary (see Table 235) containing
information about the characteristics of the certificate that shall be used
when signing.

Reasons array (Optional) An array of text strings that specifying possible reasons for
signing a document. If specified, the reasons supplied in this entry
replace those used by conforming products.
If the Reasons array is provided and the Ff entry indicates that
Reasons is a required constraint, one of the reasons in the array shall
be used for the signature dictionary; otherwise, signing shall not take
place. If the Ff entry indicates Reasons is an optional constraint, one of
the reasons in the array may be chosen or a custom reason can be
provided.
If the Reasons array is omitted or contains a single entry with the value
PERIOD (2Eh) and the Ff entry indicates that Reasons is a required
constraint, the Reason entry shall be omitted from the signature
dictionary (see Table 252).

MDP dictionary (Optional; PDF 1.6) A dictionary containing a single entry whose key is
P and whose value is an integer between 0 and 3. A value of 0 defines
the signature as an author signature (see 12.8, “Digital Signatures”).
The values 1 through 3 shall be used for certification signatures and
correspond to the value of P in a DocMDP transform parameters
dictionary (see Table 254).
If this MDP key is not present or the MDP dictionary does not contain a
P entry, no rules shall be defined regarding the type of signature or its
permissions.

TimeStamp dictionary (Optional; PDF 1.6) A time stamp dictionary containing two entries:
URL An ASCII string specifying the URL of a time-stamping server,

providing a time stamp that is compliant with RFC 3161, Internet
X.509 Public Key Infrastructure Time-Stamp Protocol (see the
Bibliography).

Ff An integer whose value is 1 (the signature shall have a time
stamp) or 0 (the signature need not have a time stamp). Default
value: 0.

NOTE Please see 12.8.3.3, "PKCS#7 Signatures as used in ISO
32000" for more details about hashing.

LegalAttestation array (Optional; PDF 1.6) An array of text strings specifying possible legal
attestations (see 12.8.5, “Legal Content Attestations”). The value of the
corresponding flag in the Ff entry indicates whether this is a required
constraint.

Table 234 – Entries in a signature field seed value dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 449

PDF 32000-1:2008

For optional keys that are not present, no constraint shall be placed upon the signature handler for that
property when signing.

AddRevInfo boolean (Optional; PDF 1.7) A flag indicating whether revocation checking shall
be carried out. If AddRevInfo is true, the conforming processor shall
perform the following additional tasks when signing the signature field:
Perform revocation checking of the certificate (and the corresponding
issuing certificates) used to sign.
Include the revocation information within the signature value.
Three SubFilter values have been defined for ISO 32000. For those
values the AddRevInfo value shall be true only if SubFilter is
adbe.pkcs7.detached or adbe.pkcs7.sha1. If SubFilter is
x509.rsa_sha1, this entry shall be omitted or set to false. Additional
SubFilters may be defined that also use AddRevInfo values.
If AddRevInfo is true and the Ff entry indicates this is a required
constraint, then the preceding tasks shall be performed. If they cannot
be performed, then signing shall fail.
Default value: false
NOTE 1 Revocation information is carried in the signature data as

specified by PCKS#7. See 12.8.3.3, "PKCS#7 Signatures
as used in ISO 32000".

NOTE 2 The trust anchors used are determined by the signature
handlers for both creation and validation.

Table 235 – Entries in a certificate seed value dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be SVCert for a certificate seed value dictionary.

Ff integer (Optional) A set of bit flags specifying the interpretation of specific
entries in this dictionary. A value of 1 for the flag means that a signer
shall be required to use only the specified values for the entry. A value
of 0 means that other values are permissible. Bit positions are 1
(Subject); 2 (Issuer); 3 (OID); 4 (SubjectDN); 5 (Reserved); 6
(KeyUsage); 7 (URL).
Default value: 0.

Subject array (Optional) An array of byte strings containing DER-encoded X.509v3
certificates that are acceptable for signing. X.509v3 certificates are
described in RFC 3280, Internet X.509 Public Key Infrastructure,
Certificate and Certificate Revocation List (CRL) Profile (see the
Bibliography). The value of the corresponding flag in the Ff entry
indicates whether this is a required constraint.

Table 234 – Entries in a signature field seed value dictionary (continued)

Key Type Value

PDF 32000-1:2008

450 © Adobe Systems Incorporated 2008 – All rights reserved

SubjectDN array of
dictionaries

(Optional; PDF 1.7) An array of dictionaries, each specifying a Subject
Distinguished Name (DN) that shall be present within the certificate for it
to be acceptable for signing. The certificate ultimately used for the
digital signature shall contain all the attributes specified in each of the
dictionaries in this array. (PDF keys and values are mapped to
certificate attributes and values.) The certificate is not constrained to
use only attribute entries from these dictionaries but may contain
additional attributes.The Subject Distinguished Name is described in
RFC 3280 (see the Bibliography). The key can be any legal attribute
identifier (OID). Attribute names shall contain characters in the set a-z
A-Z 0-9 and PERIOD.
Certificate attribute names are used as key names in the dictionaries in
this array. Values of the attributes are used as values of the keys.
Values shall be text strings.
The value of the corresponding flag in the Ff entry indicates whether
this entry is a required constraint.

KeyUsage array of
ASCII
strings

(Optional; PDF 1.7) An array of ASCII strings, where each string
specifies an acceptable key-usage extension that shall be present in the
signing certificate. Multiple strings specify a range of acceptable key-
usage extensions. The key-usage extension is described in RFC 3280.
Each character in a string represents a key-usage type, where the order
of the characters indicates the key-usage extension it represents. The
first through ninth characters in the string, from left to right, represent
the required value for the following key-usage extensions:
1 digitalSignature 4 dataEncipherment 7 cRLSign
2 non-Repudiation 5 keyAgreement 8 encipherOnly
3 keyEncipherment 6 keyCertSign 9 decipherOnly
Any additional characters shall be ignored. Any missing characters or
characters that are not one of the following values, shall be treated as
‘X’. The following character values shall be supported:
0 Corresponding key-usage shall not be set.
1 Corresponding key-usage shall be set.
X State of the corresponding key-usage does not matter.
EXAMPLE 1 The string values ‘1’ and ‘1XXXXXXXX’ represent

settings where the key-usage type digitalSignature is
set and the state of all other key-usage types do not
matter.

The value of the corresponding flag in the Ff entry indicates whether
this is a required constraint.

Issuer array (Optional) An array of byte strings containing DER-encoded X.509v3
certificates of acceptable issuers. If the signer’s certificate refers to any
of the specified issuers (either directly or indirectly), the certificate shall
be considered acceptable for signing. The value of the corresponding
flag in the Ff entry indicates whether this is a required constraint.
This array may contain self-signed certificates.

OID array (Optional) An array of byte strings that contain Object Identifiers (OIDs)
of the certificate policies that shall be present in the signing certificate.
EXAMPLE 2 An example of such a string is:

(2.16.840.1.113733.1.7.1.1).

This field shall only be used if the value of Issuer is not empty. The
certificate policies extension is described in RFC 3280 (see the
Bibliography). The value of the corresponding flag in the Ff entry
indicates whether this is a required constraint.

Table 235 – Entries in a certificate seed value dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 451

PDF 32000-1:2008

12.7.5 Form Actions

12.7.5.1 General

Interactive forms also support special types of actions in addition to those described in 12.6.4, “Action Types”:

• submit-form action

• reset-form action

• import-data action

12.7.5.2 Submit-Form Action

Upon invocation of a submit-form action, a conforming processor shall transmit the names and values of
selected interactive form fields to a specified uniform resource locator (URL),

NOTE Presumably, the URL is the address of a Web server that will process them and send back a
response.

The value of the action dictionary’s Flags entry shall be an non-negative integer containing flags specifying
various characteristics of the action. Bit positions within the flag word shall be numbered starting with 1
(low-order). Table 237 shows the meanings of the flags; all undefined flag bits shall be reserved and shall be
set to 0.

URL ASCII string (Optional) A URL, the use for which shall be defined by the URLType
entry.

URLType Name (Optional; PDF 1.7) A name indicating the usage of the URL entry.
There are standard uses and there can be implementation-specific uses
for this URL. The following value specifies a valid standard usage:
Browser – The URL references content that shall be displayed in a web
browser to allow enrolling for a new credential if a matching credential is
not found. The Ff attribute’s URL bit shall be ignored for this usage.
Third parties may extend the use of this attribute with their own attribute
values, which shall conform to the guidelines described in Annex E.
The default value is Browser.

Table 236 – Additional entries specific to a submit-form action

Key Type Value

S name (Required) The type of action that this dictionary describes;
shall be SubmitForm for a submit-form action.

F file specification (Required) A URL file specification (see 7.11.5, “URL
Specifications”) giving the uniform resource locator (URL) of
the script at the Web server that will process the submission.

Table 235 – Entries in a certificate seed value dictionary (continued)

Key Type Value

PDF 32000-1:2008

452 © Adobe Systems Incorporated 2008 – All rights reserved

Fields array (Optional) An array identifying which fields to include in the
submission or which to exclude, depending on the setting of
the Include/Exclude flag in the Flags entry (see Table 237).
Each element of the array shall be either an indirect
reference to a field dictionary or (PDF 1.3) a text string
representing the fully qualified name of a field. Elements of
both kinds may be mixed in the same array.
If this entry is omitted, the Include/Exclude flag shall be
ignored, and all fields in the document’s interactive form shall
be submitted except those whose NoExport flag (see
Table 221) is set. Fields with no values may also be
excluded, as dictated by the value of the
IncludeNoValueFields flag; see Table 237.

Flags integer (Optional; inheritable) A set of flags specifying various
characteristics of the action (see Table 237). Default value: 0.

Table 237 – Flags for submit-form actions

Bit position Name Meaning

1 Include/Exclude If clear, the Fields array (see Table 236) specifies which
fields to include in the submission. (All descendants of the
specified fields in the field hierarchy shall be submitted as
well.)
If set, the Fields array tells which fields to exclude. All fields
in the document’s interactive form shall be submitted except
those listed in the Fields array and those whose NoExport
flag (see Table 221) is set and fields with no values if the
IncludeNoValueFields flag is clear.

2 IncludeNoValueFields If set, all fields designated by the Fields array and the
Include/Exclude flag shall be submitted, regardless of
whether they have a value (V entry in the field dictionary). For
fields without a value, only the field name shall be
transmitted.
If clear, fields without a value shall not be submitted.

3 ExportFormat Meaningful only if the SubmitPDF and XFDF flags are clear. If
set, field names and values shall be submitted in HTML Form
format. If clear, they shall be submitted in Forms Data Format
(FDF); see 12.7.7, “Forms Data Format.”

4 GetMethod If set, field names and values shall be submitted using an
HTTP GET request. If clear, they shall be submitted using a
POST request. This flag is meaningful only when the
ExportFormat flag is set; if ExportFormat is clear, this flag
shall also be clear.

Table 236 – Additional entries specific to a submit-form action (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 453

PDF 32000-1:2008

5 SubmitCoordinates If set, the coordinates of the mouse click that caused the
submit-form action shall be transmitted as part of the form
data. The coordinate values are relative to the upper-left
corner of the field’s widget annotation rectangle. They shall
be represented in the data in the format
name . x = xval & name . y = yval
where name is the field’s mapping name (TM in the field
dictionary) if present; otherwise, name is the field name. If the
value of the TM entry is a single ASCII SPACE (20h)
character, both the name and the ASCII PERIOD (2Eh)
following it shall be suppressed, resulting in the format
x = xval & y = yval
This flag shall be used only when the ExportFormat flag is
set. If ExportFormat is clear, this flag shall also be clear.

6 XFDF (PDF 1.4) shall be used only if the SubmitPDF flags are clear.
If set, field names and values shall be submitted as XFDF.

7 IncludeAppendSaves (PDF 1.4) shall be used only when the form is being
submitted in Forms Data Format (that is, when both the
XFDF and ExportFormat flags are clear). If set, the submitted
FDF file shall include the contents of all incremental updates
to the underlying PDF document, as contained in the
Differences entry in the FDF dictionary (see Table 243). If
clear, the incremental updates shall not be included.

8 IncludeAnnotations (PDF 1.4) shall be used only when the form is being
submitted in Forms Data Format (that is, when both the
XFDF and ExportFormat flags are clear). If set, the submitted
FDF file shall include includes all markup annotations in the
underlying PDF document (see 12.5.6.2, “Markup
Annotations”). If clear, markup annotations shall not be
included.

9 SubmitPDF (PDF 1.4) If set, the document shall be submitted as PDF,
using the MIME content type application / pdf (described in
Internet RFC 2045, Multipurpose Internet Mail Extensions
(MIME), Part One: Format of Internet Message Bodies; see
the Bibliography). If set, all other flags shall be ignored except
GetMethod.

10 CanonicalFormat (PDF 1.4) If set, any submitted field values representing
dates shall be converted to the standard format described in
7.9.4, “Dates.”
NOTE 1 The interpretation of a form field as a date is not

specified explicitly in the field itself but only in
the JavaScript code that processes it.

Table 237 – Flags for submit-form actions (continued)

Bit position Name Meaning

PDF 32000-1:2008

454 © Adobe Systems Incorporated 2008 – All rights reserved

The set of fields whose names and values are to be submitted shall be defined by the Fields array in the action
dictionary (Table 236) together with the Include/Exclude and IncludeNoValueFields flags in the Flags entry
(Table 237). Each element of the Fields array shall identify an interactive form field, either by an indirect
reference to its field dictionary or (PDF 1.3) by its fully qualified field name (see 12.7.3.2, “Field Names”). If the
Include/Exclude flag is clear, the submission consists of all fields listed in the Fields array, along with any
descendants of those fields in the field hierarchy. If the Include/Exclude flag is set, the submission shall consist
of all fields in the document’s interactive form except those listed in the Fields array.

The NoExport flag in the field dictionary’s Ff entry (see Table 220 and Table 221) takes precedence over the
action’s Fields array and Include/Exclude flag. Fields whose NoExport flag is set shall not be included in a
submit-form action.

Field names and values may be submitted in any of the following formats, depending on the settings of the
action’s ExportFormat, SubmitPDF, and XFDF flags (see the Bibliography for references):

• HTML Form format (described in the HTML 4.01 Specification)

• Forms Data Format (FDF), which is described in 12.7.7, “Forms Data Format.”

• XFDF, a version of FDF based on XML. XFDF is described in the Adobe technical note XML Forms Data
Format Specification, Version 2.0. XML is described in the W3C document Extensible Markup Language
(XML) 1.1)

• PDF (in this case, the entire document shall be submitted rather than individual fields and values).

The name submitted for each field shall be its fully qualified name (see 12.7.3.2, “Field Names”), and the value
shall be specified by the V entry in its field dictionary.

11 ExclNonUserAnnots (PDF 1.4) shall be used only when the form is being
submitted in Forms Data Format (that is, when both the
XFDF and ExportFormat flags are clear) and the
IncludeAnnotations flag is set. If set, it shall include only
those markup annotations whose T entry (see Table 170)
matches the name of the current user, as determined by the
remote server to which the form is being submitted.
NOTE 2 The T entry for markup annotations specifies the

text label that is displayed in the title bar of the
annotation’s pop-up window and is assumed to
represent the name of the user authoring the
annotation.

NOTE 3 This allows multiple users to collaborate in
annotating a single remote PDF document
without affecting one another’s annotations.

12 ExclFKey (PDF 1.4) shall be used only when the form is being
submitted in Forms Data Format (that is, when both the
XFDF and ExportFormat flags are clear). If set, the submitted
FDF shall exclude the F entry.

14 EmbedForm (PDF 1.5) shall be used only when the form is being
submitted in Forms Data Format (that is, when both the
XFDF and ExportFormat flags are clear). If set, the F entry of
the submitted FDF shall be a file specification containing an
embedded file stream representing the PDF file from which
the FDF is being submitted.

Table 237 – Flags for submit-form actions (continued)

Bit position Name Meaning

© Adobe Systems Incorporated 2008 – All rights reserved 455

PDF 32000-1:2008

For pushbutton fields submitted in FDF, the value submitted shall be that of the AP entry in the field’s widget
annotation dictionary. If the submit-form action dictionary contains no Fields entry, such pushbutton fields shall
not be submitted.

Fields with no value (that is, whose field dictionary does not contain a V entry) are ordinarily not included in the
submission. The submit-form action’s IncludeNoValueFields flag may override this behaviour. If this flag is set,
such valueless fields shall be included in the submission by name only, with no associated value.

12.7.5.3 Reset-Form Action

Upon invocation of a reset-form action, a conforming processor shall reset selected interactive form fields to
their default values; that is, it shall set the value of the V entry in the field dictionary to that of the DV entry (see
Table 220). If no default value is defined for a field, its V entry shall be removed. For fields that can have no
value (such as pushbuttons), the action has no effect. Table 238 shows the action dictionary entries specific to
this type of action.

The value of the action dictionary’s Flags entry is a non-negative containing flags specifying various
characteristics of the action. Bit positions within the flag word shall be numbered starting from 1 (low-order).
Only one flag is defined for this type of action. All undefined flag bits shall be reserved and shall be set to 0.

Table 238 – Additional entries specific to a reset-form action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall
be ResetForm for a reset-form action.

Fields array (Optional) An array identifying which fields to reset or which to
exclude from resetting, depending on the setting of the Include/
Exclude flag in the Flags entry (see Table 239). Each element of
the array shall be either an indirect reference to a field dictionary
or (PDF 1.3) a text string representing the fully qualified name of a
field. Elements of both kinds may be mixed in the same array.
If this entry is omitted, the Include/Exclude flag shall be ignored;
all fields in the document’s interactive form are reset.

Flags integer (Optional; inheritable) A set of flags specifying various
characteristics of the action (see Table 239). Default value: 0.

Table 239 – Flag for reset-form actions

Bit position Name Meaning

1 Include/Exclude If clear, the Fields array (see Table 238) specifies which fields to
reset. (All descendants of the specified fields in the field hierarchy
are reset as well.) If set, the Fields array indicates which fields to
exclude from resetting; that is, all fields in the document’s
interactive form shall be reset except those listed in the Fields
array.

PDF 32000-1:2008

456 © Adobe Systems Incorporated 2008 – All rights reserved

12.7.5.4 Import-Data Action

Upon invocation of an import-data action, a conforming processor shall import Forms Data Format (FDF) data
into the document’s interactive form from a specified file.

12.7.6 Named Pages

The optional Pages entry (PDF 1.3) in a document’s name dictionary (see 7.7.4, “Name Dictionary”) contains a
name tree that maps name strings to individual pages within the document. Naming a page allows it to be
referenced in two different ways:

• An import-data action can add the named page to the document into which FDF is being imported, either
as a page or as a button appearance.

• A script executed by a JavaScript action can add the named page to the current document as a regular
page.

A named page that is intended to be visible to a user shall be left in the page tree (see 7.7.3, “Page Tree”), and
there shall be a reference to it in the appropriate leaf node of the name dictionary’s Pages tree. If the page is
not intended to be displayed by the reader, it shall be referenced from the name dictionary’s Templates tree
instead. Such invisible pages shall have an object type of Template rather than Page and shall have no Parent
or B entry (see Table 30).

12.7.7 Forms Data Format

12.7.7.1 General

This sub-clause describes Forms Data Format (FDF), the file format used for interactive form data (PDF 1.2).
FDF can be used when submitting form data to a server, receiving the response, and incorporating it into the
interactive form. It can also be used to export form data to stand-alone files that can be stored, transmitted
electronically, and imported back into the corresponding PDF interactive form. In addition, beginning in PDF
1.3, FDF can be used to define a container for annotations that are separate from the PDF document to which
they apply.

FDF is based on PDF; it uses the same syntax and has essentially the same file structure (7.5, “File Structure”).
However, it differs from PDF in the following ways:

• The cross-reference table (7.5.4, “Cross-Reference Table”) is optional.

• FDF files shall not be updated (see 7.5.6, “Incremental Updates”). Objects shall only be of generation 0,
and no two objects within an FDF file shall have the same object number.

• The document structure is much simpler than PDF, since the body of an FDF document consists of only
one required object.

• The length of a stream shall not be specified by an indirect object.

FDF uses the MIME content type application / vnd . fdf. On the Windows and UNIX platforms, FDF files have the
extension . fdf; on Mac OS, they have file type ' FDF '.

Table 240 – Additional entries specific to an import-data action

Key Type Value

S name (Required) The type of action that this dictionary describes; shall be
ImportData for an import-data action.

F file specification (Required) The FDF file from which to import the data.

© Adobe Systems Incorporated 2008 – All rights reserved 457

PDF 32000-1:2008

12.7.7.2 FDF File Structure

12.7.7.2.1 General

An FDF file shall be structured in essentially the same way as a PDF file but contains only those elements
required for the export and import of interactive form and annotation data. It consists of three required elements
and one optional element (see Figure 65):

• A one-line header identifying the version number of the PDF specification to which the file conforms

• A body containing the objects that make up the content of the file

• An optional cross-reference table containing information about the indirect objects in the file

• An optional trailer giving the location of the cross-reference table and of certain special objects within the
body of the file

Figure 65 – FDF file structure

12.7.7.2.2 FDF Header

The first line of an FDF file shall be a header, which shall contain

%FDF-1 . 2

The version number is given by the Version entry in the FDF catalogue dictionary (see 12.7.7.3, “FDF
Catalog”).

12.7.7.2.3 FDF Body

The body of an FDF file shall consist of a sequence of indirect objects representing the file’s catalogue (see
12.7.7.3, “FDF Catalog”) and any additional objects that the catalogue references. The objects are of the same
basic types described in 7.5, “File Structure” (other than the %PDF–n.m and %%EOF comments described in
7.5, “File Structure”) have no semantics. They are not necessarily preserved by applications that edit PDF
files.” Just as in PDF, objects in FDF can be direct or indirect.

Header

Body

Cross-reference
table (optional)

Trailer

PDF 32000-1:2008

458 © Adobe Systems Incorporated 2008 – All rights reserved

12.7.7.2.4 FDF Trailer

The trailer of an FDF file enables a reader to find significant objects quickly within the body of the file. The last
line of the file contains only the end-of-file marker, %%EOF. This marker shall be preceded by the FDF trailer
dictionary, consisting of the keyword trailer followed by a series of one or more key-value pairs enclosed in
double angle brackets (<< … >>) (using LESS-THAN SIGNs (3Ch) and GREATER-THAN SIGNs (3Eh)). The
only required key is Root, whose value is an indirect reference to the file’s catalogue dictionary (see
Table 242). The trailer may optionally contain additional entries for objects that are referenced from within the
catalogue.

Thus, the trailer has the overall structure

trailer
<< /Root c 0 R

 key2 value2
 …
 keyn valuen

>>
%%EOF

where c is the object number of the file’s catalogue dictionary.

12.7.7.3 FDF Catalog

12.7.7.3.1 General

The root node of an FDF file’s object hierarchy is the Catalog dictionary, located by means of the Root entry in
the file’s trailer dictionary (see FDF Trailer in 12.7.7.2, “FDF File Structure”). As shown in Table 241, the only
required entry in the catalogue is FDF; its value shall be an FDF dictionary (Table 243), which in turn shall
contain references to other objects describing the file’s contents. The catalogue may also contain an optional
Version entry identifying the version of the PDF specification to which this FDF file conforms.

Table 241 – Entry in the FDF trailer dictionary

Key Type Value

Root dictionary (Required; shall be an indirect reference) The Catalog object for this FDF file
(see 12.7.7.3, “FDF Catalog”).

Table 242 – Entries in the FDF catalog dictionary

Key Type Value

Version name (Optional; PDF 1.4) The version of the FDF specification to
which this FDF file conforms (for example, 1.4) if later than
the version specified in the file’s header (see FDF Header in
12.7.7.2, “FDF File Structure”). If the header specifies a later
version, or if this entry is absent, the document conforms to
the version specified in the header.
The value of this entry is a name object, not a number, and
therefore shall be preceded by a slash character (/) when
written in the FDF file (for example, /1.4).

FDF dictionary (Required) The FDF dictionary for this file (see Table 243).

© Adobe Systems Incorporated 2008 – All rights reserved 459

PDF 32000-1:2008

Table 243 – Entries in the FDF dictionary

Key Type Value

F file specification (Optional) The source file or target file: the PDF document file
that this FDF file was exported from or is intended to be
imported into.

ID array (Optional) An array of two byte strings constituting a file
identifier (see 14.4, “File Identifiers”) for the source or target
file designated by F, taken from the ID entry in the file’s trailer
dictionary (see 7.5.5, “File Trailer”).

Fields array (Optional) An array of FDF field dictionaries (see FDF Fields
in 12.7.7.3, “FDF Catalog”) describing the root fields (those
with no ancestors in the field hierarchy) that shall be exported
or imported. This entry and the Pages entry shall not both be
present.

Status PDFDocEncoded
string

(Optional) A status string that shall be displayed indicating
the result of an action, typically a submit-form action (see
12.7.5.2, “Submit-Form Action”). The string shall be encoded
with PDFDocEncoding. This entry and the Pages entry shall
not both be present.

Pages array (Optional; PDF 1.3) An array of FDF page dictionaries (see
FDF Pages in 12.7.7.3, “FDF Catalog”) describing pages that
shall be added to a PDF target document. The Fields and
Status entries shall not be present together with this entry.

Encoding name (Optional; PDF 1.3) The encoding that shall be used for any
FDF field value or option (V or Opt in the field dictionary; see
Table 246) or field name that is a string and does not begin
with the Unicode prefix U+FEFF.
Default value: PDFDocEncoding.
Other allowed values include Shift_JIS, BigFive, GBK,
UHC, utf_8, utf_16

Annots array (Optional; PDF 1.3) An array of FDF annotation dictionaries
(see FDF Annotation Dictionaries in 12.7.7.3, “FDF Catalog”).
The array may include annotations of any of the standard
types listed in Table 169 except Link, Movie, Widget,
PrinterMark, Screen, and TrapNet.

PDF 32000-1:2008

460 © Adobe Systems Incorporated 2008 – All rights reserved

Embedded FDF files specified in the FDF dictionary’s EmbeddedFDFs entry may be encrypted. Besides the
usual entries for an embedded file stream, the stream dictionary representing such an encrypted FDF file shall
contain the additional entry shown in Table 244 to identify the revision number of the FDF encryption algorithm
used to encrypt the file. Although the FDF encryption mechanism is separate from the one for PDF file
encryption described in 7.6, “Encryption,” revision 1 (the only one defined) uses a similar RC4 encryption
algorithm based on a 40-bit encryption key. The key shall be computed by means of an MD5 hash, using a
padded user-supplied password as input. The computation shall be identical to steps (a) and (b) of the
"Algorithm 2: Computing an encryption key" in 7.6.3.3, "Encryption Key Algorithm"; the first 5 bytes of the result
shall be the encryption key for the embedded FDF file.

The JavaScript entry in the FDF dictionary holds a JavaScript dictionary containing JavaScript scripts that
shall be defined globally at the document level, rather than associated with individual fields. The dictionary may
contain scripts defining JavaScript functions for use by other scripts in the document, as well as scripts that
shall be executed immediately before and after the FDF file is imported. Table 245 shows the contents of this
dictionary.

Differences stream (Optional; PDF 1.4) A stream containing all the bytes in all
incremental updates made to the underlying PDF document
since it was opened (see 7.5.6, “Incremental Updates”). If a
submit-form action submitting the document to a remote
server as FDF has its IncludeAppendSaves flag set (see
12.7.5.2, “Submit-Form Action”), the contents of this stream
shall be included in the submission. This allows any digital
signatures (see 12.8, “Digital Signatures”) to be transmitted
to the server. An incremental update shall be automatically
performed just before the submission takes place, in order to
capture all changes made to the document.
The submission shall include the full set of incremental
updates back to the time the document was first opened,
even if some of them may already have been included in
intervening submissions.

Although a Fields or Annots entry (or both) may be present
along with Differences, there is no requirement that their
contents will be consistent with each other. In particular, if
Differences contains a digital signature, only the values of
the form fields given in the Differences stream shall be
considered trustworthy under that signature.

Target string (Optional; PDF 1.4) The name of a browser frame in which
the underlying PDF document shall be opened. This mimics
the behaviour of the target attribute in HTML < href > tags.

EmbeddedFDFs array (Optional; PDF 1.4) An array of file specifications (see 7.11,
“File Specifications”) representing other FDF files embedded
within this one (7.11.4, “Embedded File Streams”).

JavaScript dictionary (Optional; PDF 1.4) A JavaScript dictionary (see Table 245)
defining document-level JavaScript scripts.

Table 244 – Additional entry in an embedded file stream dictionary for an encrypted FDF file

Key Type Value

EncryptionRevision integer (Required if the FDF file is encrypted; PDF 1.4) The revision number of
the FDF encryption algorithm used to encrypt the file. This value shall
be defined at the time of publication is 1.

Table 243 – Entries in the FDF dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 461

PDF 32000-1:2008

12.7.7.3.2 FDF Fields

Each field in an FDF file shall be described by an FDF field dictionary. Table 246 shows the contents of this type
of dictionary. Most of the entries have the same form and meaning as the corresponding entries in a field
dictionary (Table 220, Table 222, Table 229, and Table 231) or a widget annotation dictionary (Table 168 and
Table 188). Unless otherwise indicated in the table, importing a field causes the values of the entries in the FDF
field dictionary to replace those of the corresponding entries in the field with the same fully qualified name in the
target document.

Table 245 – Entries in the JavaScript dictionary

Key Type Value

Before text string or
text stream

(Optional) A text string or text stream containing a JavaScript script
that shall be executed just before the FDF file is imported.

After text string or
text stream

(Optional) A text string or text stream containing a JavaScript script
that shall be executed just after the FDF file is imported.

AfterPermsReady text string or
text stream

(Optional; PDF 1.6) A text string or text stream containing a
JavaScript script that shall be executed after the FDF file is
imported and the usage rights in the PDF document have been
determined (see 12.8.2.3, “UR”).
Verification of usage rights requires the entire file to be present, in
which case execution of this script shall be deferred until that
requirement is met.

Doc array (Optional) An array defining additional JavaScript scripts that shall
be added to those defined in the JavaScript entry of the
document’s name dictionary (see 7.7.4, “Name Dictionary”). The
array shall contain an even number of elements, organized in pairs.
The first element of each pair shall be a name and the second shall
be a text string or text stream defining the script corresponding to
that name. Each of the defined scripts shall be added to those
already defined in the name dictionary and shall then be executed
before the script defined in the Before entry is executed.
NOTE As described in 12.6.4.16, “JavaScript Actions,” these

scripts are used to define JavaScript functions for use
by other scripts in the document.

Table 246 – Entries in an FDF field dictionary

Key Type Value

Kids array (Optional) An array containing the immediate children of this field.
Unlike the children of fields in a PDF file, which shall be specified as indirect
object references, those of an FDF field may be either direct or indirect objects.

T text string (Required) The partial field name (see 12.7.3.2, “Field Names”).

V (various) (Optional) The field’s value, whose format varies depending on the field type;
see the descriptions of individual field types in 12.7.4, “Field Types” for further
information.

Ff integer (Optional) A set of flags specifying various characteristics of the field (see
Table 221, Table 226, Table 228, and Table 230). When imported into an
interactive form, the value of this entry shall replace that of the Ff entry in the
form’s corresponding field dictionary. If this field is present, the SetFf and ClrFf
entries, if any, shall be ignored.

SetFf integer (Optional) A set of flags to be set (turned on) in the Ff entry of the form’s
corresponding field dictionary. Bits equal to 1 in SetFf shall cause the
corresponding bits in Ff to be set to 1. This entry shall be ignored if an Ff entry
is present in the FDF field dictionary.

PDF 32000-1:2008

462 © Adobe Systems Incorporated 2008 – All rights reserved

ClrFf integer (Optional) A set of flags to be cleared (turned off) in the Ff entry of the form’s
corresponding field dictionary. Bits equal to 1 in ClrFf shall cause the
corresponding bits in Ff to be set to 0. If a SetFf entry is also present in the
FDF field dictionary, it shall be applied before this entry. This entry shall be
ignored if an Ff entry is present in the FDF field dictionary.

F integer (Optional) A set of flags specifying various characteristics of the field’s widget
annotation (see 12.5.3, “Annotation Flags”). When imported into an interactive
form, the value of this entry shall replace that of the F entry in the form’s
corresponding annotation dictionary. If this field is present, the SetF and ClrF
entries, if any, shall be ignored.

SetF integer (Optional) A set of flags to be set (turned on) in the F entry of the form’s
corresponding widget annotation dictionary. Bits equal to 1 in SetF shall cause
the corresponding bits in F to be set to 1. This entry shall be ignored if an F
entry is present in the FDF field dictionary.

ClrF integer (Optional) A set of flags to be cleared (turned off) in the F entry of the form’s
corresponding widget annotation dictionary. Bits equal to 1 in ClrF shall cause
the corresponding bits in F to be set to 0. If a SetF entry is also present in the
FDF field dictionary, it shall be applied before this entry. This entry shall be
ignored if an F entry is present in the FDF field dictionary.

AP dictionary (Optional) An appearance dictionary specifying the appearance of a
pushbutton field (see Pushbuttons in 12.7.4.2, “Button Fields”). The
appearance dictionary’s contents are as shown in Table 168, except that the
values of the N, R, and D entries shall all be streams.

APRef dictionary (Optional; PDF 1.3) A dictionary holding references to external PDF files
containing the pages to use for the appearances of a pushbutton field. This
dictionary is similar to an appearance dictionary (see Table 168), except that
the values of the N, R, and D entries shall all be named page reference
dictionaries (Table 250). This entry shall be ignored if an AP entry is present.

IF dictionary (Optional; PDF 1.3; button fields only) An icon fit dictionary (see Table 247)
specifying how to display a button field’s icon within the annotation rectangle of
its widget annotation.

Opt array (Required; choice fields only) An array of options that shall be presented to the
user. Each element of the array shall take one of two forms:
A text string representing one of the available options
A two-element array consisting of a text string representing one of the available
options and a default appearance string for constructing the item’s appearance
dynamically at viewing time (see 12.7.3.3, “Variable Text”).

A dictionary (Optional) An action that shall be performed when this field’s widget annotation
is activated (see 12.6, “Actions”).

AA dictionary (Optional) An additional-actions dictionary defining the field’s behaviour in
response to various trigger events (see 12.6.3, “Trigger Events”).

RV text string or
text stream

(Optional; PDF 1.5) A rich text string, as described in 12.7.3.4, “Rich Text
Strings.”

Table 246 – Entries in an FDF field dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 463

PDF 32000-1:2008

In an FDF field dictionary representing a button field, the optional IF entry holds an icon fit dictionary (PDF 1.3)
specifying how to display the button’s icon within the annotation rectangle of its widget annotation. Table 247
shows the contents of this type of dictionary.

12.7.7.3.3 FDF Pages

The optional Pages field in an FDF dictionary (see Table 243) shall contain an array of FDF page dictionaries
(PDF 1.3) describing new pages that shall be added to the target document. Table 248 shows the contents of
this type of dictionary.

An FDF template dictionary shall contain information describing a named page that serves as a template.
Table 249 shows the contents of this type of dictionary.

Table 247 – Entries in an icon fit dictionary

Key Type Value

SW name (Optional) The circumstances under which the icon shall be scaled inside the
annotation rectangle:
A Always scale.
B Scale only when the icon is bigger than the annotation rectangle.
S Scale only when the icon is smaller than the annotation rectangle.
N Never scale.
Default value: A.

S name (Optional) The type of scaling that shall be used:
A Anamorphic scaling: Scale the icon to fill the annotation rectangle exactly,
without regard to its original aspect ratio (ratio of width to height).
P Proportional scaling: Scale the icon to fit the width or height of the annotation
rectangle while maintaining the icon’s original aspect ratio. If the required
horizontal and vertical scaling factors are different, use the smaller of the two,
centering the icon within the annotation rectangle in the other dimension.
Default value: P.

A array (Optional) An array of two numbers that shall be between 0.0 and 1.0 indicating
the fraction of leftover space to allocate at the left and bottom of the icon. A value
of [0.0 0.0] shall position the icon at the bottom-left corner of the annotation
rectangle. A value of [0.5 0.5] shall center it within the rectangle. This entry shall
be used only if the icon is scaled proportionally. Default value: [0.5 0.5].

FB boolean (Optional; PDF 1.5) If true, indicates that the button appearance shall be scaled
to fit fully within the bounds of the annotation without taking into consideration the
line width of the border. Default value: false.

Table 248 – Entries in an FDF page dictionary

Key Type Value

Templates array (Required) An array of FDF template dictionaries (see Table 249) that
shall describe the named pages that serve as templates on the page.

Info dictionary (Optional) An FDF page information dictionary that shall contain
additional information about the page.

PDF 32000-1:2008

464 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE The names of fields imported from a template can sometimes conflict with those of existing fields in the target
document. This can occur, for example, if the same template page is imported more than once or if two
different templates have fields with the same names.

The Rename flag does not define a renaming algorithm (see Annex J).

The TRef entry in an FDF template dictionary shall hold a named page reference dictionary that shall describe
the location of external templates or page elements. Table 250 shows the contents of this type of dictionary.

12.7.7.3.4 FDF Annotation Dictionaries

Each annotation dictionary in an FDF file shall have a Page entry (see Table 251) that shall indicate the page of
the source document to which the annotation is attached.

12.7.8 XFA Forms

PDF 1.5 introduces support for interactive forms based on the Adobe XML Forms Architecture (XFA). The XFA
entry in the interactive forms dictionary (see Table 218) specifies an XFA resource, which shall be an XML
stream that contains the form information. The format of an XFA resource is described in the XML Data
Package (XDP) Specification (see the Bibliography).

The XFA entry shall be either a stream containing the entire XFA resource or an array specifying individual
packets that together make up the XFA resource. The resource includes but is not limited to the following
information:

• The form template (specified in the template packet), which describes the characteristics of the form,
including its fields, calculations, validations, and formatting. The XML Template Specification describes the
architecture of a form template (see Bibliography).

Table 249 – Entries in an FDF template dictionary

Key Type Value

TRef dictionary (Required) A named page reference dictionary (see Table 250) that shall
specify the location of the template.

Fields array (Optional) An array of references to FDF field dictionaries (see Table 246)
describing the root fields that shall be imported (those with no ancestors
in the field hierarchy).

Rename boolean (Optional) A flag that shall specify whether fields imported from the
template shall be renamed in the event of name conflicts with existing
fields; see the Note in this sub-clause for further discussion. Default
value: true.

Table 250 – Entries in an FDF named page reference dictionary

Key Type Value

Name string (Required) The name of the referenced page.

F file specification (Optional) The file containing the named page. If this entry is absent, it
shall be assumed that the page resides in the associated PDF file.

Table 251 – Additional entry for annotation dictionaries in an FDF file

Key Type Value

Page integer (Required for annotations in FDF files) The ordinal page number on
which this annotation shall appear, where page 0 is the first page.

© Adobe Systems Incorporated 2008 – All rights reserved 465

PDF 32000-1:2008

• The data (specified in the datasets packet), which represents the state of the form

• The configuration information (specified in the config packet), which shall be used to properly process the
form template and associated data. Configuration information shall be formatted as described in the XML
Configuration Specification (see Bibliography).

A packet is a pair of a string and stream. The string contains the name of the XML element and the stream
contains the complete text of this XML element. Each packet represents a complete XML element, with the
exception of the first and last packet, which specify begin and end tags for the xdp:xdp element (see EXAMPLE
1 in this sub-clause).

EXAMPLE 1 This example shows the XFA entry consisting of an array of packets.

1 0 obj XFA entry in interactive form dictionary

<< /XFA [(xdp:xdp) 10 0 R XFA resource specified as individual packets
(template) 11 0 R
(datasets) 12 0 R
(config) 13 0 R
(/xdp:xdp) 14 0 R]

>>
endobj
10 0 obj

stream
<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">

endstream

11 0 obj

stream
<template xmlns="http://www.xfa.org/schema/xfa-template/2.4/">
...remaining contents of template packet...
</template>

endstream

12 0 obj

stream
<xfa:datasets xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
...contents of datasets packet...
</xfa:datasets>

endstream

13 0 obj

stream
<config xmlns="http://www.xfa.org/schema/xci/1.0/">
...contents of config node of XFA Data Package...
<config>

endstream

14 0 obj

stream
</xdp:xdp>

endstream

EXAMPLE 2 The following example shows the same entry specified as a stream.

1 0 obj XFA entry in interactive form dictionary

<< /XFA 10 0 R >>
endobj

10 0 obj

stream
<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">
<template xmlns="http://www.xfa.org/schema/xfa-template/2.4/">
...remaining contents of template packet...
</template>

PDF 32000-1:2008

466 © Adobe Systems Incorporated 2008 – All rights reserved

<xfa:datasets xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
...contents of datasets packet...
</xfa:datasets>
<config xmlns="http://www.xfa.org/schema/xci/1.0/">
...contents of config node of XFA Data Package...
<config>
</xdp:xdp>

endstream
endobj

When an XFA entry is present in an interactive form dictionary, the XFA resource provides information about
the form; in particular, all form-related events such as calculations and validations. The other entries in the
interactive form dictionary shall be consistent with the information in the XFA resource. When creating or
modifying a PDF file with an XFA resource, a conforming writer shall follow these rules:

• PDF interactive form field objects shall be present for each field specified in the XFA resource. The XFA
field values shall be consistent with the corresponding V entries of the PDF field objects.

• The XFA Scripting Object Model (SOM) specifies a naming convention that shall be used to connect
interactive form field names with field names in the XFA resource. Information about this model is available
in the XFA Specification, version 2.5 (see the Bibliography).

• No A or AA entries (see Table 164) shall be present in the annotation dictionaries of fields that also have
actions specified by the XFA resource.

12.8 Digital Signatures

12.8.1 General

A digital signature (PDF 1.3) may be used to authenticate the identity of a user and the document’s contents. It
stores information about the signer and the state of the document when it was signed. The signature may be
purely mathematical, such as a public/private-key encrypted document digest, or it may be a biometric form of
identification, such as a handwritten signature, fingerprint, or retinal scan. The specific form of authentication
used shall be implemented by a special software module called a signature handler. Signature handlers shall
be identified in accordance with the rules defined in Annex E.

Digital signatures in ISO 32000 currently support two activities: adding a digital signature to a document and
later checking that signature for validity. Revocation information is a signed attribute, which means that the
signing software must capture the revocation information before signing. A similar requirement applies to the
chain of certificates. The signing software must capture and validate the certificate's chain before signing.

Signature information shall be contained in a signature dictionary, whose entries are listed in Table 252.
Signature handlers may use or omit those entries that are marked optional in the table but should use them in a
standard way if they are used at all. In addition, signature handlers may add private entries of their own. To
avoid name duplication, the keys for all such private entries shall be prefixed with the registered handler name
followed by a PERIOD (2Eh).

Signatures shall be created by computing a digest of the data (or part of the data) in a document, and storing
the digest in the document. To verify the signature, the digest shall be re-computed and compared with the one
stored in the document. Differences in the digest values indicate that modifications have been made since the
document was signed.

There are two defined techniques for computing a digital signature of the contents of all or part of a PDF file:

• A byte range digest shall be computed over a range of bytes in the file, that shall be indicated by the
ByteRange entry in the signature dictionary. This range should be the entire file, including the signature
dictionary but excluding the signature value itself (the Contents entry). Other ranges may be used but
since they do not check for all changes to the document, their use is not recommended. When a byte
range digest is present, all values in the signature dictionary shall be direct objects.

© Adobe Systems Incorporated 2008 – All rights reserved 467

PDF 32000-1:2008

• Additionally, modification detection may be specified by a signature reference dictionary. The
TransformMethod entry shall specify the general method for modification detection, and the
TransformParams entry shall specify the variable portions of the method.

A PDF document may contain the following standard types of signatures:

• One or more approval signatures. These signatures appear in signature form fields (see 12.7.4.5,
“Signature Fields”). The signature dictionary corresponding to each signature shall be the value of the form
field (as specified by its V entry). The signature dictionary shall contain a ByteRange entry representing a
byte range digest, as described previously. A signature shall be validated by recomputing the digest and
comparing it with the one stored in the signature.

NOTE 1 If a signed document is modified and saved by incremental update (see 7.5.6, “Incremental Updates”), the data
corresponding to the byte range of the original signature is preserved. Therefore, if the signature is valid, it is
possible to recreate the state of the document as it existed at the time of signing.

• At most one certification signature (PDF 1.5). The signature dictionary of a certification signature shall be
the value of a signature field and shall contain a ByteRange entry. It may also be referenced from the
DocMDP entry in the permissions dictionary (see 12.8.4, “Permissions”). The signature dictionary shall
contain a signature reference dictionary (see Table 253) that has a DocMDP transform method. See
12.8.2.2, “DocMDP” for information on how these signatures shall be created and validated.

A signature dictionary for a certification or approval signature may also have a signature reference
dictionary with a FieldMDP transform method; see 12.8.2.4, “FieldMDP.”

• At most two usage rights signatures (PDF 1.5). Its signature dictionary shall be referenced from the UR3
(PDF 1.6) entry in the permissions dictionary, whose entries are listed in Table 258, (not from a signature
field). The signature dictionary shall contain a Reference entry whose value is a signature reference
dictionary that has a UR transform method. See 12.8.2.3, “UR” for information on how these signatures
shall be created and validated.

Table 252 – Entries in a signature dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be Sig for a signature dictionary.

Filter name (Required; inheritable) The name of the preferred signature handler to
use when validating this signature. If the Prop_Build entry is not
present, it shall be also the name of the signature handler that was
used to create the signature. If Prop_Build is present, it may be used
to determine the name of the handler that created the signature (which
is typically the same as Filter but is not needed to be). A conforming
reader may substitute a different handler when verifying the signature,
as long as it supports the specified SubFilter format. Example
signature handlers are Adobe.PPKLite, Entrust.PPKEF, CICI.SignIt,
and VeriSign.PPKVS. The name of the filter (i.e. signature handler)
shall be identified in accordance with the rules defined in Annex E.

SubFilter name (Optional) A name that describes the encoding of the signature value
and key information in the signature dictionary. A conforming reader
may use any handler that supports this format to validate the
signature.
(PDF 1.6) The following values for public-key cryptographic signatures
shall be used: adbe.x509.rsa_sha1, adbe.pkcs7.detached, and
adbe.pkcs7.sha1 (see 12.8.3, “Signature Interoperability”). Other
values may be defined by developers, and when used, shall be
prefixed with the registered developer identification. All prefix names
shall be registered (see Annex E). The prefix “adbe” has been
registered by Adobe Systems and the three subfilter names listed
above and defined in 12.8.3, “Signature Interoperability“ may be used
by any developer.

PDF 32000-1:2008

468 © Adobe Systems Incorporated 2008 – All rights reserved

Contents byte string (Required) The signature value. When ByteRange is present, the
value shall be a hexadecimal string (see 7.3.4.3, “Hexadecimal
Strings”) representing the value of the byte range digest.
For public-key signatures, Contents should be either a DER-encoded
PKCS#1 binary data object or a DER-encoded PKCS#7 binary data
object.
Space for the Contents value must be allocated before the message
digest is computed. (See 7.3.4, “String Objects“)

Cert array or
byte string

(Required when SubFilter is adbe.x509.rsa_sha1) An array of byte
strings that shall represent the X.509 certificate chain used when
signing and verifying signatures that use public-key cryptography, or a
byte string if the chain has only one entry. The signing certificate shall
appear first in the array; it shall be used to verify the signature value in
Contents, and the other certificates shall be used to verify the
authenticity of the signing certificate.
If SubFilter is adbe.pkcs7.detached or adbe.pkcs7.sha1, this entry
shall not be used, and the certificate chain shall be put in the PKCS#7
envelope in Contents.

ByteRange array (Required for all signatures that are part of a signature field and usage
rights signatures referenced from the UR3 entry in the permissions
dictionary) An array of pairs of integers (starting byte offset, length in
bytes) that shall describe the exact byte range for the digest
calculation. Multiple discontiguous byte ranges shall be used to
describe a digest that does not include the signature value (the
Contents entry) itself.

Reference array (Optional; PDF 1.5) An array of signature reference dictionaries (see
Table 253).

Changes array (Optional) An array of three integers that shall specify changes to the
document that have been made between the previous signature and
this signature: in this order, the number of pages altered, the number
of fields altered, and the number of fields filled in.
The ordering of signatures shall be determined by the value of
ByteRange. Since each signature results in an incremental save, later
signatures have a greater length value.

Name text string (Optional) The name of the person or authority signing the document.
This value should be used only when it is not possible to extract the
name from the signature.
EXAMPLE 1 From the certificate of the signer.

M date (Optional) The time of signing. Depending on the signature handler,
this may be a normal unverified computer time or a time generated in a
verifiable way from a secure time server.
This value should be used only when the time of signing is not
available in the signature.
EXAMPLE 2 A time stamp can be embedded in a PKCS#7 binary

data object (see 12.8.3.3, “PKCS#7 Signatures as
used in ISO 32000”).

Location text string (Optional) The CPU host name or physical location of the signing.

Reason text string (Optional) The reason for the signing, such as (I agree …).

ContactInfo text string (Optional) Information provided by the signer to enable a recipient to
contact the signer to verify the signature.
EXAMPLE 3 A phone number.

Table 252 – Entries in a signature dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 469

PDF 32000-1:2008

NOTE 2 The entries in the signature dictionary can be conceptualized as being in different dictionaries; they are in one
dictionary for historical and cryptographic reasons. The categories are signature properties (R, M, Name,
Reason, Location, Prop_Build, Prop_AuthTime, and Prop_AuthType); key information (Cert and portions
of Contents when the signature value is a PKCS#7 object); reference (Reference and ByteRange); and
signature value (Contents when the signature value is a PKCS#1 object).

R integer (Optional) The version of the signature handler that was used to create
the signature. (PDF 1.5) This entry shall not be used, and the
information shall be stored in the Prop_Build dictionary.

V integer (Optional; PDF 1.5) The version of the signature dictionary format. It
corresponds to the usage of the signature dictionary in the context of
the value of SubFilter. The value is 1 if the Reference dictionary shall
be considered critical to the validation of the signature.
Default value: 0.

Prop_Build dictionary (Optional; PDF 1.5) A dictionary that may be used by a signature
handler to record information that captures the state of the computer
environment used for signing, such as the name of the handler used to
create the signature, software build date, version, and operating
system.
he PDF Signature Build Dictionary Specification, provides
implementation guidelines for the use of this dictionary.

Prop_AuthTime integer (Optional; PDF 1.5) The number of seconds since the signer was last
authenticated, used in claims of signature repudiation. It should be
omitted if the value is unknown.

Prop_AuthType name (Optional; PDF 1.5) The method that shall be used to authenticate the
signer, used in claims of signature repudiation. Valid values shall be
PIN, Password, and Fingerprint.

Table 253 – Entries in a signature reference dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary
describes; if present, shall be SigRef for a signature
reference dictionary.

TransformMethod name (Required) The name of the transform method (see Section
12.8.2, “Transform Methods”) that shall guide the
modification analysis that takes place when the signature is
validated. Valid values shall be:
DocMDP Used to detect modifications to a document

relative to a signature field that is signed by the
originator of a document; see 12.8.2.2,
“DocMDP.”

UR Used to detect modifications to a document
that would invalidate a signature in a rights-
enabled document; see 12.8.2.3, “UR.”

FieldMDP Used to detect modifications to a list of form
fields specified in TransformParams; see
12.8.2.4, “FieldMDP.”

TransformParams dictionary (Optional) A dictionary specifying transform parameters
(variable data) for the transform method specified by
TransformMethod. Each method takes its own set of
parameters. See each of the sub-clauses specified previously
for details on the individual transform parameter dictionaries

Table 252 – Entries in a signature dictionary (continued)

Key Type Value

PDF 32000-1:2008

470 © Adobe Systems Incorporated 2008 – All rights reserved

12.8.2 Transform Methods

12.8.2.1 General

Transform methods, along with transform parameters, shall determine which objects are included and excluded
in revision comparison. The following sub-clauses discuss the types of transform methods, their transform
parameters, and when they shall be used.

12.8.2.2 DocMDP

12.8.2.2.1 General

The DocMDP transform method shall be used to detect modifications relative to a signature field that is signed
by the author of a document (the person applying the first signature). A document can contain only one
signature field that contains a DocMDP transform method; it shall be the first signed field in the document. It
enables the author to specify what changes shall be permitted to be made the document and what changes
invalidate the author’s signature.

NOTE As discussed earlier, “MDP” stands for modification detection and prevention. Certification signatures that use
the DocMDP transform method enable detection of disallowed changes specified by the author. In addition,
disallowed changes can also be prevented when the signature dictionary is referred to by the DocMDP entry in
the permissions dictionary (see 12.8.4, “Permissions”).

A certification signature should have a legal attestation dictionary (see 12.8.5, “Legal Content Attestations”)
that specifies all content that might result in unexpected rendering of the document contents, along with the
author’s attestation to such content. This dictionary may be used to establish an author’s intent if the integrity of
the document is questioned.

The P entry in the DocMDP transform parameters dictionary (see Table 254) shall indicate the author’s
specification of which changes to the document will invalidate the signature. (These changes to the document
shall also be prevented if the signature dictionary is referred from the DocMDP entry in the permissions
dictionary.) A value of 1 for P indicates that the document shall be final; that is, any changes shall invalidate the
signature. The values 2 and 3 shall permit modifications that are appropriate for form field or comment
workflows.

12.8.2.2.2 Validating Signatures That Use the DocMDP Transform Method

To validate a signature that uses the DocMDP transform method, a conforming reader first shall verify the byte
range digest. Next, it shall verify that any modifications that have been made to the document are permitted by
the transform parameters.

Once the byte range digest is validated, the portion of the document specified by the ByteRange entry in the
signature dictionary (see Table 252) is known to correspond to the state of the document at the time of signing.

Data (various) (Required when TransformMethod is FieldMDP) An indirect
reference to the object in the document upon which the object
modification analysis should be performed. For transform
methods other than FieldMDP, this object is implicitly
defined.

DigestMethod name (Optional; PDF 1.5 required) A name identifying the algorithm
that shall be used when computing the digest. Valid values
are MD5 and SHA1. Default value: MD5. For security
reasons, MD5 should not be used. It is mentioned for
backwards compatibility, since it remains the default value.

Table 253 – Entries in a signature reference dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 471

PDF 32000-1:2008

Therefore, conforming readers may compare the signed and current versions of the document to see whether
there have been modifications to any objects that are not permitted by the transform parameters.

12.8.2.3 UR

The UR transform method shall be used to detect changes to a document that shall invalidate a usage rights
signature, which is referred to from the UR3 entry in the permissions dictionary (see 12.8.4, “Permissions”).
Usage rights signatures shall be used to enable additional interactive features that may not available by default
in a conforming reader. The signature shall be used to validate that the permissions have been granted by a
bonafide granting authority. The transform parameters dictionary (see Table 255) specifies the additional rights
that shall be enabled if the signature is valid. If the signature is invalid because the document has been
modified in a way that is not permitted or the identity of the signer is not granted the extended permissions,
additional rights shall not be granted.

EXAMPLE Adobe Systems grants permissions to enable additional features in Adobe Reader, using public-key
cryptography. It uses certificate authorities to issue public key certificates to document creators with which
it has entered into a business relationship. Adobe Reader verifies that the rights-enabling signature uses
a certificate from an Adobe-authorized certificate authority. Other conforming readers are free to use this
same mechanism for their own purposes.

UR3 (PDF 1.6): The ByteRange entry in the signature dictionary (see Table 252) shall be present. First, a
conforming reader shall verify the byte range digest to determine whether the portion of the document specified
by ByteRange corresponds to the state of the document at the time of signing. Next, a conforming reader shall
examine the current version of the document to see whether there have been modifications to any objects that
are not permitted by the transform parameters.

Table 254 – Entries in the DocMDP transform parameters dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be TransformParams for a transform parameters dictionary.

P number (Optional) The access permissions granted for this document. Valid values
shall be:
1 No changes to the document shall be permitted; any change to the

document shall invalidate the signature.
2 Permitted changes shall be filling in forms, instantiating page

templates, and signing; other changes shall invalidate the signature.
3 Permitted changes shall be the same as for 2, as well as annotation

creation, deletion, and modification; other changes shall invalidate the
signature.

Default value: 2.

V name (Optional) The DocMDP transform parameters dictionary version. The only
valid value shall be 1.2.
NOTE this value is a name object, not a number.

Default value: 1.2.

PDF 32000-1:2008

472 © Adobe Systems Incorporated 2008 – All rights reserved

Table 255 – Entries in the UR transform parameters dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be TransformParams for a transform parameters dictionary.

Document array (Optional) An array of names specifying additional document-wide usage
rights for the document. The only defined value shall be FullSave, which
permits a user to save the document along with modified form and/or
annotation data. (PDF 1.5) Any usage right that permits the document to be
modified implicitly shall enable the FullSave right.
If the PDF document contains a UR3 dictionary, only rights specified by the
Annots entry that permit the document to be modified shall implicitly enable
the FullSave right. For all other rights, FullSave shall be explicitly enabled in
order to save the document. (Signature rights shall permit saving as part of the
signing process but not otherwise).
If the P entry in the UR transform parameters dictionary is true (PDF 1.6) and
greater conforming readers shall permit only those rights that are enabled by
the entries in the dictionary. However, conforming readers shall permit saving
the document as long as any rights that permit modifying the document are
enabled.

Msg text
string

(Optional) A text string that may be used to specify any arbitrary information,
such as the reason for adding usage rights to the document.

V name (Optional) The UR transform parameters dictionary version. The value shall be
2.2. If an unknown version is present, no rights shall be enabled.
NOTE This value is a name object, not a number.

Default value: 2.2.

Annots array (Optional) An array of names specifying additional annotation-related usage
rights for the document. Valid names (PDF 1.5) are Create, Delete, Modify,
Copy, Import, and Export, which shall permit the user to perform the named
operation on annotations.
The following names (PDF 1.6) shall be permitted only when the signature
dictionary is referenced from the UR3 entry of the permissions dictionary (see
Table 258):
Online Permits online commenting; that is, the ability to upload or

download markup annotations from a server.
SummaryView Permits a user interface to be shown that summarizes the

comments (markup annotations) in a document.

© Adobe Systems Incorporated 2008 – All rights reserved 473

PDF 32000-1:2008

12.8.2.4 FieldMDP

The FieldMDP transform method shall be used to detect changes to the values of a list of form fields. The
entries in its transform parameters dictionary are listed in Table 256.

Form array (Optional) An array of names specifying additional form-field-related usage
rights for the document. Valid names (PDF 1.5) are:
Add Permits the user to add form fields to the document.
Delete Permits the user to delete form fields to the document.
FillIn Permits the user to save a document on which form fill-in

has been done.
Import Permits the user to import form data files in FDF, XFDF and

text (CSV/TSV) formats.
Export Permits the user to export form data files as FDF or XFDF.
SubmitStandalone Permits the user to submit form data when the document is

not open in a Web browser.
SpawnTemplate Permits new pages to be instantiated from named page

templates.
The following names (PDF 1.6) shall be permitted only when the signature
dictionary is referenced from the UR3 entry of the permissions dictionary; see
Table 258:
BarcodePlaintext Permits (PDF 1.6) text form field data to be encoded as a

plaintext two-dimensional barcode.
Online Permits (PDF 1.6) the use of forms-specific online

mechanisms such as SOAP or Active Data Object.

Signature array (Optional) An array of names specifying additional signature-related usage
rights for the document. The only defined value shall be Modify, which permits
a user to apply a digital signature to an existing signature form field or clear a
signed signature form field.

EF array (Optional; PDF 1.6) An array of names specifying additional usage rights for
named embedded files in the document. Valid names shall be Create, Delete,
Modify, and Import, which shall permit the user to perform the named operation
on named embedded files.

P boolean (Optional; PDF 1.6) If true, permissions for the document shall be restricted in
all consumer applications to those permissions granted by a conforming
reader, while allowing permissions for rights enabled by other entries in this
dictionary. Default value: false.

Table 256 – Entries in the FieldMDP transform parameters dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be TransformParams for a transform parameters dictionary.

Action name (Required) A name that, along with the Fields array, describes which form
fields do not permit changes after the signature is applied.
Valid values shall be:
All All form fields.
Include Only those form fields that specified in Fields.
Exclude Only those form fields not specified in Fields.

Fields array (Required if Action is Include or Exclude) An array of text strings containing
field names.

Table 255 – Entries in the UR transform parameters dictionary (continued)

Key Type Value

PDF 32000-1:2008

474 © Adobe Systems Incorporated 2008 – All rights reserved

On behalf of a document author creating a document containing both form fields and signatures the following
shall be supported by conforming writers:

• The author specifies that form fields shall be filled in without invalidating the approval or certification
signature. The P entry of the DocMDP transform parameters dictionary shall be set to either 2 or 3 (see
Table 254).

• The author can also specify that after a specific recipient has signed the document, any modifications to
specific form fields shall invalidate that recipient’s signature. There shall be a separate signature field for
each designated recipient, each having an associated signature field lock dictionary (see Table 233)
specifying the form fields that shall be locked for that user.

• When the recipient signs the field, the signature, signature reference, and transform parameters
dictionaries shall be created. The Action and Fields entries in the transform parameters dictionary shall
be copied from the corresponding fields in the signature field lock dictionary.

NOTE This copying is done because all objects in a signature dictionary must be direct objects if the dictionary
contains a byte range signature. Therefore, the transform parameters dictionary cannot reference the
signature field lock dictionary indirectly.

FieldMDP signatures shall be validated in a similar manner to DocMDP signatures. See Validating Signatures
That Use the DocMDP Transform Method in 12.8.2.2, “DocMDP” for details.

12.8.3 Signature Interoperability

12.8.3.1 General

It is intended that conforming readers allow interoperability between signature handlers; that is, a PDF file
signed with a handler from one vendor shall be able to be validated with a handler from a different vendor.

If present, the SubFilter entry in the signature dictionary shall specify the encoding of the signature value and
key information, while the Filter entry shall specify the preferred handler that should be used to validate the
signature. When handlers are being registered according to Annex E they shall specify the SubFilter encodings
they support enabling handlers other than the preferred handler to validate the signatures that the preferred
handler creates.

There are several defined values for the SubFilter entry, all based on public-key cryptographic standards
published by RSA Security and also as part of the standards issued by the Internet Engineering Task Force
(IETF) Public Key Infrastructure (PKIX) working group; see the Bibliography for references.

12.8.3.2 PKCS#1 Signatures

The PKCS#1 standard supports several public-key cryptographic algorithms and digest methods, including
RSA encryption, DSA signatures, and SHA-1 and MD5 digests (see the Bibliography for references). For
signing PDF files using PKCS#1, the only value of SubFilter that should be used is adbe.x509.rsa_sha1, which
uses the RSA encryption algorithm and SHA-1 digest method. The certificate chain of the signer shall be stored
in the Cert entry.

V name (Optional: PDF 1.5 required) The transform parameters dictionary version. The
value for PDF 1.5 and later shall be 1.2.
NOTE This value is a name object, not a number.

Default value: 1.2.

Table 256 – Entries in the FieldMDP transform parameters dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 475

PDF 32000-1:2008

12.8.3.3 PKCS#7 Signatures as used in ISO 32000

12.8.3.3.1 General

When PKCS#7 signatures are used, the value of Contents shall be a DER-encoded PKCS#7 binary data
object containing the signature. The PKCS#7 object shall conform to RFC3852 Cryptographic Message
Syntax. Different subfilters may be used and shall be registered in accordance with Annex E. SubFilter shall
take one of the following values:

• adbe.pkcs7.detached: The original signed message digest over the document’s byte range shall be
incorporated as the normal PKCS#7 SignedData field. No data shall be encapsulated in the PKCS#7
SignedData field.

• adbe.pkcs7.sha1: The SHA1 digest of the document’s byte range shall be encapsulated in the PKCS#7
SignedData field with ContentInfo of type Data. The digest of that SignedData shall be incorporated as the
normal PKCS#7 digest.

The PKCS#7 object shall conform to the PKCS#7 specification in Internet RFC 2315, PKCS #7: Cryptographic
Message Syntax, Version 1.5 (see the Bibliography). At minimum, it shall include the signer’s X.509 signing
certificate. This certificate shall be used to verify the signature value in Contents.

The PKCS#7 object should contain the following:

• Time stamp information as an unsigned attribute (PDF 1.6): The timestamp token shall conform to RFC
3161 and shall be computed and embedded into the PKCS#7 object as described in Appendix A of RFC
3161. The specific treatment of timestamps and their processing is left to the particular signature handlers
to define.

• Revocation information as an signed attribute (PDF 1.6): This attribute may include all the revocation
information that is necessary to carry out revocation checks for the signer's certificate and its issuer
certificates. Since revocation information is a signed attribute, it must be obtained before the computation
of the digital signature. This means that the software used by the signer must be able to construct the
certification path and the associated revocation information. If one of the elements cannot be obtained
(e.g. no connection is possible), a signature with this attribute will not be possible.

• (PDF 1.6). This differs from the treatment when using adbe.x509.rsa_sha1 when the certificates shall be
placed in the Cert key of the signature dictionary as defined in Table 252.

• One or more RFC 3281 attribute certificates associated with the signer certificate (PDF 1.7). The specific
treatment of attribute certificates and their processing is left to the particular signature handlers to define.

NOTE For maximum compatibility with earlier versions, conforming writers should follow this practice.

The policy of how to establish trusted identity lists to validate embedded certificates is up to the validation
signature handler.

12.8.3.3.2 Revocation Information

The adbe Revocation Information attribute:

adbe-revocationInfoArchival OBJECT IDENTIFIER ::=
{ adbe(1.2.840.113583) acrobat(1) security(1) 8 }

The value of the revocation information attribute can include any of the following data types:

• Certificate Revocation Lists (CRLs), described in RFC 3280 (see the Bibliography): CRLs are generally
large and therefore should not be embedded in the PKCS#7 object.

PDF 32000-1:2008

476 © Adobe Systems Incorporated 2008 – All rights reserved

• Online Certificate Status Protocol (OCSP) Responses, described in RFC 2560, X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol—OCSP (see the Bibliography): These are generally small
and constant in size and should be the data type included in the PKCS#7 object.

• Custom revocation information: The format is not prescribed by this specification, other than that it be
encoded as an OCTET STRING. The application should be able to determine the type of data contained
within the OCTET STRING by looking at the associated OBJECT IDENTIFIER.

adbe's Revocation Information attribute value has ASN.1 type RevocationInfoArchival:

RevocationInfoArchival ::= SEQUENCE {
crl [0] EXPLICIT SEQUENCE of CRLs, OPTIONAL
ocsp [1] EXPLICIT SEQUENCE of OCSP Responses, OPTIONAL
otherRevInfo [2] EXPLICIT SEQUENCE of OtherRevInfo, OPTIONAL

}
OtherRevInfo ::= SEQUENCE {
Type OBJECT IDENTIFIER
Value OCTET STRING
}

For byte range signatures, Contents shall be a hexadecimal string with “<” and “>” delimiters. It shall fit
precisely in the space between the ranges specified by ByteRange. Since the length of PKCS#7 objects is not
entirely predictable, the value of Contents shall be padded with zeros at the end of the string (before the “>”
delimiter) before writing the PKCS#7 to the allocated space in the file.

The format for encoding signature values should be adbe.pkcs7.detached. This encoding allows the most
options in terms of algorithm use. The following table shows the algorithms supported for the various SubFilter
values.

12.8.4 Permissions

The Perms entry in the document catalogue (see Table 28) shall specify a permissions dictionary (PDF 1.5).
Each entry in this dictionary (see Table 258 for the currently defined entries) shall specify the name of a
permission handler that controls access permissions for the document. These permissions are similar to those

Table 257 – SubFilter value algorithm support

SubFilter value

adbe.pkcs7.detached adbe.pkcs7.sha1 adbe.x509.rsa.sha1a

Message Digest SHA1 (PDF 1.3)
SHA256 (PDF 1.6)
SHA384 (PDF 1.7)
SHA512 (PDF 1.7)
RIPEMD160 (PDF 1.7)

SHA1 (PDF 1.3)b SHA1 (PDF 1.3)
SHA256 (PDF 1.6)
SHA384 (PDF 1.7)
SHA512 (PDF 1.7)
RIPEMD160 (PDF 1.7)

RSA Algorithm Support Up to 1024-bit (PDF 1.3)
Up to 2048-bit (PDF 1.5)
Up to 4096-bit (PDF 1.5)

See
adbe.pkcs7.detached

See
adbe.pkcs7.detached

DSA Algorithm Support Up to 4096-bits (PDF 1.6) See
adbe.pkcs7.detached

No

a Despite the appearance of sha1 in the name of this SubFilter value, supported encodings shall not
be limited to the SHA1 algorithm. The PKCS#1 object contains an identifier that indicates which al-
gorithm shall be used.

b Other digest algorithms may be used to digest the signed-data field; however, SHA1 shall be used
to digest the data that is being signed.

© Adobe Systems Incorporated 2008 – All rights reserved 477

PDF 32000-1:2008

defined by security handlers (see Table 22) but do not require that the document be encrypted. For a
permission to be actually granted for a document, it shall be allowed by each permission handler that is present
in the permissions dictionary as well as by the security handler.

NOTE An example of a permission is the ability to fill in a form field.

12.8.5 Legal Content Attestations

The PDF language provides a number of capabilities that can make the rendered appearance of a PDF
document vary. These capabilities could potentially be used to construct a document that misleads the recipient
of a document, intentionally or unintentionally. These situations are relevant when considering the legal
implications of a signed PDF document.

Therefore, a mechanism shall be provided by which a document recipient can determine whether the document
can be trusted. The primary method is to accept only documents that contain certification signatures (one that
has a DocMDP signature that defines what shall be permitted to change in a document; see 12.8.2.2,
“DocMDP”).

When creating certification signatures, conforming writers should also create a legal attestation dictionary,
whose entries are shown in Table 259. This dictionary shall be the value of the Legal entry in the document
catalogue (see Table 28). Its entries shall specify all content that may result in unexpected rendering of the
document contents. The author may provide further clarification of such content by means of the Attestation
entry. Reviewers should establish for themselves that they trust the author and contents of the document. In the
case of a legal challenge to the document, any questionable content can be reviewed in the context of the
information in this dictionary.

Table 258 – Entries in a permissions dictionary

Key Type Value

DocMDP dictionary (Optional) An indirect reference to a signature dictionary (see Table 252).
This dictionary shall contain a Reference entry that shall be a signature
reference dictionary (see Table 252) that has a DocMDP transform method
(see 12.8.2.2, “DocMDP”) and corresponding transform parameters.
If this entry is present, consumer applications shall enforce the permissions
specified by the P attribute in the DocMDP transform parameters dictionary
and shall also validate the corresponding signature based on whether any of
these permissions have been violated.

UR3 dictionary (Optional) A signature dictionary that shall be used to specify and validate
additional capabilities (usage rights) granted for this document; that is, the
enabling of interactive features of the conforming reader that are not
available by default.
For example, A conforming reader does not permit saving documents by
default, but an agent may grant permissions that enable saving specific
documents. The signature shall be used to validate that the permissions
have been granted by the agent that did the signing.
The signature dictionary shall contain a Reference entry that shall be a
signature reference dictionary that has a UR transform method (see
12.8.2.3, “UR”). The transform parameter dictionary for this method indicates
which additional permissions shall be granted for the document. If the
signature is valid, the conforming reader shall allow the specified
permissions for the document, in addition to the application’s default
permissions.

PDF 32000-1:2008

478 © Adobe Systems Incorporated 2008 – All rights reserved

Table 259 – Entries in a legal attestation dictionary

Key Type Value

JavaScriptActions integer (Optional) The number of JavaScript actions found in the document
(see 12.6.4.16, “JavaScript Actions”).

LaunchActions integer (Optional) The number of launch actions found in the document (see
12.6.4.5, “Launch Actions”).

URIActions integer (Optional) The number of URI actions found in the document (see
12.6.4.7, “URI Actions”).

MovieActions integer (Optional) The number of movie actions found in the document (see
12.6.4.9, “Movie Actions”).

SoundActions integer (Optional) The number of sound actions found in the document (see
12.6.4.8, “Sound Actions”).

HideAnnotationActions integer (Optional) The number of hide actions found in the document (see
12.6.4.10, “Hide Actions”).

GoToRemoteActions integer (Optional) The number of remote go-to actions found in the
document (see 12.6.4.3, “Remote Go-To Actions”).

AlternateImages integer (Optional) The number of alternate images found in the document
(see 8.9.5.4, “Alternate Images”)

ExternalStreams integer (Optional) The number of external streams found in the document.

TrueTypeFonts integer (Optional) The number of TrueType fonts found in the document (see
9.6.3, “TrueType Fonts”).

ExternalRefXobjects integer (Optional) The number of reference XObjects found in the document
(see 8.10.4, “Reference XObjects”).

ExternalOPIdicts integer (Optional) The number of OPI dictionaries found in the document
(see 14.11.7, “Open Prepress Interface (OPI)”).

NonEmbeddedFonts integer (Optional) The number of non-embedded fonts found in the
document (see 9.9, “Embedded Font Programs””)

DevDepGS_OP integer (Optional) The number of references to the graphics state parameter
OP found in the document (see Table 58).

DevDepGS_HT integer (Optional) The number of references to the graphics state parameter
HT found in the document (see Table 58).

DevDepGS_TR integer (Optional) The number of references to the graphics state parameter
TR found in the document (see Table 58).

DevDepGS_UCR integer (Optional) The number of references to the graphics state parameter
UCR found in the document (see Table 58).

DevDepGS_BG integer (Optional) The number of references to the graphics state parameter
BG found in the document (see Table 58).

DevDepGS_FL integer (Optional) The number of references to the graphics state parameter
FL found in the document (see Table 58).

Annotations integer (Optional) The number of annotations found in the document (see
12.5, “Annotations”).

OptionalContent boolean (Optional) true if optional content is found in the document (see 8.11,
“Optional Content”).

Attestation text string (Optional) An attestation, created by the author of the document,
explaining the presence of any of the other entries in this dictionary
or the presence of any other content affecting the legal integrity of the
document.

© Adobe Systems Incorporated 2008 – All rights reserved 479

PDF 32000-1:2008

12.9 Measurement Properties

PDF documents, such as those created by CAD software, may contain graphics that are intended to represent
real-world objects. Users of such documents often require information about the scale and units of
measurement of the corresponding real-world objects and their relationship to units in PDF user space.

This information enables users of conforming readers to perform measurements that yield results in the units
intended by the creator of the document. A measurement in this context is the result of a canonical function that
takes as input a set of n coordinate pairs

and produces a single number as output depending on the type of measurement. For example, distance
measurement is equivalent to

for

Beginning with PDF 1.6, such information may be stored in a measure dictionary (see Table 261). Measure
dictionaries provide information about measurement units associated with a rectangular area of the document
known as a viewport.

A viewport (PDF 1.6) is a rectangular region of a page. The optional VP entry in a page dictionary (see
Table 30) shall specify an array of viewport dictionaries, whose entries shall be as shown in Table 260.
Viewports allow different measurement scales (specified by the Measure entry) to be used in different areas of
a page, if necessary.

The dictionaries in the VP array shall be in drawing order. Since viewports might overlap, to determine the
viewport to use for any point on a page, the dictionaries in the array shall be examined, starting with the last
one and iterating in reverse, and the first one whose BBox entry contains the point shall be chosen.

NOTE 1 Any measurement that potentially involves multiple viewports, such as one specifying the distance between
two points, shall use the information specified in the viewport of the first point.

Table 260 – Entries in a viewport dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; shall be
Viewport for a viewport dictionary.

BBox rectangle (Required) A rectangle in default user space coordinates specifying the
location of the viewport on the page.
The two coordinate pairs of the rectangle shall be specified in normalized
form; that is, lower-left followed by upper-right, relative to the measuring
coordinate system. This ordering shall determine the orientation of the
measuring coordinate system (that is, the direction of the positive x and y
axes) in this viewport, which may have a different rotation from the page.
The coordinates of this rectangle are independent of the origin of the
measuring coordinate system, specified in the O entry (see Table 262) of the
measurement dictionary specified by Measure.

x0 y0,() … xn 1– yn 1–,(), ,{ }

xi xi 1+–()2 yi yi 1+–()2+

i 0=

n 2–

∑

n 2.≥

PDF 32000-1:2008

480 © Adobe Systems Incorporated 2008 – All rights reserved

A measure dictionary shall specify an alternate coordinate system for a region of a page. Along with the
viewport dictionary, it shall provide the information needed to convert coordinates in the page’s coordinate
system to coordinates in the measuring coordinate system. The measure dictionary shall provide information
for formatting the resulting values into textual form for presentation in a graphical user interface.

Table 261 shows the entries in a measure dictionary. PDF 1.6 defines only a single type of coordinate system,
a rectilinear coordinate system, that shall be specified by the value RL for the Subtype entry, which is defined
as one in which the x and y axes are perpendicular and have units that increment linearly (to the right and up,
respectively). Other subtypes may be used, providing the flexibility to measure using other types of coordinate
systems.

Table 262 shows the additional entries in a rectilinear measure dictionary. Many of the entries in this dictionary
shall be number format arrays, which are arrays of number format dictionaries (see Table 263). Each number
format dictionary shall represent a specific unit of measurement (such as miles or feet). It shall contain
information about how each unit shall be expressed in text and factors for calculating the number of units.

Number format arrays specify all the units that shall be used when expressing a specific measurement. Each
array shall contain one or more number format dictionaries, in descending order of granularity. If one unit of
measurement X is larger than one unit of measurement Y then X has a larger order of granularity than Y. All the
elements in the array shall contain text strings that, concatenated together, specify how the units shall be
displayed.

NOTE 2 For example, a measurement of 1.4505 miles might be expressed as “1.4505 mi”, which would require one
number format dictionary for miles, or as “1 mi 2,378 ft 7 5/8 in”, which would require three dictionaries (for
miles, feet, and inches).

EXAMPLE 1 A number format dictionary specifying feet should precede one specifying inches.

Name text string (Optional) A descriptive text string or title of the viewport, intended for use in
a user interface.

Measure dictionary (Optional) A measure dictionary (see Table 261) that specifies the scale and
units that shall apply to measurements taken on the contents within the
viewport.

Table 261 – Entries in a measure dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; shall be
Measure for a measure dictionary.

Subtype name (Optional) A name specifying the type of coordinate system to use for
measuring.
Default value: RL, which specifies a rectilinear coordinate system

Table 260 – Entries in a viewport dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 481

PDF 32000-1:2008

Table 262 – Additional entries in a rectilinear measure dictionary

Key Type Value

R text string (Required) A text string expressing the scale ratio of the drawing in the
region corresponding to this dictionary. Universally recognized unit
abbreviations should be used, either matching those of the number format
arrays in this dictionary or those of commonly used scale ratios.
EXAMPLE 1 a common scale in architectural drawings is “1/4 in = 1 ft”,

indicating that 1/4 inches in default user space is
equivalent to 1 foot in real-world measurements.

If the scale ratio differs in the x and y directions, both scales should be
specified.
EXAMPLE 2 “in X 1 cm = 1 m, in Y 1 cm = 30 m”.

X array (Required) A number format array for measurement of change along the x
axis and, if Y is not present, along the y axis as well. The first element in the
array shall contain the scale factor for converting from default user space
units to the largest units in the measuring coordinate system along that axis.
The directions of the x and y axes are in the measuring coordinate system
and are independent of the page rotation. These directions shall be
determined by the BBox entry of the containing viewport (see Table 260).

Y array (Required when the x and y scales have different units or conversion factors)
A number format array for measurement of change along the y axis. The first
element in the array shall contain the scale factor for converting from default
user space units to the largest units in the measuring coordinate system
along the y axis.

D array (Required) A number format array for measurement of distance in any
direction. The first element in the array shall specify the conversion to the
largest distance unit from units represented by the first element in X. The
scale factors from X, Y (if present) and CYX (if Y is present) shall be used to
convert from default user space to the appropriate units before applying the
distance function.

A array (Required) A number format array for measurement of area. The first
element in the array shall specify the conversion to the largest area unit from
units represented by the first element in X, squared. The scale factors from
X, Y (if present) and CYX (if Y is present) shall be used to convert from
default user space to the appropriate units before applying the area function.

T array (Optional) A number format array for measurement of angles. The first
element in the array shall specify the conversion to the largest angle unit
from degrees. The scale factor from CYX (if present) shall be used to convert
from default user space to the appropriate units before applying the angle
function.

S array (Optional) A number format array for measurement of the slope of a line. The
first element in the array shall specify the conversion to the largest slope unit
from units represented by the first element in Y divided by the first element in
X. The scale factors from X, Y (if present) and CYX (if Y is present) shall be
used to convert from default user space to the appropriate units before
applying the slope function.

O array (Optional) An array of two numbers that shall specify the origin of the
measurement coordinate system in default user space coordinates. The
directions by which x and y increase in value from this origin shall be
determined by the viewport’s BBox entry (see Table 260).
Default value: the first coordinate pair (lower-left corner) of the rectangle
specified by the viewport’s BBox entry.

PDF 32000-1:2008

482 © Adobe Systems Incorporated 2008 – All rights reserved

The X and Y entries in a measure dictionary shall be number format arrays that shall specify the units used for
measurements in the x and y directions, respectively, and the ratio between user space units and the specified
units. Y is present only when the x and y measurements are in different units or have different ratios; in this
case, the CYX entry shall be used to convert y values to x values when appropriate.

CYX number (Optional; meaningful only when Y is present) A factor that shall be used to
convert the largest units along the y axis to the largest units along the x axis.
It shall be used for calculations (distance, area, and angle) where the units
are be equivalent; if not specified, these calculations may not be performed
(which would be the case in situations such as x representing time and y
representing temperature). Other calculations (change in x, change in y, and
slope) shall not require this value.

Table 263 – Entries in a number format dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; shall be
NumberFormat for a number format dictionary.

U text string (Required) A text string specifying a label for displaying the units represented
by this dictionary in a user interface; the label should use a universally
recognized abbreviation.

C number (Required) The conversion factor used to multiply a value in partial units of
the previous number format array element to obtain a value in the units of
this dictionary. When this entry is in the first number format dictionary in the
array, its meaning (that is, what it shall be multiplied by) depends on which
entry in the rectilinear measure dictionary (see Table 262) references the
number format array.

F name (Optional; meaningful only for the last dictionary in a number format array) A
name indicating whether and in what manner to display a fractional value
from the result of converting to the units of this dictionary by means of the C
entry. Valid values shall be:
D Show as decimal to the precision specified by the D entry.
F Show as a fraction with denominator specified by the D entry.
R No fractional part; round to the nearest whole unit.
T No fractional part; truncate to achieve whole units.
Default value: D.

D integer (Optional; meaningful only for the last dictionary in a number format array) A
positive integer that shall specify the precision or denominator of a fractional
amount:
When the value of F is D, this entry shall be the precision of a decimal
display; it shall be a multiple of 10. Low-order zeros may be truncated unless
FD is true. Default value: 100 (hundredths, corresponding to two decimal
digits).
When the value of F is F, this entry shall be the denominator of a fractional
display. The fraction may be reduced unless the value of FD is true. Default
value: 16.

FD boolean (Optional; meaningful only for the last dictionary in a number format array) If
true, a fractional value formatted according to the D entry may not have its
denominator reduced or low-order zeros truncated.
Default value: false.

Table 262 – Additional entries in a rectilinear measure dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 483

PDF 32000-1:2008

To use a number format array to create a text string containing the appropriately formatted units for display in a
user interface, apply the following algorithm:

Algorithm: Use of a number format array to create a formatted text string

a) The entry in the rectilinear measure dictionary (see Table 262) that references the number format array
determines the meaning of the initial measurement value. For example, the X entry specifies user space
units, and the T entry specifies degrees.

b) Multiply the value specified previously by the C entry of the first number format dictionary in the array,
which converts the measurement to units of the largest granularity specified in the array. Apply the value of
RT as appropriate.

c) If the result contains no nonzero fractional portion, concatenate the label specified by the U entry in the
order specified by O, after adding spacing from PS and SS. The formatting is then complete.

d) If there is a nonzero fractional portion and no more elements in the array, format the fractional portion as
specified by the RD, F, D, and FD entries of the last dictionary. Concatenate the label specified by the U
entry in the order specified by O, after adding spacing from PS and SS. The formatting is then complete.

e) If there is a nonzero fractional portion and more elements in the array, proceed to the next number format
dictionary in the array. Multiply its C entry by the fractional result from the previous step. Apply the value of
RT as appropriate. Then proceed to step 3.

The concatenation of elements in this process assumes left-to-right order. Documents using right-to-left
languages may modify the process and the meaning of the entries as appropriate to produce the correct
results.

RT text string (Optional) Text that shall be used between orders of thousands in display of
numerical values. An empty string indicates that no text shall be added.
Default value: COMMA (2Ch).

RD text string (Optional) Text that shall be used as the decimal position in displaying
numerical values. An empty string indicates that the default shall be used.
Default value: PERIOD (2Eh).

PS text string (Optional) Text that shall be concatenated to the left of the label specified by
U. An empty string indicates that no text shall be added.
Default value: A single ASCII SPACE character (20h).

SS text string (Optional) Text that shall be concatenated after the label specified by U. An
empty string indicates that no text shall be added.
Default value: A single ASCII SPACE character (20h).

O name (Optional) A name indicating the position of the label specified by U with
respect to the calculated unit value. Valid values shall be:
S The label is a suffix to the value.
P The label is a prefix to the value.
The characters specified by PS and SS shall be concatenated before
considering this entry.
Default value: S.

Table 263 – Entries in a number format dictionary (continued)

Key Type Value

PDF 32000-1:2008

484 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE 2 The following example shows a measure dictionary that specifies that changes in x or y are expressed in
miles; distances are expressed in miles, feet, and inches; and area is expressed in acres. Given a sample
distance in scaled units of 1.4505 miles, the formatted text produced by applying the number format array
would be
“1 mi 2,378 ft 7 5/8 in”.

<</Type /Measure

/Subtype /RL
/R (1in = 0.1 mi)
/X [<</U (mi) % x offset represented in miles

/C .00139 % Conversion from user space units to miles
/D 100000

]
/D [<< /U (mi) /C 1 >> % Distance: initial unit is miles; no conversion needed

 << /U (ft) /C 5280 >> % Conversion from miles to feet
 << /U (in) /C 12 % Conversion from feet to inches

 /F /F /D 8 >> % Fractions of inches rounded to nearest 1/8
]

/A [<</U (acres) % Area: measured in acres
/C 640 >> % Conversion from square miles to acres

]
>>

12.10 Document Requirements

12.10.1 General

Beginning with PDF 1.7, a document may specify requirements that shall be present in a conforming reader in
order for the document to function properly. The Requirements entry in the document catalogue (see 7.7.2,
“Document Catalog”) shall specify an array of requirement dictionaries, whose entries are shown in Table 264.

The RH entry ensures backward-capability for this feature. Some PDF documents include JavaScript segments
that verify compliance with certain requirements. Such JavaScript segments are called requirement handlers.
Backward-compatibility shall be achieved by ensuring that either the conforming reader checks the requirement
or the JavaScript segment checks the requirement, but not both.

When a PDF document is first opened, all JavaScript segments in the document shall be executed, including
the requirement handlers. If the conforming reader understands the requirement dictionary, it shall disable
execution of the requirement handlers named by the RH entry. If the requirement handler is in JavaScript, the
conforming reader shall look up the segment using the Names dictionary (7.7.4, “Name Dictionary”).

In PDF 1.7, the only defined requirement type shall be EnableJavaScripts. This requirement indicates that the
document requires JavaScript execution to be enabled in the conforming reader. If the EnableJavaScripts
requirement is present, an interactive conforming reader may allow the user to choose between keeping
JavaScript execution disabled or temporarily enabling it to benefit from the full function of the document.

Table 264 – Entries common to all requirement dictionaries

Key Type Description

Type name (Optional) The type of PDF object that this dictionary
describes. If present, shall be Requirement for a
requirement dictionary.

S name (Required) The type of requirement that this dictionary
describes. The value shall be EnableJavaScripts.

RH array (Optional) An array of requirement handler dictionaries (see
Table 265). This array lists the requirement handlers that
shall be disabled (not executed) if the conforming reader can
check the requirement specified in the S entry.

© Adobe Systems Incorporated 2008 – All rights reserved 485

PDF 32000-1:2008

If the EnableJavaScripts requirement is present in a requirement dictionary, the inclusion of the RH entry that
specifies a JavaScript segment would be pointless. Writing a JavaScript segment to verify that JavaScript is
enabled would not achieve the desired goal. The RH entry shall not be used in PDF 1.7.

12.10.2 Requirement Handlers

A requirement handler is a program that verifies certain requirements are satisfied. Table 265 describes the
entries in a requirement handler dictionary.

Table 265 – Entries in a requirement handler dictionary

Key Type Description

Type name (Optional) The type of PDF object that this dictionary
describes. If present, shall be ReqHandler for a requirement
handler dictionary.

S name (Required) The type of requirement handler that this
dictionary describes. Valid requirement handler types shall be
JS (for a JavaScript requirement handlers) and NoOp.
A value of NoOp allows older conforming readers to ignore
unrecognized requirements. This value does not add any
specific entry to the requirement handler dictionary.

Script text string (Optional; valid only if the S entry has a value of JS) The
name of a document-level JavaScript action stored in the
document name dictionary (see 7.7.4, “Name Dictionary”). If
the conforming reader understands the parent requirement
dictionary and can verify the requirement specified in that
dictionary, it shall disable execution of the requirement
handler identified in this dictionary.

PDF 32000-1:2008

486 © Adobe Systems Incorporated 2008 – All rights reserved

13 Multimedia Features

13.1 General

This clause describes those features of PDF that support embedding and playing multimedia content. It
contains the following sub-clauses:

• 13.2, “Multimedia,” describes the comprehensive set of multimedia capabilities that were introduced in
PDF 1.5.

• 13.3, “Sounds,” and 13.4, “Movies,” describe features that have been supported since PDF 1.2.

• 13.5, “Alternate Presentations,” describes a slideshow capability that was introduced in PDF 1.4.

• 13.6, “3D Artwork,” describes the capability of embedding three-dimensional graphics in a document,
introduced in PDF 1.6.

13.2 Multimedia

13.2.1 General

PDF 1.5 introduces a comprehensive set of language constructs to enable the following capabilities:

• Arbitrary media types may be embedded in PDF files.

• Embedded media, as well as referenced media outside a PDF file, may be played with a variety of player
software. (In some situations, the player software may be the conforming reader itself.)

NOTE 1 The term playing is used with a wide variety of media, and is not restricted to audio or video. For example, it
may be applied to static images such as JPEGs.

• Media objects may have multiple renditions, which may be chosen at play-time based on considerations
such as available bandwidth.

• Document authors may control play-time requirements, such as which player software should be used to
play a given media object.

• Media objects may be played in various ways; for example, in a floating window as well as in a region on a
page.

• Future extensions to the media constructs may be handled in an appropriate manner by current
conforming readers. Authors may control how old conforming readers treat future extensions.

• Document authors may adapt the use of multimedia to accessibility requirements.

• On-line media objects may be played efficiently, even when very large.

The following list summarizes the multimedia features and indicates where each feature is discussed:

• 13.2.2, “Viability,” describes the rules for determining when media objects are suitable for playing on a
particular system.

• Rendition actions (see 12.6.4.13, “Rendition Actions”) shall be used to begin the playing of multimedia
content.

• A rendition action associates a screen annotation (see 12.5.6.18, “Screen Annotations”) with a rendition
(see 13.2.3, “Renditions”).

© Adobe Systems Incorporated 2008 – All rights reserved 487

PDF 32000-1:2008

• Renditions are of two varieties: media renditions (see 13.2.3.2, “Media Renditions”) that define the
characteristics of the media to be played, and selector renditions (see 13.2.3.3, “Selector Renditions”) that
enables choosing which of a set of media renditions should be played.

• Media renditions contain entries that specify what should be played (see 13.2.4, “Media Clip Objects”),
how it should be played (see 13.2.5, “Media Play Parameters”), and where it should be played (see 13.2.6,
“Media Screen Parameters”).

• 13.2.7, “Other Multimedia Objects,” describes several PDF objects that are referenced by the preceding
major objects.

NOTE 2 Some of the features described in the following sub-clauses have references to corresponding elements in the
Synchronized Multimedia Integration Language (SMIL 2.0) standard (see the Bibliography).

13.2.2 Viability

When playing multimedia content, the conforming reader shall often make decisions such as which player
software and which options, such as volume and duration, to use.

In making these decisions, the viewer shall determine the viability of the objects used. If an object is considered
non-viable, the media should not be played. If the object is viable, the media should be played, though possibly
under less than optimum conditions.

There are several entries in the multimedia object dictionaries whose values shall have an effect on viability. In
particular, some of the object dictionaries define two entries that divide options into one of two categories:

• MH (“must honour”): The options specified by this entry shall be honoured; otherwise, the containing object
shall be considered non-viable.

• BE (“best effort”): An attempt should be made to honour the options; however, if they cannot be honoured,
the containing object is still considered viable.

MH and BE are both dictionaries, and the same entries shall be defined for both of them. In any dictionary
where these entries are allowed, both entries may be present, or only one, or neither.

EXAMPLE The media play parameters dictionary (see Table 279) allows the playback volume to be set by means of
the V entry in its MH and BE dictionaries (see Table 280).

If the specified volume cannot be honoured, the object shall be considered non-viable if V is in the MH
dictionary, and playback shall not occur. If V is in the BE dictionary (and not also in the MH dictionary), playback
should still occur: the playing software attempts to honour the specified option as best it can.

Using this mechanism, authors may specify minimum requirements (MH) and preferred options (BE). They
may also specify how entries that are added in the future to the multimedia dictionaries shall be interpreted by
old conforming readers. If an entry that is unrecognized by the viewer is in the MH dictionary, the object shall be
considered non-viable. If an unrecognized entry is in a BE dictionary, the entry shall be ignored and viability
shall be unaffected. Unless otherwise stated, an object shall be considered non-viable if its MH dictionary
contains an unrecognized key or an unrecognized value for a recognized key.

The following rules apply to the entries in MH and BE dictionaries, which behave somewhat differently from
other PDF dictionaries:

• If an entry is required, the requirement is met if the entry is present in either the MH dictionary or the BE
dictionary.

• If an optional entry is not present in either dictionary, it shall be considered to be present with its default
value (if one is defined) in the BE dictionary.

PDF 32000-1:2008

488 © Adobe Systems Incorporated 2008 – All rights reserved

• If an instance of the same entry is present in both MH and BE, the instance in the BE dictionary shall be
ignored unless otherwise specified.

• If the value of an entry in an MH or a BE dictionary is a dictionary or array, it shall be treated as an atomic
unit when determining viability. That is, all entries within the dictionary or array shall be honoured for the
containing object to be viable.

NOTE When determining whether entries can be honoured, it is not required that each one be evaluated
independently, since they may be dependent on one another. That is, a conforming reader or player may
examine multiple entries at once (even within different dictionaries) to determine whether their values can be
honoured.

The following media objects may have MH and BE dictionaries. They function as described previously, except
where noted in the individual sub-clauses:

• Rendition (Table 267)

• Media clip data (Table 276)

• Media clip section (Table 278)

• Media play parameters (Table 280)

• Media screen parameters (Table 283)

13.2.3 Renditions

13.2.3.1 General

There are two types of rendition objects:

• A media rendition (see 13.2.3.2, “Media Renditions”) is a basic media object that specifies what to play,
how to play it, and where to play it.

• A selector rendition (see 13.2.3.3, “Selector Renditions”) contains an ordered list of renditions. This list
may include other selector renditions, resulting in a tree whose leaves are media renditions. The
conforming reader should play the first viable media rendition it encounters in the tree (see 13.2.2,
“Viability”).

NOTE 1 Table 266 shows the entries common to all rendition dictionaries. The N entry in a rendition dictionary specifies
a name that can be used to access the rendition object by means of name tree lookup (see Table 31).
JavaScript actions (see 12.6.4.16, “JavaScript Actions”), for example, use this mechanism.

Since the values referenced by name trees shall be indirect objects, all rendition objects should be indirect
objects.

NOTE 2 A rendition dictionary is not required to have a name tree entry. When it does, the conforming reader should
ensure that the name specified in the tree is kept the same as the value of the N entry (for example, if the user
interface allows the name to be changed). A document should not contain multiple renditions with the same
name.

The MH and BE entries are dictionaries whose entries may be present in one or the other of them, as
described in 13.2.2, “Viability.” For renditions, these dictionaries shall have a single entry C (see Table 267),
whose value shall have a media criteria dictionary specifying a set of criteria that shall be met for the rendition
to be considered viable (see Table 268).

The media criteria dictionary behaves somewhat differently than other MH/BE entries, as they are described in
13.2.2, “Viability.” The criteria specified by all of its entries shall be met regardless of whether they are in an MH
or a BE dictionary. The only exception is that if an entry in a BE dictionary is unrecognized by the conforming

© Adobe Systems Incorporated 2008 – All rights reserved 489

PDF 32000-1:2008

reader, it shall not affect the viability of the object. If a media criteria dictionary is present in both MH and BE,
the entries in both dictionaries shall be individually evaluated, with MH taking precedence (corresponding BE
entries shall be ignored).

Table 266 – Entries common to all rendition dictionaries

Key Type Value

Type name (Optional) The type of PDF object that dictionary describes; if present, shall
be Rendition for a rendition object.

S name (Required) The type of rendition that this dictionary describes. May be MR
for media rendition or SR for selector rendition. The rendition shall be
considered non-viable if the conforming reader does not recognize the value
of this entry.

N text string (Optional) A Unicode-encoded text string specifying the name of the
rendition for use in a user interface and for name tree lookup by JavaScript
actions.

MH dictionary (Optional) A dictionary whose entries (see Table 267) shall be honoured for
the rendition to be considered viable.

BE dictionary (Optional) A dictionary whose entries (see Table 267) shall only be honoured
in a “best effort” sense.

Table 267 – Entries in a rendition MH/BE dictionary

Key Type Value

C dictionary (Optional) A media criteria dictionary (see Table 268).
The media criteria dictionary behaves somewhat differently than other MH/
BE entries described in 13.2.2, “Viability.” The criteria specified by all of its
entries shall be met regardless of whether it is in an MH or a BE dictionary.
The only exception is that if an entry in a BE dictionary is unrecognized by
the conforming reader, it shall not affect the viability of the object.

Table 268 – Entries in a media criteria dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MediaCriteria for a media criteria dictionary.

A boolean (Optional) If specified, the value of this entry shall match the user’s
preference for whether to hear audio descriptions in order for this object to
be viable.
NOTE 1 Equivalent to SMIL’s systemAudioDesc attribute.

C boolean (Optional) If specified, the value of this entry shall match the user’s
preference for whether to see text captions in order for this object to be
viable.
NOTE 2 Equivalent to SMIL’s systemCaptions attribute.

O boolean (Optional) If specified, the value of this entry shall match the user’s
preference for whether to hear audio overdubs in order for this object to be
viable.

S boolean (Optional) If specified, the value of this entry shall match the user’s
preference for whether to see subtitles in order for this object to be viable.

PDF 32000-1:2008

490 © Adobe Systems Incorporated 2008 – All rights reserved

R integer (Optional) If specified, the system’s bandwidth (in bits per second) shall be
greater than or equal to the value of this entry in order for this object to be
viable.
NOTE 3 Equivalent to SMIL’s systemBitrate attribute.

D dictionary (Optional) A dictionary (see Table 269) specifying the minimum bit depth
required in order for this object to be viable.
NOTE 4 Equivalent to SMIL’s systemScreenDepth attribute.

Z dictionary (Optional) A dictionary (see Table 270) specifying the minimum screen size
required in order for this object to be viable.
NOTE 5 Equivalent to SMIL’s systemScreenSize attribute.

V array (Optional) An array of software identifier objects (see 13.2.7.4, “Software
Identifier Dictionary”). If this entry is present and non-empty, the conforming
reader shall be identified by one or more of the objects in the array in order
for this object to be viable.

P array (Optional) An array containing one or two name objects specifying a
minimum and optionally a maximum PDF language version, in the same
format as the Version entry in the document catalog (see Table 28). If this
entry is present and non-empty, the version of multimedia constructs fully
supported by the conforming reader shall be within the specified range in
order for this object to be viable.

L array (Optional) An array of language identifiers (see 14.9.2.2, “Language
Identifiers”). If this entry is present and non-empty, the language in which the
conforming reader is running shall exactly match a language identifier, or
consist only of a primary code that matches the primary code of an identifier,
in order for this object to be viable.
NOTE 6 Equivalent to SMIL’s systemLanguage attribute.

Table 269 – Entries in a minimum bit depth dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MinBitDepth for a minimum bit depth dictionary.

V integer (Required) A positive integer (0 or greater) specifying the minimum screen
depth (in bits) of the monitor for the rendition to be viable. A negative value
shall not be allowed.

M integer (Optional) A monitor specifier (see Table 270) that specifies which monitor
the value of V should be tested against. If the value is unrecognized, the
object shall not be viable.
Default value: 0.

Table 268 – Entries in a media criteria dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 491

PDF 32000-1:2008

13.2.3.2 Media Renditions

Table 271 lists the entries in a media rendition dictionary. Its entries specify what media should be played (C),
how (P), and where (SP) it should be played. A media rendition object shall be viable if and only if the objects
referenced by its C, P, and SP entries are viable.

C may be omitted only in cases where a referenced player takes no meaningful input. This requires that P shall
be present and that its referenced media play parameters dictionary (see Table 279) shall contain a PL entry,
whose referenced media players dictionary (see 13.2.7.2, “Media Players Dictionary”) has a non-empty MU
array or a non-empty A array.

13.2.3.3 Selector Renditions

A selector rendition dictionary shall specify an array of rendition objects in its R entry (see Table 272). The
renditions in this array should be ordered by preference, with the most preferred rendition first. At play-time, the
renditions in the array shall be evaluated and the first viable media rendition, if any, shall be played. If one of
the renditions is itself a selector, that selector shall be evaluated in turn, yielding the equivalent of a depth-first
tree search. A selector rendition itself may be non-viable; in this case, none of its associated media renditions
shall be evaluated (in effect, this branch of the tree is skipped).

NOTE This mechanism may be used, for example, to specify that a large video clip should be used on high-
bandwidth machines and a smaller clip should be used on low-bandwidth machines.

Table 270 – Entries in a minimum screen size dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MinScreenSize for a rendition object.

V array (Required) An array containing two non-negative integers. The width and
height (in pixels) of the monitor specified by M shall be greater than or equal
to the values of the first and second integers in the array, respectively, in
order for this object to be viable.

M integer (Optional) A monitor specifier (see Table 293) that specifies which monitor
the value of V should be tested against. If the value is unrecognized, the
object shall be not viable.
Default value: 0.

Table 271 – Additional entries in a media rendition dictionary

Key Type Value

C dictionary (Optional) A media clip dictionary (see 13.2.4, “Media Clip Objects”) that
specifies what should be played when the media rendition object is played.

P dictionary (Required if C is not present, otherwise optional) A media play parameters
dictionary (see 13.2.5, “Media Play Parameters””) that specifies how the
media rendition object should be played.
Default value: a media play parameters dictionary whose entries (see
Table 279) all contain their default values.

SP dictionary (Optional) A media screen parameters dictionary (see 13.2.6, “Media Screen
Parameters”) that specifies where the media rendition object should be
played.
Default value: a media screen parameters dictionary whose entries (see
Table 282) all contain their default values.

PDF 32000-1:2008

492 © Adobe Systems Incorporated 2008 – All rights reserved

13.2.4 Media Clip Objects

13.2.4.1 General

There are two types of media clip objects, determined by the subtype S, which can be either MCD for media
clip data (see 13.2.4.2, “Media Clip Data”) or MCS for media clip section (see 13.2.4.3, “Media Clip Section”).
The entries common to all media clip dictionaries are listed in Table 273.

13.2.4.2 Media Clip Data

A media clip data dictionary defines the data for a media object that can be played. Its entries are listed in
Table 274

NOTE 1 It may reference a URL to a streaming video presentation or a movie embedded in the PDF file.

Table 272 – Additional entries specific to a selector rendition dictionary

Key Type Value

R array (Required) An array of rendition objects. The first viable media rendition
object found in the array, or nested within a selector rendition in the array,
should be used. An empty array is legal.

Table 273 – Entries common to all media clip dictionaries

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MediaClip for a media clip dictionary.

S name (Required) The subtype of media clip that this dictionary describes. May be
MCD for media clip data (see 13.2.4.2, “Media Clip Data”) or MCS for a
media clip section (see 13.2.4.3, “Media Clip Section”). The media clip shall
be considered non-viable if the conforming reader does not recognize the
value of this entry.

N text string (Optional) The name of the media clip, for use in the user interface.

Table 274 – Additional entries in a media clip data dictionary

Key Type Value

D file
specification or
stream

(Required) A full file specification or form XObject that specifies the actual
media data.

CT ASCII string (Optional; not allowed for form XObjects) An ASCII string identifying the type
of data in D. The string should conform to the content type specification
described in Internet RFC 2045, Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies (see the
Bibliography).

P dictionary (Optional) A media permissions dictionary (see Table 275) containing
permissions that control the use of the media data. Default value: a media
permissions dictionary containing default values.

Alt array (Optional) An array that provides alternate text descriptions for the media clip
data in case it cannot be played; see 14.9.2.4, “Multi-language Text Arrays.”

© Adobe Systems Incorporated 2008 – All rights reserved 493

PDF 32000-1:2008

The media clip data object shall be considered non-viable if the object referenced by the D entry does not
contain a Type entry, the Type entry is unrecognized, or the referenced object is not a dictionary or stream.

This shall effectively exclude the use of simple file specifications (see 7.11, “File Specifications”).

If D references a file specification that has an embedded file stream (see 7.11.4, “Embedded File Streams”), the
embedded file stream’s Subtype entry shall be ignored if present, and the media clip data dictionary’s CT entry
shall identify the type of data.

If D references a form XObject, the associated player is implicitly the conforming reader, and the form XObject
shall be rendered as if it were any other data type.

NOTE 2 The F and D entries in the media play parameters dictionary (see Table 279) should apply to a form XObject
just as they do to a QuickTime movie.

For media other than form XObjects, the media clip object shall provide enough information to allow a
conforming reader to locate an appropriate player. This may be done by providing one or both of the following
entries, the first being the preferred method:

• A CT entry that specifies the content type of the media. If this entry is present, any player that is selected
shall support this content type.

• A PL entry that specifies one or more players that may be used to play the referenced media. if CT is
present, there should also be a PL present.

The P entry specifies a media permissions dictionary (see Table 275) specifying the manner in which the data
referenced by the media may be used by a conforming reader. These permissions allow authors control over
how their data is exposed to operations that could allow it to be copied. If the dictionary contains unrecognized
entries or entries with unrecognized values, it shall be considered non-viable, and the conforming reader shall
not play the media.

PL dictionary (Optional) A media players dictionary (see 13.2.7.2, “Media Players
Dictionary”) that identifies, among other things, players that are legal and not
legal for playing the media.
If the media players dictionary is non-viable, the media clip data shall be
non-viable.

MH dictionary (Optional) A dictionary whose entries (see Table 276) shall be honoured for
the media clip data to be considered viable.

BE dictionary (Optional) A dictionary whose entries (see Table 276) should only be
honoured in a “best effort” sense.

Table 274 – Additional entries in a media clip data dictionary (continued)

Key Type Value

PDF 32000-1:2008

494 © Adobe Systems Incorporated 2008 – All rights reserved

The BU entry in the media clip data MH and BE dictionaries (see Table 276) specifies a base URL for the
media data. Relative URLs in the media (which point to auxiliary files or are used for hyperlinking) should be
resolved with respect to the value of BU. The following are additional requirements concerning the BU entry:

• If BU is in the MH dictionary and the base URL is not honoured the media clip data shall be non-viable.

NOTE 3 An example of this is that the player does not accept base URLs.

• Determining the viability of the object shall not require checking whether the base URL is valid

NOTE 4 The target host exists.

• Absolute URls within the media shall not be affected.

• If the media itself contains a base URL, that value shall be used in preference to BU.

NOTE 5 An example of this is that the <BASE> element is defined in HTML.

• BU is completely independent of and unrelated to the value of the URI entry in the document catalogue
(see 7.7.2, “Document Catalog”).

• If BU is not present and the media is embedded within the document, the URL to the PDF file itself shall be
used as if it were the value of a BU entry in the BE dictionary; that is, as an implicit best-effort base URL.

13.2.4.3 Media Clip Section

A media clip section dictionary (see Table 277) defines a continuous section of another media clip object
(known as the next-level media clip object). The next-level media clip object, specified by the D entry, may be
either a media clip data object or another media clip section object. However, the linked list formed by the D

Table 275 – Entries in a media permissions dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MediaPermissions for a media permissions dictionary.

TF ASCII
string

(Optional) An ASCII string indicating the circumstances under which it is
acceptable to write a temporary file in order to play a media clip. Valid values
are:
(TEMPNEVER) Never allowed.
(TEMPEXTRACT) Allowed only if the document permissions allow content

extraction; when bit 5 of the user access permissions
(see Table 22) is set.

(TEMPACCESS) Allowed only if the document permissions allow content
extraction, including for accessibility purposes; when bits
5 or 10 of the user access permissions (see Table 22) are
set, or both.

(TEMPALWAYS) Always allowed.
Default value: (TEMPNEVER).
An unrecognized value shall be treated as (TEMPNEVER).

Table 276 – Entries in a media clip data MH/BE dictionary

Key Type Value

BU ASCII
string

(Optional) An absolute URL that shall be used as the base URL in resolving
any relative URLs found within the media data.

© Adobe Systems Incorporated 2008 – All rights reserved 495

PDF 32000-1:2008

entries of media clip sections shall terminate in a media clip data object. If the next-level media object is non-
viable, the media clip section shall be also non-viable.

NOTE 1 A media clip section could define a 15-minute segment of a media clip data object representing a two-hour
movie.

The B and E entries in the media clip section’s MH and BE dictionaries (see Table 278) shall define a
subsection of the next-level media object referenced by D by specifying beginning and ending offsets into it.
Depending on the media type, the offsets may be specified by time, frames, or markers (see 13.2.6.2, “Media
Offset Dictionary”). B and E are not required to specify the same type of offset.

The following rules apply to these offsets:

• For media types where an offset makes no sense (such as JPEG images), B and E shall be ignored, with
no effect on viability.

• When B or E are specified by time or frames, their value shall be considered to be relative to the start of
the next-level media clip. However, if E specifies an offset beyond the end of the next-level media clip, the
end value shall be used instead, and there is no effect on viability.

• When B or E are specified by markers, there shall be a corresponding absolute offset into the underlying
media clip data object. If this offset is not within the range defined by the next-level media clip (if any), or if
the marker is not present in the underlying media clip, the existence of the entry shall be ignored, and there
is no effect on viability.

• If the absolute offset derived from the values of all B entries in a media clip section chain is greater than or
equal to the absolute offset derived from the values of all E entries, an empty range shall be defined. An
empty range is legal.

• Any B or E entry in a media clip section’s MH dictionary shall be honoured at play-time in order for the
media clip section to be considered viable.

NOTE 2 The entry may not be honored if its value was not viable or if the player did not support its value; for example,
the player did not support markers.

• If a B or E entry is in a media clip section’s MH dictionary, all B or E entries, respectively, at deeper levels
(closer to the media clip data), shall be evaluated as if they were in an MH dictionary (even if they are
actually within BE dictionaries).

• If B or E entry in a BE dictionary cannot be supported, it may be ignored at play-time.

Table 277 – Additional entries in a media clip section dictionary

Key Type Value

D dictionary (Required) The media clip section or media clip data object (the next-level
media object) of which this media clip section object defines a continuous
section.

Alt array (Optional) An array that provides alternate text descriptions for the media clip
section in case it cannot be played; see 14.9.2.4, “Multi-language Text
Arrays.”

MH dictionary (Optional) A dictionary whose entries (see Table 278) shall be honoured for
the media clip section to be considered viable.

BE dictionary (Optional) A dictionary whose entries (see Table 278) shall only be honoured
in a “best effort” sense.

PDF 32000-1:2008

496 © Adobe Systems Incorporated 2008 – All rights reserved

13.2.5 Media Play Parameters

A media play parameters dictionary specifies how a media object should be played. It shall be referenced from
a media rendition (see 13.2.3.2, “Media Renditions”).

Table 278 – Entries in a media clip section MH/BE dictionary

Key Type Value

B dictionary (Optional) A media offset dictionary (see 13.2.6.2, “Media Offset Dictionary”)
that specifies the offset into the next-level media object at which the media
clip section begins. Default: the start of the next-level media object.

E dictionary (Optional) A media offset dictionary (see 13.2.6.2, “Media Offset Dictionary”)
that specifies the offset into the next-level media object at which the media
clip section ends. Default: the end of the next-level media object.

Table 279 – Entries in a media play parameters dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MediaPlayParams for a media play parameters dictionary.

PL dictionary (Optional) A media players dictionary (see 13.2.7.2, “Media Players
Dictionary”) that identifies, among other things, players that are legal and not
legal for playing the media.
If this object is non-viable, the media play parameters dictionary shall be
considered non-viable.

MH dictionary (Optional) A dictionary whose entries (see Table 278) shall be honoured for
the media play parameters to be considered viable.

BE dictionary (Optional) A dictionary whose entries (see Table 278) shall only be honoured
in a “best effort” sense.

Table 280 – Entries in a media play parameters MH/BE dictionary

Key Type Value

V integer (Optional) An integer that specifies the desired volume level as a percentage
of recorded volume level. A zero value shall be equivalent to mute; negative
values shall be illegal. Default value: 100.

C boolean (Optional) A flag specifying whether to display a player-specific controller
user interface when playing.
EXAMPLE play/pause/stop controls.

Default value: false

© Adobe Systems Incorporated 2008 – All rights reserved 497

PDF 32000-1:2008

The value of the D entry is a media duration dictionary, whose entries are shown in Table 281. It specifies a
temporal duration.

NOTE 1 The D entry dictionary temporal duration corresponds to the notion of a simple duration in SMIL.

The duration may be a specific amount of time, it may be infinity, or it may be the media’s intrinsic duration.

EXAMPLE The intrinsic duration of a two-hour QuickTime movie is two hours.

F integer‘ (Optional) The manner in which the player shall treat a visual media type that
does not exactly fit the rectangle in which it plays.
0The media’s width and height shall be scaled while preserving the aspect
ratio so that the media and play rectangles have the greatest possible
intersection while still displaying all media content.
NOTE 1 Same as “meet” value of SMIL’s fit attribute.

1 The media’s width and height shall be scaled while preserving the aspect
ratio so that the play rectangle is entirely filled, and the amount of media
content that does not fit within the play rectangle shall be minimized.

NOTE 2 Same as “slice” value of SMIL’s fit attribute.

2 The media’s width and height shall be scaled independently so that the
media and play rectangles are the same; the aspect ratio shall not be
preserved.

NOTE 3 Same as “fill” value of SMIL’s fit attribute.

3 The media shall not be scaled. A scrolling user interface shall be
provided if the media rectangle is wider or taller than the play rectangle.

NOTE 4 Same as “scroll” value of SMIL’s fit attribute.

4 The media shall not be scaled. Only the portions of the media rectangle
that intersect the play rectangle shall be displayed.

NOTE 5 Same as “hidden” value of SMIL’s fit attribute.

5 Use the player’s default setting (author has no preference).
Default value: 5.
An unrecognized value shall be treated as the default value if the entry is in a
BE dictionary. If the entry is in an MH dictionary and it has an unrecognized
value, the object shall be considered non-viable.

D dictionary (Optional) A media duration dictionary (see Table 281). Default value: a
dictionary specifying the intrinsic duration (see RC).

A boolean (Optional) If true, the media shall automatically play when activated. If false,
the media shall be initially paused when activated.
EXAMPLE The first frame is displayed.

Relevant only for media that may be paused. Default value: true.

RC number (Optional) Specifies the number of iterations of the duration D to repeat.
NOTE 6 Similar to SMIL’s repeatCount attribute. Zero means repeat

forever. Negative values shall be illegal; non-integral values
shall be legal.

Default value: 1.0.

Table 280 – Entries in a media play parameters MH/BE dictionary (continued)

Key Type Value

PDF 32000-1:2008

498 © Adobe Systems Incorporated 2008 – All rights reserved

The intrinsic duration may be modified when a media clip section (see 13.2.4.3, “Media Clip Section”) is used:
the intrinsic duration shall be the difference between the absolute begin and end offsets. For a media type
having no notion of time (such as a JPEG image), the duration shall be considered to be infinity.

If the simple duration is longer than the intrinsic duration, the player shall freeze the media in its final state until
the simple duration has elapsed. For visual media types, the last appearance (frame) shall be displayed. For
aural media types, the media is logically frozen but shall not continue to produce sound.

NOTE 2 In this case, the RC entry, which specifies a repeat count, applies to the simple duration; therefore, the entire
play-pause sequence is repeated RC times.

13.2.6 Media Screen Parameters

13.2.6.1 General

A media screen parameters dictionary (see Table 282) shall specify where a media object should be played. It
shall contain MH and BE dictionaries (see Table 283), which shall function as discussed in 13.2.2, “Viability.” All
media clips that are being played shall be associated with a particular document and shall be stopped when the
document is closed.

NOTE Conforming readers should disallow floating windows and full-screen windows unless specifically allowed by
the user. The reason is that document-based security attacks are possible if windows containing arbitrary
media content can be displayed without indicating to the user that the window is merely hosting a media
object. This recommendation may be relaxed if it is possible to communicate the nature of such windows to the
user; for example, with text in a floating window’s title bar.

Table 281 – Entries in a media duration dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MediaDuration for a media duration dictionary.

S name (Required) The subtype of media duration dictionary. Valid values are:
I The duration is the intrinsic duration of the associated media
F The duration is infinity
T The duration shall be specified by the T entry
The media duration dictionary shall be considered non-viable if the
conforming reader does not recognize the value of this entry.

T dictionary (Required if the value of S is T; otherwise ignored) A timespan dictionary
specifying an explicit duration (see Table 289). A negative duration is illegal.

Table 282 – Entries in a media screen parameters dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MediaScreenParams for a media screen parameters dictionary.

MH dictionary (Optional) A dictionary whose entries (see Table 283) shall be honoured for
the media screen parameters to be considered viable.

BE dictionary (Optional) A dictionary whose entries (see Table 283) should be honoured.

© Adobe Systems Incorporated 2008 – All rights reserved 499

PDF 32000-1:2008

The F entry in the media screen parameters MH/BE dictionaries shall be a floating window parameters
dictionary, whose entries are listed in Table 284. The entries in the floating window parameters dictionary shall
be treated as if they were present in the MH or BE dictionaries that they are referenced from. That is, the
contained entries shall be individually evaluated for viability rather than the dictionary being evaluated as a
whole. (There may be an F entry in both MH and BE. In such a case, if a given entry is present in both floating
window parameters dictionaries, the one in the MH dictionary shall take precedence.)

The D, P, and RT entries shall be used to specify the rectangle that the floating window occupies. Once
created, the floating window’s size and position shall not be tied to any other window, even if the initial size or
position was computed relative to other windows.

Unrecognized values for the R, P, RT, and O entries shall be handled as follows: if they are nested within an
MH dictionary, the floating window parameters object (and hence the media screen parameters object) shall be

Table 283 – Entries in a media screen parameters MH/BE dictionary

Key Type Value

W integer (Optional) The type of window that the media object shall play in:
0 A floating window
1 A full-screen window that obscures all other windows
2 A hidden window
3 The rectangle occupied by the screen annotation (see 12.5.6.18,

“Screen Annotations”) associated with the media rendition
Default value: 3. Unrecognized value in MH: object is non-viable; in BE: treat
as default value.

B array (Optional) An array of three numbers in the range 0.0 to 1.0 that shall specify
the components in the DeviceRGB colour space of the background colour
for the rectangle in which the media is being played. This colour shall be
used if the media object does not entirely cover the rectangle or if it has
transparent sections. It shall be ignored for hidden windows.
Default value: implementation-defined. The conforming reader should
choose a reasonable value based on the value of W.
EXAMPLE 1 A system default background colour for floating windows

or a user-preferred background colour for full-screen
windows.

If a media format has an intrinsic background colour, B shall not override it.
However, the B colour shall be visible if the media has transparent areas or
otherwise does not cover the entire window.

O number (Optional) A number in the range 0.0 to 1.0 specifying the constant opacity
value that shall be used in painting the background colour specified by B. A
value below 1.0 means the window shall be transparent.
EXAMPLE 2 Windows behind a floating window show through if the

media does not cover the entire floating window.

A value of 0.0 shall indicate full transparency and shall make B irrelevant. It
shall be ignored for full-screen and hidden windows.
Default value: 1.0 (fully opaque).

M integer (Optional) A monitor specifier (see Table 293) that shall specify which
monitor in a multi-monitor system, a floating or full-screen window shall
appear on. Ignored for other types.
Default value: 0 (document monitor). Unrecognized value in MH: object is
non-viable; in BE: treat as default value.

F dictionary (Required if the value of W is 0; otherwise ignored) A floating window
parameters dictionary (see Table 284) that shall specify the size, position,
and options used in displaying floating windows.

PDF 32000-1:2008

500 © Adobe Systems Incorporated 2008 – All rights reserved

considered non-viable; if they are nested within a BE dictionary, they shall be considered to have their default
values.

Table 284 – Entries in a floating window parameters dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be FWParams for a floating window parameters dictionary.

D array (Required) An array containing two non-negative integers that shall
represent the floating window’s width and height, in pixels, respectively.
These values shall correspond to the dimensions of the rectangle in which
the media shall play, not including such items as title bar and resizing
handles.

RT integer (Optional) The window relative to which the floating window shall be
positioned:
0 The document window
1 The application window
2 The full virtual desktop
3 The monitor specified by M in the media screen parameters MH or BE

dictionary (see 9.22)
Default value: 0.

P integer (Optional) The location where the floating window (including such items as
title bar and resizing handles) shall be positioned relative to the window
specified by RT:
0 Upper-left corner
1 Upper center
2 Upper-right corner
3 Center left
4 Center
5 Center right
6 Lower-left corner
7 Lower center
8 Lower-right corner
Default value: 4.

O integer (Optional) Specifies what shall occur if the floating window is positioned
totally or partially offscreen (that is, not visible on any physical monitor):
0 Take no special action
1 Move and/or resize the window so that it is on-screen
2 Consider the object to be non-viable
Default value: 1

T boolean (Optional) If true, the floating window shall have a title bar. Default value:
true.

UC boolean (Optional; meaningful only if T is true) If true, the floating window shall
include user interface elements that allow a user to close a floating window.
Default value: true

R integer (Optional) Specifies whether the floating window may be resized by a user:
0 May not be resized
1 May be resized only if aspect ratio is preserved
2 May be resized without preserving aspect ratio
Default value: 0.

© Adobe Systems Incorporated 2008 – All rights reserved 501

PDF 32000-1:2008

13.2.6.2 Media Offset Dictionary

A media offset dictionary (Table 285) shall specify an offset into a media object. The S (subtype) entry indicates
how the offset shall be specified: in terms of time, frames or markers. Different media types support different
types of offsets.

EXAMPLE Time, “10 seconds”; frames, “frame 20”; markers, “Chapter One.”

TT array (Optional; meaningful only if T is true) An array providing text to display on
the floating window’s title bar. See 14.9.2.4, “Multi-language Text Arrays.” If
this entry is not present, the conforming reader may provide default text.

Table 285 – Entries common to all media offset dictionaries

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MediaOffset for a media offset dictionary.

S name (Required) The subtype of media offset dictionary. Valid values shall be:
T A media offset time dictionary (see Table 286)
F A media offset frame dictionary (see Table 287)
M A media offset marker dictionary (see Table 288)
The rendition shall be considered non-viable if the conforming reader does
not recognize the value of this entry.

Table 286 – Additional entries in a media offset time dictionary

Key Type Value

T dictionary (Required) A timespan dictionary (see Table 289) that shall specify a
temporal offset into a media object. Negative timespans are not allowed in
this context. The media offset time dictionary is non-viable if its timespan
dictionary is non-viable.

Table 287 – Additional entries in a media offset frame dictionary

Key Type Value

F integer (Required) Shall specify a frame within a media object. Frame numbers
begin at 0; negative frame numbers are not allowed.

Table 288 – Additional entries in a media offset marker dictionary

Key Type Value

M text string (Required) A text string that identifies a named offset within a media object.

Table 284 – Entries in a floating window parameters dictionary (continued)

Key Type Value

PDF 32000-1:2008

502 © Adobe Systems Incorporated 2008 – All rights reserved

13.2.6.3 Timespan Dictionary

A timespan dictionary shall specify a length of time; its entries are shown in Table 289.

13.2.7 Other Multimedia Objects

13.2.7.1 General

This sub-clause defines several dictionary types that are referenced by the previous sub-clauses.

13.2.7.2 Media Players Dictionary

A media players dictionary may be referenced by media clip data (see 13.2.4.2, “Media Clip Data”) and media
play parameters (see 13.2.5, “Media Play Parameters”) dictionaries, and shall allow them to specify which
players may or may not be used to play the associated media. The media players dictionary references media
player info dictionaries (see 13.2.7.3, “Media Player Info Dictionary”) that shall provide specific information
about each player.

Table 289 – Entries in a timespan dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be Timespan for a timespan dictionary.

S name (Required) The subtype of timespan dictionary. The value shall be S (simple
timespan). The rendition shall be considered non-viable if the conforming
reader does not recognize the value of this entry.

V number (Required) The number of seconds in the timespan. Non-integral values
shall be allowed. Negative values shall be allowed, but may be disallowed in
some contexts.
(PDF 1.5) Negative values are not allowed.
This entry shall be used only if the value of the S entry is S. Subtypes
defined in the future need not use this entry.

Table 290 – Entries in a media players dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MediaPlayers for a media players dictionary.

MU array (Optional) An array of media player info dictionaries (see Table 291) that
shall specify a set of players, one of which shall be used in playing the
associated media object.
Any players specified in NU are effectively removed from MU.
EXAMPLE If MU specifies versions 1 through 5 of a player and NU

specifies versions 1 and 2 of the same player, MU is
effectively versions 3 through 5.

A array (Optional) An array of media player info dictionaries (see Table 291) that
shall specify a set of players, any of which may be used in playing the
associated media object. If MU is also present and non-empty, A shall be
ignored.

NU array (Optional) An array of media player info dictionaries (see Table 291) that
shall specify a set of players that shall not be used in playing the associated
media object (even if they are also specified in MU).

© Adobe Systems Incorporated 2008 – All rights reserved 503

PDF 32000-1:2008

The MU, A, and NU entries each shall specify one or more media player info dictionaries. An empty array shall
be treated as if it is not present. The media player info dictionaries shall be allowed to specify overlapping
player ranges.

NOTE 1 MU could contain a media player info dictionary describing versions 1 to 10 of Player X and another describing
versions 3 through 5 of Player X.

If a non-viable media player info dictionary is referenced by MU, NU, or A, it shall be treated as if it were not
present in its original array, and a media player info dictionary containing the same software identifier dictionary
(see 13.2.7.4, “Software Identifier Dictionary”) shall logically considered present in NU. The same rule shall
apply to a media player info dictionary that contains a partially unrecognized software identifier dictionary.

Since both media clip data and media play parameters dictionaries may be employed in a play operation, and
each may reference a media players dictionary, there is a potential for conflict between the contents of the two
media players dictionaries. At play-time, the viewer shall use the following algorithm to determine whether a
player present on the machine may be employed. The player may not be used if any of the following conditions
are true:

Algorithm: Media Player

a) The content type is known and the player does not support the type.

b) The player is found in the NU array of either dictionary.

c) Both dictionaries have non-empty MU arrays and the player is not found in both of them, or only one of the
dictionaries has a non-empty MU array and the player is not found in it.

d) Neither dictionary has a non-empty MU array, the content type is not known, and the player is not found in
the A array of either dictionary.

If none of the conditions are true, the player may be used.

NOTE 2 A player is “found” in the NU, MU, or A arrays if it matches the information found in the PID entry of one of the
entries, as described by the Algorithm in 13.2.7.4, “Software Identifier Dictionary.”

13.2.7.3 Media Player Info Dictionary

A media player info dictionary shall provide a variety of information regarding a specific media player. Its entries
(see Table 291) shall associate information with a particular version or range of versions of a player. As of PDF
1.5, only the PID entry shall provide information about the player, as described in the next sub-clause, 13.2.7.4,
“Software Identifier Dictionary.”

Table 291 – Entries in a media player info dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be MediaPlayerInfo for a media player info dictionary.

PID dictionary (Required) A software identifier dictionary (see 13.2.7.4, “Software Identifier
Dictionary”) that shall specify the player name, versions, and operating
systems to which this media player info dictionary applies.

MH dictionary (Optional) A dictionary containing entries that shall be honored for this
dictionary to be considered viable
Currently, there are no defined entries for this dictionary

BE dictionary (Optional) A dictionary containing entries that need only be honored in a
“best effort” sense.
Currently, there are no defined entries for this dictionary

PDF 32000-1:2008

504 © Adobe Systems Incorporated 2008 – All rights reserved

13.2.7.4 Software Identifier Dictionary

13.2.7.4.1 General

A software identifier dictionary shall allow software to be identified by name, range of versions, and operating
systems; its entries are listed in Table 292. A conforming reader uses this information to determine whether a
given media player may be used in a given situation. If the dictionary contains keys that are unrecognized by
the conforming reader, it shall be considered to be partially recognized. The conforming reader may or may not
decide to treat the software identifier as viable, depending on the context in which it is used.

The following procedure shall be used to determine whether a piece of software is considered to match a
software identifier dictionary:

Algorithm: Software identifier

a) The software name shall match the name specified by the U entry (see “Software URIs” in 13.2.7.4,
“Software Identifier Dictionary”).

b) The software version shall be within the interval specified by the L, H, LI, and H1 entries (see “Version
arrays” in 13.2.7.4, “Software Identifier Dictionary”).

c) The machine’s operating system name shall be an exact match for one present in the OS array. If the array
is not present or empty, a match shall also be considered to exist.

Table 292 – Entries in a software identifier dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be SoftwareIdentifier for a software identifier dictionary.

U ASCII string (Required) A URI that identifies a piece of software (see “Software URIs” in
13.2.7.4, “Software Identifier Dictionary”).

L array (Optional) The lower bound of the range of software versions that this
software identifier dictionary specifies (see “Version arrays” in 13.2.7.4,
“Software Identifier Dictionary”). Default value: the array [0].

LI boolean (Optional) If true, the lower bound of the interval defined by L and H is
inclusive; that is, the software version shall be greater than or equal to L (see
“Version arrays” in 13.2.7.4, “Software Identifier Dictionary”). If false, it shall
not be inclusive. Default value: true.

H array (Optional) The upper bound of the range of software versions that this
software identifier dictionary specifies (see “Version arrays” in 13.2.7.4,
“Software Identifier Dictionary”). Default value: an empty array [].

HI boolean (Optional) If true, the upper bound of the interval defined by L and H is
inclusive; that is, the software version shall be less than or equal to H (see
“Version arrays” in 13.2.7.4, “Software Identifier Dictionary”). If false, it shall
not be inclusive. Default value: true.

OS array (Optional) An array of byte strings representing operating system identifiers
that shall indicate to which operating systems this object applies. The
defined values are the same as those defined for SMIL 2.0’s
systemOperatingSystem attribute. There may not be multiple copies of the
same identifier in the array. An empty array shall be considered to represent
all operating systems. Default value: an empty array.

© Adobe Systems Incorporated 2008 – All rights reserved 505

PDF 32000-1:2008

13.2.7.4.2 Software URIs

The U entry is a URI (universal resource identifier) that identifies a piece of software. It shall be interpreted
according to its scheme; the only presently defined scheme is vnd.adobe.swname. The scheme name is case-
insensitive; if shall not be recognized by the conforming reader, the software shall be considered a non-match.
The syntax of URIs of this scheme is

“vnd.adobe.swname:” software_name

where software_name shall be reg_name as defined in Internet RFC 2396, Uniform Resource Identifiers (URI):
Generic Syntax; see the Bibliography. software_name shall be a sequence of UTF-8-encoded characters that
have been escaped with one pass of URL escaping (see 14.10.3.2, “URL Strings”). That is, to recover the
original software name, software_name shall be unescaped and then treated as a sequence of UTF-8
characters. The actual software names shall be compared in a case-sensitive fashion.

Software names shall be second-class names (see Annex E).

EXAMPLE The URI for Adobe Acrobat is

vnd.adobe.swname:ADBE_Acrobat

13.2.7.4.3 Version arrays

The L, H, LI, and HI entries shall be used to specify a range of software versions. L and H shall be version
arrays containing zero or more non-negative integers representing subversion numbers. The first integer shall
be the major version numbers, and subsequent integers shall be increasingly minor. H shall be greater than or
equal to L, according to the following rules for comparing version arrays:

Algorithm: Comparing version arrays

a) An empty version array shall be treated as infinity; that is, it shall be considered greater than any other
version array except another empty array. Two empty arrays are equal.

b) When comparing arrays that contain different numbers of elements, the smaller array shall be implicitly
padded with zero-valued integers to make the number of elements equal.

EXAMPLE When comparing [5 1 2 3 4] to [5], the latter is treated as [5 0 0 0 0].

c) The corresponding elements of the arrays shall be compared, starting with the first. When a difference is
found, the array containing the larger element shall be considered to have the larger version number. If no
differences are found, the versions are equal.

If a version array contains negative numbers, it shall be considered non-viable, as is the enclosing software
identifier.

13.2.7.5 Monitor Specifier

A monitor specifier is an integer that shall identify a physical monitor attached to a system. It may have one of
the values in Table 293:

PDF 32000-1:2008

506 © Adobe Systems Incorporated 2008 – All rights reserved

For some of these values, it is possible have a “tie” at play-time; for example, two monitors might have the
same colour depth. Ties may be broken in an implementation-dependent manner.

13.3 Sounds

A sound object (PDF 1.2) shall be a stream containing sample values that define a sound to be played through
the computer’s speakers. The Sound entry in a sound annotation or sound action dictionary (see Table 185
and Table 208) shall identify a sound object representing the sound to be played when the annotation is
activated.

Since a sound object is a stream, it may contain any of the standard entries common to all streams, as
described in Table 5. In particular, if it contains an F (file specification) entry, the sound shall be defined in an
external file. This sound file shall be self-describing, containing all information needed to render the sound; no
additional information need be present in the PDF file.

NOTE The AIFF, AIFF-C (Mac OS), RIFF (. wav), and snd (. au) file formats are all self-describing.

If no F entry is present, the sound object itself shall contain the sample data and all other information needed to
define the sound. Table 294 shows the additional dictionary entries specific to a sound object.

Table 293 – Monitor specifier values

Value Description

0 The monitor containing the largest section of the document window

1 The monitor containing the smallest section of the document window

2 Primary monitor. If no monitor is considered primary, shall treat as
case 0

3 Monitor with the greatest colour depth

4 Monitor with the greatest area (in pixels squared)

5 Monitor with the greatest height (in pixels)

6 Monitor with the greatest width (in pixels)

Table 294 – Additional entries specific to a sound object

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be Sound for a sound object.

R number (Required) The sampling rate, in samples per second.

C integer (Optional) The number of sound channels. Default value: 1.

B integer (Optional) The number of bits per sample value per channel. Default value: 8.

E name (Optional) The encoding format for the sample data:
Raw Unspecified or unsigned values in the range 0 to 2B − 1
Signed Twos-complement values
muLaw m-law–encoded samples
ALaw A-law–encoded samples
Default value: Raw.

© Adobe Systems Incorporated 2008 – All rights reserved 507

PDF 32000-1:2008

Sample values shall be stored in the stream with the most significant bits first (big-endian order for samples
larger than 8 bits). Samples that are not a multiple of 8 bits shall be packed into consecutive bytes, starting at
the most significant end. If a sample extends across a byte boundary, the most significant bits shall be placed in
the first byte, followed by less significant bits in subsequent bytes. For dual-channel stereophonic sounds, the
samples shall be stored in an interleaved format, with each sample value for the left channel (channel 1)
preceding the corresponding sample for the right (channel 2).

To maximize the portability of PDF documents containing embedded sounds, conforming readers should
support at least the following formats (assuming the platform has sufficient hardware and OS support to play
sounds at all):

R 8000, 11,025, or 22,050 samples per second

C 1 or 2 channels

B 8 or 16 bits per channel

E Raw, Signed, or muLaw encoding

If the encoding (E) is Raw or Signed, R shall be 11,025 or 22,050 samples per channel. If the encoding is
muLaw, R shall be 8000 samples per channel, C shall be 1 channel, and B shall be 8 bits per channel. Sound
players shall convert between formats, downsample rates, and combine channels as necessary to render
sound on the target platform.

13.4 Movies

The features described in this sub-clause are obsolescent and their use is no longer recommended. They are
superseded by the general multimedia framework described in 13.2, “Multimedia.”

PDF shall embed movies within a document by means of movie annotations (see 12.5.6.17, “Movie
Annotations”). Despite the name, a movie may consist entirely of sound with no visible images to be displayed
on the screen. The Movie and A (activation) entries in the movie annotation dictionary shall refer, respectively,
to a movie dictionary (Table 295) that shall describe the static characteristics of the movie and a movie
activation dictionary (Table 296) that shall specify how it shall be presented.

CO name (Optional) The sound compression format used on the sample data. (This is
separate from any stream compression specified by the sound object’s Filter
entry; see Table 5 and 7.4, “Filters.”) If this entry is absent, sound
compression shall not be used; the data contains sampled waveforms that
shall be played at R samples per second per channel.

CP (various) (Optional) Optional parameters specific to the sound compression format
used.
No standard values have been defined for the CO and CP entries.

Table 294 – Additional entries specific to a sound object (continued)

Key Type Value

PDF 32000-1:2008

508 © Adobe Systems Incorporated 2008 – All rights reserved

Table 295 – Entries in a movie dictionary

Key Type Value

F file specification (Required) A file specification identifying a self-describing movie file.
NOTE The format of a self-describing movie file shall be left

unspecified, and there is no guarantee of portability.

Aspect array (Optional) The width and height of the movie’s bounding box, in pixels,
and shall be specified as [width height]. This entry should be omitted
for a movie consisting entirely of sound with no visible images.

Rotate integer (Optional) The number of degrees by which the movie shall be rotated
clockwise relative to the page. The value shall be a multiple of 90.
Default value: 0.

Poster boolean or stream (Optional) A flag or stream specifying whether and how a poster image
representing the movie shall be displayed. If this value is a stream, it
shall contain an image XObject (see 8.9, “Images”) to be displayed as
the poster. If it is the boolean value true, the poster image shall be
retrieved from the movie file; if it is false, no poster shall be displayed.
Default value: false.

Table 296 – Entries in a movie activation dictionary

Key Type Value

Start (various) (Optional) The starting time of the movie segment to be played. Movie
time values shall be expressed in units of time based on a time scale,
which defines the number of units per second. The default time scale
shall be defined in the movie data. The starting time shall be nominally
a non-negative 64-bit integer, specified as follows:
• If it is representable as an integer (subject to the implementation

limit for integers, as described in Annex C), it shall be specified as
such.

• If it is not representable as an integer, it shall be specified as an
8-byte string representing a 64-bit twos-complement integer, most
significant byte first.

• If it is expressed in a time scale different from that of the movie
itself, it shall be represented as an array of two values: an integer
or byte string denoting the starting time, followed by an integer
specifying the time scale in units per second.

If this entry is omitted, the movie shall be played from the beginning.

Duration (various) (Optional) The duration of the movie segment to be played, that shall
be specified in the same form as Start. If this entry is omitted, the
movie shall be played to the end.

Rate number (Optional) The initial speed at which to play the movie. If the value of
this entry is negative, the movie shall be played backward with respect
to Start and Duration. Default value: 1.0.

Volume number (Optional) The initial sound volume at which to play the movie, in the
range −1.0 to 1.0. Higher values shall denote greater volume; negative
values shall mute the sound. Default value: 1.0.

ShowControls boolean (Optional) A flag specifying whether to display a movie controller bar
while playing the movie. Default value: false.

© Adobe Systems Incorporated 2008 – All rights reserved 509

PDF 32000-1:2008

13.5 Alternate Presentations

Beginning with PDF 1.4, a PDF document shall contain alternate presentations, which specify alternate ways in
which the document may be viewed. The optional AlternatePresentations entry (PDF 1.4) in a document’s
name dictionary (see Table 31) contains a name tree that maps name strings to the alternate presentations
available for the document.

NOTE 1 Since conforming readers are not required to support alternate presentations, authors of documents containing
alternate presentations should define the files such that something useful and meaningful can be displayed
and printed. For example, if the document contains an alternate presentation slideshow of a sequence of
photographs, the photographs should be viewable in a static form by viewers that are not capable of playing
the slideshow.

As of PDF 1.5, the only type of alternate presentation is a slideshow. Slideshows may be invoked by means of
JavaScript actions (see 12.6.4.16, “JavaScript Actions”) initiated by user action on an interactive form element
(see 12.7, “Interactive Forms”).

The following table shows the entries in a slideshow dictionary.

Mode name (Optional) The play mode for playing the movie:
Once Play once and stop.
Open Play and leave the movie controller bar open.
Repeat Play repeatedly from beginning to end until stopped.
Palindrome Play continuously forward and backward until stopped.
Default value: Once.

Synchronous boolean (Optional) A flag specifying whether to play the movie synchronously
or asynchronously. If this value is true, the movie player shall retain
control until the movie is completed or dismissed by the user. If the
value is false, the player shall return control to the conforming reader
immediately after starting the movie. Default value: false.

FWScale array (Optional) The magnification (zoom) factor at which the movie shall be
played. The presence of this entry implies that the movie shall be
played in a floating window. If the entry is absent, the movie shall be
played in the annotation rectangle.
The value of the entry shall be an array of two positive integers,
[numerator denominator], denoting a rational magnification factor for
the movie. The final window size, in pixels, shall be
(numerator ÷ denominator) × Aspect
where the value of Aspect shall be taken from the movie dictionary
(see Table 295).

FWPosition array (Optional) For floating play windows, the relative position of the
window on the screen. The value shall be an array of two numbers
[horiz vert]
each in the range 0.0 to 1.0, denoting the relative horizontal and
vertical position of the movie window with respect to the screen.
EXAMPLE The value [0.5 0.5] centers the window on the

screen.

Default value: [0.5 0.5].

Table 296 – Entries in a movie activation dictionary (continued)

Key Type Value

PDF 32000-1:2008

510 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 2 The Resources name tree represents a virtual file system to the slideshow. It associates strings (“file names”)
with PDF objects that represent resources used by the slideshow. For example, a root stream may reference a
file name, which would be looked up in the Resources name tree, and the corresponding object would be
loaded as the file. (This virtual file system is flat; that is, there is no way to reference subfolders.)

NOTE 3 Typically, images are stored in the document as image XObjects (see 8.9.5, “Image Dictionaries”), thereby
allowing them to be shared between the standard PDF representation and the slideshow. Other media objects
are stored or embedded file streams (see 7.11.4, “Embedded File Streams”).

To allow conforming readers to verify content against their own supported features all referenced objects shall
include a Type entry in their dictionary, even when the Type entry is normally optional for a given object.

EXAMPLE The following example illustrates the use of alternate presentation slideshows.

1 0 obj

<</Type /Catalog
/Pages 2 0 R
/Names 3 0 R % Indirect reference to name dictionary

>>
...
3 0 obj % The name dictionary

<</AlternatePresentations 4 0 R >>
endobj
4 0 obj % The alternate presentations name tree

<</Names [(MySlideShow) 5 0 R]>>
endobj
5 0 obj % The slideshow definition

<</Type /SlideShow
/Subtype /Embedded
/Resources <</Names [(mysvg.svg) 31 0R

(abc0001.jpg) 35 0 R (abc0002.jpg) 36 0 R
(mysvg.js) 61 0 R (mymusic.mp3) 65 0 R]>>

/StartResource (mysvg.svg)
>>

...
31 0 obj

<</Type /Filespec % The root object, which
/F (mysvg.svg) % points to an embedded file stream
/EF <</F 32 0 R>>

>>
endobj
32 0 obj % The embedded file stream

<</Type /EmbeddedFile
/Subtype /image#2Fsvg+xml

Table 297 – Entries in a slideshow dictionary

Key Type Value

Type name (Required; PDF 1.4) The type of PDF object that this dictionary describes;
shall be SlideShow for a slideshow dictionary.

Subtype name (Required; PDF 1.4) The subtype of the PDF object that this dictionary
describes; shall be Embedded for a slideshow dictionary.

Resources name
tree

(Required; PDF 1.4) A name tree that maps name strings to objects
referenced by the alternate presentation.
NOTE Even though PDF treats the strings in the name tree as strings

without a specified encoding, the slideshow shall interpret
them as UTF-8 encoded Unicode.

StartResource byte
string

(Required; PDF 1.4) A byte string that shall match one of the strings in the
Resources entry. It shall define the root object for the slideshow
presentation.

© Adobe Systems Incorporated 2008 – All rights reserved 511

PDF 32000-1:2008

/Length 72
>>

stream

<?xml version="1.0" standalone="no"?>
<svg><!-- Some SVG goes here--></svg>

endstream
endobj

% ... other objects not shown

13.6 3D Artwork

13.6.1 General

Starting with PDF 1.6, collections of three-dimensional objects, such as those used by CAD software, may be
embedded in PDF files. Such collections are often called 3D models; in the context of PDF, they shall be
referred to as 3D artwork. The PDF constructs for 3D artwork support the following features:

• 3D artwork may be rendered within a page; that is, not as a separate window or user interface element.

• Multiple instances of 3D artwork may appear within a page or document.

• Specific views of 3D artwork may be specified, including a default view that shall be displayed initially and
other views that may be selected. Views may have names that can be presented in a user interface.

• (PDF 1.7) Conforming readers may specify how 3D artwork shall be rendered, coloured, lit, and cross-
sectioned, without the use of embedded JavaScript. They may also specify state information that shall be
applied to individual nodes (3D graphic objects or collections thereof) in the 3D artwork, such as visibility,
opacity, position, or orientation.

• Pages containing 3D artwork may be printed.

• Users may rotate and move the artwork, enabling them to examine complex objects from any angle or
orientation.

• (PDF 1.7) Keyframe animations contained in 3D artwork may be played in specific styles and timescales,
without programatic intervention.

• JavaScripts and other software may programmatically manipulate objects in the artwork, creating dynamic
presentations in which objects move, spin, appear, and disappear.

• (PDF 1.7) The activation of 3D artwork can trigger the display of additional user interface items in the
conforming reader. Such items may include model trees and toolbars.

• Two-dimensional (2D) content such as labels may be overlaid on 3D artwork. This feature is not the same
as the ability to apply 2D markup annotations.

• (PDF 1.7) 2D markup annotations may be applied to specific views of the 3D artwork, using the ExData
entry to identify the 3D annotation and the 3D view in that annotation.

The following sub-clauses describe the major PDF objects that relate to 3D artwork, as well as providing
background information on 3D graphics:

• 3D annotations provide a virtual camera through which the artwork shall be viewed. (see 13.6.2, “3D
Annotations”).

PDF 32000-1:2008

512 © Adobe Systems Incorporated 2008 – All rights reserved

• 3D streams shall contain the actual specification of a piece of 3D artwork (see 13.6.3, “3D Streams””). This
specification supports the Standard ECMA-363, Universal 3D file format developed by the 3D Industry
Forum (see Bibliography).

• 3D views shall specify information about the relationship between the camera and the 3D artwork (see
13.6.4, “3D Views”). Beginning with PDF 1.7, views may also describe additional parameters such as
render mode, lighting, cross sections, and nodes. Nodes shall be 3D graphic objects or collections thereof.

• 3D coordinate systems are described in 13.6.5, “Coordinate Systems for 3D.”

• 2D markup annotations applied to 3D artwork views are described in 13.6.6, “3D Markup.”

NOTE Many of the concepts and terminology of 3D rendering are beyond the scope of this reference. Readers
interested in further information are encouraged to consult outside references.

13.6.2 3D Annotations

3D annotations (PDF 1.6) are the means by which 3D artwork shall be represented in a PDF document.
Table 298 shows the entries specific to a 3D annotation dictionary. Table 164 describes the entries common to
all annotation dictionaries.

In addition to these entries, a 3D annotation shall provide an appearance stream in its AP entry (see Table 164)
that has a normal appearance (the N entry in Table 168). This appearance may be used by applications that do
not support 3D annotations and by all applications for the initial display of the annotation.

Table 298 – Additional entries specific to a 3D annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
3D for a 3D annotation.

3DD stream or
dictionary

(Required) A 3D stream (see 13.6.3, “3D Streams”) or 3D reference
dictionary (see 13.6.3.3, “3D Reference Dictionaries”) that specifies the
3D artwork to be shown.

3DV (various) (Optional) An object that specifies the default initial view of the 3D artwork
that shall be used when the annotation is activated. It may be either a 3D
view dictionary (see 13.6.4, “3D Views”) or one of the following types
specifying an element in the VA array in the 3D stream (see Table 300):
• An integer specifying an index into the VA array.

• A text string matching the IN entry in one of the views in the VA
array.

• A name that indicates the first (F), last (L), or default (D) entries in
the VA array.

Default value: the default view in the 3D stream object specified by 3DD.

3DA dictionary (Optional) An activation dictionary (see Table 299) that defines the times
at which the annotation shall be activated and deactivated and the state
of the 3D artwork instance at those times. Default value: an activation
dictionary containing default values for all its entries.

3DI boolean (Optional) A flag indicating the primary use of the 3D annotation. If true, it
is intended to be interactive; if false, it is intended to be manipulated
programmatically, as with a JavaScript animation. Conforming readers
may present different user interface controls for interactive 3D
annotations (for example, to rotate, pan, or zoom the artwork) than for
those managed by a script or other mechanism.
Default value: true.

© Adobe Systems Incorporated 2008 – All rights reserved 513

PDF 32000-1:2008

The 3DB entry specifies the 3D view box, a rectangle in which the 3D artwork appears. The view box shall fit
within the annotation’s rectangle (specified by its Rect entry). It may be the same size, or it may be smaller if
necessary to provide extra drawing area for additional 2D graphics within the annotation.

NOTE 1 Although 3D artwork can internally specify viewport size, conforming readers ignore it in favour of information
provided by the 3DB entry.

The view box shall be specified in the annotation’s target coordinate system, whose origin is at the center of the
annotation’s rectangle. Units in this coordinate system are the same as default user space units. Therefore, the
coordinates of the annotation’s rectangle in the target coordinate system are

[-w/2 -h/2 w/2 h/2]

given w and h as the rectangle’s width and height.

The 3DD entry shall specify a 3D stream that contains the 3D artwork to be shown in the annotation; 3D
streams are described in Section 13.6.3. The 3DD entry may specify a 3D stream directly; it may also specify a
3D stream indirectly by means of a 3D reference dictionary (see 13.6.3.3, "3D Reference Dictionaries"). These
options control whether annotations shall share the same run-time instance of the artwork.

The 3DV entry shall specify the view of the 3D artwork that is displayed when the annotation is activated (as
described in the next paragraph). 3D views, which are described in Section 13.6.4, represent settings for the
virtual camera, such as position, orientation, and projection style. The view specified by 3DV shall be one of the
3D view dictionaries listed in the VA entry in a 3D stream (see Table 300).

The 3DA entry shall be an activation dictionary (see Table 299) that determines how the state of the annotation
and its associated artwork may change.

NOTE 2 These states serve to delay the processing or display of 3D artwork until a user chooses to interact with it.
Such delays in activating 3D artwork can be advantageous to performance.

At any given moment, a 3D annotation shall be in one of two states:

• Inactive (the default initial state): the annotation displays the annotation’s normal appearance.

NOTE 3 It is typical, though not required, for the normal appearance to be a pre-rendered bitmap of the default view of
the 3D artwork. Conforming writers should provide bitmaps of appropriate resolution for all intended uses of
the document; for example, a high-resolution bitmap for high-quality printing and a screen-resolution bitmap for
on-screen viewing. Optional content (see 8.11, “Optional Content”) may be used to select the appropriate
bitmap for each situation.

• Active: the annotation displays a rendering of the 3D artwork. This rendering shall be specified by the
annotation’s 3DV entry.

3DB rectangle (Optional) The 3D view box, which is the rectangular area in which the 3D
artwork shall be drawn. It shall be within the rectangle specified by the
annotation’s Rect entry and shall be expressed in the annotation’s target
coordinate system (see discussion following this Table).
Default value: the annotation’s Rect entry, expressed in the target
coordinate system. This value is [-w/2 -h/2 w/2 h/2], where w and h are
the width and height, respectively, of Rect.

Table 298 – Additional entries specific to a 3D annotation (continued)

Key Type Value

PDF 32000-1:2008

514 © Adobe Systems Incorporated 2008 – All rights reserved

Table 299 – Entries in a 3D activation dictionary

Key Type Value

A name (Optional) A name specifying the circumstances under which the
annotation shall be activated. Valid values are:
PO The annotation shall be activated as soon as the page containing

the annotation is opened.
PV The annotation shall be activated as soon as any part of the page

containing the annotation becomes visible.
XA The annotation shall remain inactive until explicitly activated by a

script or user action.
NOTE 1 At any one time, only a single page shall be considered

open in a conforming reader, even though more than one
page may be visible, depending on the page layout.

Default value: XA.
NOTE 2 For performance reasons, documents intended for viewing

in a web browser should use explicit activation (XA). In non-
interactive applications, such as printing systems or
aggregating conforming reader, PO and PV indicate that the
annotation shall be activated when the page is printed or
placed; XA indicates that the annotation shall never be
activated and the normal appearance shall be used.

AIS name (Optional) A name specifying the state of the artwork instance upon
activation of the annotation. Valid values are:
I The artwork shall be instantiated, but real-time script-driven

animations shall be disabled.
L Real-time script-driven animations shall be enabled if present; if

not, the artwork shall be instantiated.
Default value: L.
NOTE 3 In non-interactive conforming readers, the artwork shall be

instantiated and scripts shall be disabled.

D name (Optional) A name specifying the circumstances under which the
annotation shall be deactivated. Valid values are:
PC The annotation shall be deactivated as soon as the page is closed.
PI The annotation shall be deactivated as soon as the page

containing the annotation becomes invisible.
XD The annotation shall remain active until explicitly deactivated by a

script or user action.
NOTE 4 At any one time, only a single page shall be considered

open in the conforming reader, even though more than one
page may be visible, depending on the page layout.

Default value: PI.

DIS name (Optional) A name specifying the state of the artwork instance upon
deactivation of the annotation. Valid values are U (uninstantiated), I
(instantiated), and L (live). Default value: U.
NOTE 5 If the value of this entry is L, uninstantiation of instantiated

artwork is necessary unless it has been modified.
Uninstantiation is never required in non-interactive
conforming readers.

© Adobe Systems Incorporated 2008 – All rights reserved 515

PDF 32000-1:2008

The A and D entries of the activation dictionary determine when a 3D annotation may become active and
inactive. The AIS and DIS entries determine what state the associated artwork shall be in when the annotation
is activated or deactivated. 3D artwork may be in one of three states:

• Uninstantiated: the initial state of the artwork before it has been used in any way.

• Instantiated: the state in which the artwork has been read and a run-time instance of the artwork has been
created. In this state, it may be rendered but script-driven real-time modifications (that is, animations) shall
be disabled.

• Live: the artwork has been instantiated, and it is being modified in real time to achieve some animation
effect. In the case of keyframe animation, the artwork shall be live while it is playing and then shall revert to
an instantiated state when playing completes or is stopped.

NOTE 4 The live state is valid only for keyframe animations or in interactive conforming readers that have JavaScript
support.

If 3D artwork becomes uninstantiated after having been instantiated, later use of the artwork requires re-
instantiation (animations are lost, and the artwork appears in its initial form).

NOTE 5 For this reason, uninstantiation is not necessary unless the artwork has been modified in some way;
consumers may choose to keep unchanged artwork instantiated for performance reasons.

NOTE 6 In non-interactive systems such as printing systems, the artwork cannot be changed. Therefore, applications
may choose to deactivate annotations and uninstantiate artwork differently, based on factors such as memory
usage and the time needed to instantiate artwork, and the TB, NP, D and DIS entries may be ignored.

Multiple 3D annotations may share an instance of 3D artwork, as described in 13.6.3.3, "3D Reference
Dictionaries". In such a case, the state of the artwork instance shall be determined in the following way:

• If any active annotation dictates (through its activation dictionary) that the artwork shall be live, it shall be
live.

• Otherwise, if any active annotation dictates that the artwork shall be instantiated, it shall be instantiated.

• Otherwise (that is, all active annotations dictate that the artwork shall be uninstantiated), the artwork shall
be uninstantiated.

TB boolean (Optional; PDF 1.7) A flag indicating the default behavior of an
interactive toolbar associated with this annotation. If true, a toolbar shall
be displayed by default when the annotation is activated and given
focus. If false, a toolbar shall not be displayed by default.
NOTE 6 Typically, a toolbar is positioned in proximity to the 3D

annotation.

Default value: true.

NP boolean (Optional; PDF 1.7) A flag indicating the default behavior of the user
interface for viewing or managing information about the 3D artwork.
Such user interfaces can enable navigation to different views or can
depict the hierarchy of the objects in the artwork (the model tree). If true,
the user interface should be made visible when the annotation is
activated. If false, the user interface should not be made visible by
default.
Default value: false

Table 299 – Entries in a 3D activation dictionary (continued)

Key Type Value

PDF 32000-1:2008

516 © Adobe Systems Incorporated 2008 – All rights reserved

The rules described in 13.6.2, “3D Annotations”, apply only to active annotations. If all annotations referring to
the artwork are inactive, the artwork nevertheless may be uninstantiated, instantiated, or live 3D Streams.

13.6.3 3D Streams

13.6.3.1 General

The specification of 3D artwork shall be contained in a 3D stream. 3D stream dictionaries, whose entries (in
addition to the regular stream dictionary's entries; see 7.3.7, “Dictionary Objects”) are shown in Table 300, may
provide a set of predefined views of the artwork, as well as a default view. They may also provide scripts and
resources for providing customized behaviours or presentations.

The Subtype entry specifies the format of the 3D stream data. The only valid value is U3D, which indicates that
the stream data conforms to the Universal 3D File Format specification (see Bibliography). Conforming readers
shall be prepared to encounter unknown values for Subtype and recover appropriately, which usually means
leaving the annotation in its inactive state, displaying its normal appearance.

NOTE Conforming readers should follow the approach of falling back to the normal appearance with regard to entries
in other dictionaries that may take different types or values than the ones specified here.

Table 300 – Entries in a 3D stream dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be 3D for a 3D stream.

Subtype name (Required) A name specifying the format of the 3D data contained in
the stream. The only valid value is U3D.

VA array (Optional) An array of 3D view dictionaries, each of which specifies a
named preset view of this 3D artwork (see Section 13.6.4, “3D
Views”).

DV (various) (Optional) An object that specifies the default (initial) view of the 3D
artwork. It may be a 3D view dictionary (see Section 13.6.4, “3D
Views”) or one of the following types:
• An integer specifying an index into the VA array.

• A text string matching the IN entry in one of the views in the VA
array.

• A name that indicates the first (F) or last (L) entries in the VA
array.

Default value: 0 (the first entry in the VA array) if VA is present; if VA is
not present, the default view shall be specified within the 3D stream
itself.

Resources name tree (Optional) A name tree that maps name strings to objects that may be
used by applications or scripts to modify the default view of the 3D
artwork.
The names in this name tree shall be text strings so as to be encoded
in a way that will be accessible from JavaScript.

OnInstantiate stream (Optional) A JavaScript script that shall be executed when the 3D
stream is instantiated.

AN dictionary (Optional; PDF 1.7) An animation style dictionary indicating the
method that conforming readers should use to drive keyframe
animations present in this artwork (see 13.6.3.2, "3D Animation Style
Dictionaries").
Default value: an animation style dictionary whose Subtype entry has
a value of None.

© Adobe Systems Incorporated 2008 – All rights reserved 517

PDF 32000-1:2008

If present, the VA entry shall be an array containing a list of named present views of the 3D artwork. Each entry
in the array shall be a 3D view dictionary (see 13.6.4, “3D Views”) that shall contain the name of the view and
the information needed to display the view. The order of array elements determines the order in which the
views shall be presented in a user interface. The DV entry specifies the view that shall be used as the initial
view of the 3D artwork.

Default views shall be determined in the following order of precedence: in the annotation dictionary, in the 3D
stream dictionary, or in the 3D artwork contained in the 3D stream.

3D streams contain information that may be used by conforming readers and by scripts to perform animations
and other programmatically-defined behaviours, such as changing the viewing orientation or moving individual
components of the artwork. If present, the OnInstantiate entry shall contain a JavaScript script that shall be
executed by applications that support JavaScript whenever a 3D stream is read to create an instance of the 3D
artwork. The Resources entry shall be a name tree that contains objects that may be used to modify the initial
appearance of the 3D artwork.

13.6.3.2 3D Animation Style Dictionaries

A 3D animation style dictionary (PDF 1.7) specifies the method that conforming readers should use to apply
timeline scaling to keyframe animations. It may also specify that keyframe animations be played repeatedly.
The AN entry of the 3D stream shall specify a 3D animation style dictionary.

A keyframe animation may be provided as the content of a 3D stream dictionary. A keyframe animation
provides key frames and specifies the mapping for the position of geometry over a set period of time (animation
timeline). Keyframe animation is an interactive feature that is highly dependent on the behaviour and controls
provided by the conforming reader.

Table 301 shows the entries in an animation style dictionary.

The descriptions of the animation styles (see Table 302) use the following variables to represent application
time or keyframe settings specified in the 3D artwork.

Table 301 – Entries in an 3D animation style dictionary

Key Type Value

Type name (Optional). The type of PDF object that this dictionary describes; if present,
shall be 3DAnimationStyle.

Subtype name (Optional) The animation style described by this dictionary; see Table 302
for valid values. If an animation style is encountered other than those
described in Table 302, an animation style of None shall be used.
Default value: None

PC integer (Optional) An integer specifying the play count for this animation style. A
non-negative integer represents the number of times the animation shall
be played. A negative integer indicates that the animation shall be infinitely
repeated. This value shall be ignored for animation styles of type None.
Default value: 0

TM number (Optional) A positive number specifying the time multiplier to be used
when running the animation. A value greater than one shortens the time it
takes to play the animation, or effectively speeds up the animation.
NOTE This allows authors to adjust the desired speed of animations,

without having to re-author the 3D artwork.

This value shall be ignored for animation styles of type None.
Default value: 1

PDF 32000-1:2008

518 © Adobe Systems Incorporated 2008 – All rights reserved

• t is a point on the animation time line. This value shall be used in conjunction with the keyframe animation
data to determine the state of the 3D artwork.

• [r0, r1] is the keyframe animation time line.

• ta is the current time of the conforming reader.

• t0 is the time when the conforming reader starts the animation.

• p is the time it takes to play the keyframe animation through one cycle. In the case of the Linear animation
style, one cycle consists of playing the animation through once from beginning to end. In the case of the
Oscillating animation style, one cycle consists of playing the animation from beginning to end and then
from end to beginning.

• m is the positive multiplier specified by the TM entry in the animation style dictionary.

13.6.3.3 3D Reference Dictionaries

More than one 3D annotation may be associated with the same 3D artwork. There are two ways in which this
association may occur, as determined by the annotation’s 3DD entry (see Table 298):

• If the 3DD entry specifies a 3D stream, the annotation shall have its own run-time instance of the 3D
artwork. Any changes to the artwork shall be reflected only in this annotation. Other annotations that refer
to the same stream shall have separate run-time instances.

• If the 3DD entry specifies a 3D reference dictionary (whose entries are shown in Table 303), the annotation
shall have a run-time instance of the 3D artwork with all other annotations that specify the same reference
dictionary. Any changes to the artwork shall be reflected in all such annotations.

Table 302 – Animation styles

None Keyframe animations shall not be driven directly by the conforming
reader. This value shall be used by documents that are intended to
drive animations through an alternate means, such as JavaScript.
The remaining entries in the animation style dictionary shall be
ignored.

Linear Keyframe animations shall be driven linearly from beginning to end.
This animation style results in a repetitive playthrough of the
animation, such as in a walking motion.

t = (m(ta - t0) + r0) % (r1 - r0)

p = (r1 - r0) / m

The “%” symbol indicates the modulus operator.

Oscillating Keyframe animations shall oscillate along their time range. This
animation style results in a back-and-forth playing of the animation,
such as exploding or collapsing parts.

t = (0.5)(r1 - r0)(1 - cos(m(ta - t0))) + r0
p = 2 * pi / m

© Adobe Systems Incorporated 2008 – All rights reserved 519

PDF 32000-1:2008

EXAMPLE The following example and Figure 66 through Figure 68 show three annotations that use the same 3D
artwork. Object 100 (Annotation 1) has its own run-time instance of the 3D stream (object 200); object
101(Annotation 2) and object 102 (Annotation 3) share a run-time instance through the 3D reference
dictionary (object 201).

100 0 obj % 3D annotation 1
<< /Type /Annot

/Subtype /3D
/3DD 200 0 R % Reference to the 3D stream containing the 3D artwork

>>
endobj

101 0 obj % 3D annotation 2
<< /Type /Annot

/Subtype /3D
/3DD 201 0 R % Reference to a 3D reference dictionary

>>
endobj

102 0 obj % 3D annotation 3

<< /Type /Annot
/Subtype /3D
/3DD 201 0 R % Reference to the same 3D reference dictionary

>>
endobj

200 0 obj % The 3D stream

<< /Type /3D
/Subtype /U3D
... other keys related to a stream, such as /Length

>>
stream

... U3D data...
endstream

endobj

201 0 obj % 3D reference dictionary

<< /Type /3DRef
/3DD 200 0 R % Reference to the actual 3D artwork.

>>
endobj

Table 303 – Entries in a 3D reference dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be 3DRef for a 3D reference dictionary.

3DD stream (Required) The 3D stream (see 13.6.3, “3D Streams”) containing the
specification of the 3D artwork.

PDF 32000-1:2008

520 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 66 – Default view of artwork

Figure 67 – Annotation 2 rotated

Figure 68 – Shared artwork (annotations 2 & 3) modified

The figures show how the objects in the Example in 13.5, “Alternate Presentations,” might be used.
Figure 66 shows the same initial view of the artwork in all three annotations. Figure 67 shows the results
of rotating the view of the artwork within Annotation 2. Figure 68 shows the results of manipulating the
artwork shared by Annotation 2 and Annotation 3: they both reflect the change in the artwork because
they share the same run-time instance. Annotation 1 remains unchanged because it has its own run-time
instance.

NOTE When multiple annotations refer to the same instance of 3D artwork, the state of the instance is determined as
described in 13.6.2, “3D Annotations.”

Annotation 1

Annotation 2

Annotation 3

2 1
5

B
A

E

2 1
5

B
A

E

21
5

B
A

E

Annotation 1

Annotation 2

Annotation 3

21
5

1

1
5

B
A

E

A

B
A

E

Annotation 1

Annotation 2

Annotation 3

21
5

1

21
5

B
A

E

A

B
A

E

© Adobe Systems Incorporated 2008 – All rights reserved 521

PDF 32000-1:2008

13.6.4 3D Views

13.6.4.1 General

A 3D view (or simply view) specifies parameters that shall be applied to the virtual camera associated with a 3D
annotation. These parameters may include orientation and position of the camera, details regarding the
projection of camera coordinates into the annotation’s target coordinate system, and a description of the
background on which the artwork shall be drawn. Starting with PDF 1.7, views may specify how 3D artwork is
rendered, coloured, lit, and cross-sectioned, without the use of embedded JavaScript. Views may also specify
which nodes (three-dimensional areas) of 3D artwork shall be included in a view and whether those nodes are
opaque or invisible.

NOTE 1 Users can manipulate views by performing interactive operations such as free rotation and translation. In
addition, 3D artwork can contain a set of predefined views that the author deems to be of particular interest.
For example, a mechanical drawing of a part may have specific views showing the top, bottom, left, right, front,
and back of an object.

A 3D stream may contain a list of named preset views of the 3D artwork, as specified by the VA entry, which
shall be an array of 3D view dictionaries. The entries in a 3D view dictionary are shown in Table 304.

Table 304 – Entries in a 3D view dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be 3DView for a 3D view dictionary.

XN text string (Required) The external name of the view, suitable for presentation in a
user interface.

IN text string (Optional) The internal name of the view, used to refer to the view from
other objects, such as the go-to-3D-view action (see 12.6.4.15, “Go-To-
3D-View Actions”).

MS name (Optional) A name specifying how the 3D camera-to-world
transformation matrix shall be determined. The following values are
valid:
M Indicates that the C2W entry shall specify the matrix
U3D Indicates that the view node selected by the U3DPath entry shall
specify the matrix.
If omitted, the view specified in the 3D artwork shall be used.

C2W array (Required if the value of MS is M, ignored otherwise) A 12-element 3D
transformation matrix that specifies a position and orientation of the
camera in world coordinates.

U3DPath text string or
array

(Required if the value of MS is U3D, ignored otherwise) A sequence of
one or more text strings used to access a view node within the 3D
artwork. The first string in the array is a node ID for the root view node,
and each subsequent string is the node ID for a child of the view node
specified by the prior string. Each view node specifies a 3D
transformation matrix (see 13.6.5, “Coordinate Systems for 3D”); the
concatenation of all the matrices forms the camera-to-world matrix.
Conforming writers should specify only a single text string, not an array,
for this entry.
NOTE Do not confuse View Nodes with nodes. A View Node is a

parameter in the 3D artwork that specifies a view, while a
node is a PDF dictionary that specifies 3D graphic objects
or collections thereof.

PDF 32000-1:2008

522 © Adobe Systems Incorporated 2008 – All rights reserved

For any view, the conforming writer may provide 2D content specific to the view, to be drawn on top of the 3D
artwork. The O entry specifies a form XObject that shall be overlaid on the rendered 3D artwork. The

CO number (Optional; used only if MS is present) A non-negative number indicating
a distance in the camera coordinate system along the z axis to the center
of orbit for this view; see discussion following this Table. If this entry is
not present, the conforming reader shall determine the center of orbit.

P dictionary (Optional) A projection dictionary (see 13.6.4.2, “Projection Dictionaries”)
that defines the projection of coordinates in the 3D artwork (already
transformed into camera coordinates) onto the target coordinate system
of the annotation.
Default value: a projection dictionary where the value of Subtype is
Perspective, the value of FOV is 90, and all other entries take their
default values.

O stream (Optional; meaningful only if MS and P are present) A form XObject that
shall be used to overlay 2D graphics on top of the rendered 3D artwork
(see 13.6.6, “3D Markup”).

BG dictionary (Optional) A background dictionary that defines the background over
which the 3D artwork shall be drawn (see 13.6.4.3, “3D Background
Dictionaries”). Default value: a background dictionary whose entries take
their default values.

RM dictionary (Optional; PDF 1.7) A render mode dictionary that specifies the render
mode to use when rendering 3D artwork with this view (see 13.6.4.4, “3D
Render Mode Dictionaries”). If omitted, the render mode specified in the
3D artwork shall be used.

LS dictionary (Optional; PDF 1.7) A lighting scheme dictionary that specifies the
lighting scheme to be used when rendering 3D artwork with this view
(see 13.6.4.5, “3D Lighting Scheme Dictionaries”). If omitted, the lighting
scheme specified in the 3D artwork shall be used.

SA array (Optional; PDF 1.7) An array that contains cross section dictionaries
(see 13.6.4.6, “3D Cross Section Dictionaries”). Each cross section
dictionary provides parameters for applying a cross section to the 3D
artwork when using this view. An empty array signifies that no cross
sections shall be displayed.

NA array (Optional; PDF 1.7; meaningful only if NR is present) An array that
contains 3D node dictionaries (see 13.6.4.7, “3D Node Dictionaries”).
Each node dictionary may contain entries that change the node’s state,
including its opacity and its position in world space. This entry and the
NR entry specify how the state of each node shall be changed.
If a node dictionary is present more than once, only the last such
dictionary (using a depth-first traversal) shall be used.

NR boolean (Optional; PDF 1.7) Specifies whether nodes specified in the NA array
shall be returned to their original states (as specified in the 3D artwork)
before applying transformation matrices and opacity settings specified in
the node dictionaries. If true, the artwork’s 3D node parameters shall be
restored to their original states and then the dictionaries specified by the
NA array shall be applied. If false, the dictionaries specified by the NA
array shall be applied to the current states of the nodes.
In addition to the parameters specified by a 3D node dictionary, this flag
should also apply to any runtime parameters used by a conforming
reader.
Default value: false

Table 304 – Entries in a 3D view dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 523

PDF 32000-1:2008

coordinate system of the form XObject shall be defined to be the same as the (x, y, 0) plane in the camera
coordinate system (see 13.6.5, “Coordinate Systems for 3D”).

Use of the O entry is subject to the following restrictions.

NOTE 2 Failure to abide by them could result in misalignment of the overlay with the rendered 3D graphics:

• It may be specified only in 3D view dictionaries in which both a camera-to-world matrix (MS
and associated entries) and a projection dictionary (the P entry) are present.

• The form XObject shall be associated with a specific view (not with the camera position de-
fined by the 3D view dictionary). The conforming reader should draw it only when the user
navigates using the 3D view, not when the user happens to navigate to the same orientation
by manual means.

• The confirming reader should draw it only if the user has not invoked any actions that alter the
artwork-to-world matrix.

The CO entry specifies the distance from the camera to the center of orbit for the 3D view, which is the point
around which the camera shall rotate when performing an orbit-style navigation. Figure 69 illustrates camera
positioning when orbiting around the center of orbit.

Figure 69 – Rotation around the center of orbit

NOTE 3 The LS entry allows the lighting of the 3D artwork to be changed without changing the artwork itself. This
enables consumers to view a given piece of 3D artwork with a variety of lighting options without requiring
multiple copies of the 3D artwork stream that differ only in lighting. It also enables artwork with poor lighting to
be corrected in cases where the original content cannot be re-authored. See 13.6.4.5, “3D Lighting Scheme
Dictionaries.”

The SA entry provides cross section information for clipping 3D artwork while its associated view is active. This
allows view authors to be more clear in calling out the intended areas of interest for a particular view, some of
which might otherwise be completely obscured. See 13.6.4.6, “3D Cross Section Dictionaries.”

The NR and NA entries are meant to give a more accurate representation of the 3D artwork at a given state.
These keys give view authors finer granularity in manipulating the artwork to be presented in a particular way.
They also provide a means for returning node parameters to a known state after potential changes by
interactive features such as keyframe animations and JavaScript. See 13.6.4.7, “3D Node Dictionaries.”

13.6.4.2 Projection Dictionaries

A projection dictionary (see Table 305) defines the mapping of 3D camera coordinates onto the target
coordinate system of the annotation. Each 3D view may specify a projection dictionary by means of its P entry.

NOTE Although view nodes can specify projection information, PDF consumers ignore it in favour of information in
the projection dictionary.

Center Of Orbit

PDF 32000-1:2008

524 © Adobe Systems Incorporated 2008 – All rights reserved

PDF 1.6 introduces near/far clipping. This type of clipping defines a near plane and a far plane (as shown in
Figure 70). Objects, or parts of objects, that are beyond the far plane or closer to the camera than the near
plane are not drawn. 3D objects shall be projected onto the near plane and then scaled and positioned within
the annotation’s target coordinate system, as described Table 305.

Table 305 – Entries in a projection dictionary

Key Type Value

Subtype name (Required) The type of projection. Valid values shall be O (orthographic) or P
(perspective).

CS name (Optional) The clipping style. Valid values shall be XNF (explicit near/far) or ANF
(automatic near/far). Default value: ANF.

F number (Optional; meaningful only if the value of CS is XNF) The far clipping distance,
expressed in the camera coordinate system. No parts of objects whose z
coordinates are greater than the value of this entry are drawn. If this entry is
absent, no far clipping occurs.

N number (Meaningful only if the value of CS is XNF; required if the value of Subtype is P)
The near clipping distance, expressed in the camera coordinate system. No
parts of objects whose z coordinates are less than the value of this entry are
drawn. If Subtype is P, the value shall be positive; if Subtype is O, the value
shall be non-negative, and the default value is 0.

FOV number (Required if Subtype is P, ignored otherwise) A number between 0 and 180,
inclusive, specifying the field of view of the virtual camera, in degrees. It defines
a cone in 3D space centered around the z axis and a circle where the cone
intersects the near clipping plane. The circle, along with the value of PS, specify
the scaling of the projected artwork when rendered in the 2D plane of the
annotation.

PS number
or name

(Optional; meaningful only if Subtype is P) An object that specifies the scaling
used when projecting the 3D artwork onto the annotation’s target coordinate
system. It defines the diameter of the circle formed by the intersection of the near
plane and the cone specified by FOV. The value may be one of the following:
• A positive number that explicitly specifies the diameter as a distance in the

annotation’s target coordinate system.

• A name specifying that the diameter shall be set to the width (W), height
(H), minimum of width and height (Min), or maximum of width and height
(Max) of the annotation’s 3D view box.

Default value: W.

OS number (Optional; meaningful only if Subtype is O) A positive number that specifies the
scale factor to be applied to both the x and y coordinates when projecting onto
the annotation’s target coordinate system (the z coordinate is discarded). Default
value: 1.

OB name (Optional; PDF 1.7; meaningful only if Subtype is O) A name that specifies a
strategy for binding (scaling to fit) the near plane’s x and y coordinates onto the
annotation’s target coordinate system. The scaling specified in this entry shall be
applied in addition to the scaling factor specified by the OS entry. The value may
be one of the following:
W Scale to fit the width of the annotation
H Scale to fit the height of the annotation
Min Scale to fit the lesser of width or height of the annotation
Max Scale to fit the greater of width or height of the annotation
Absolute No scaling should occur due to binding.
Default value: Absolute.

© Adobe Systems Incorporated 2008 – All rights reserved 525

PDF 32000-1:2008

The CS entry defines how the near and far planes are determined. A value of XNF means that the N and F
entries explicitly specify the z coordinate of the near and far planes, respectively. A value of ANF for CS means
that the near and far planes shall be determined automatically based on the objects in the artwork.

The Subtype entry specifies the type of projection, which determines how objects are projected onto the near
plane and scaled. The possible values are O for orthographic projection and P for perspective projection.

For orthographic projection, objects shall be projected onto the near plane by simply discarding their z value.
They shall be scaled from units of the near plane’s coordinate system to those of the annotation’s target
coordinate system by the combined factors specified by the OS entry and the OB entry.

For perspective projection, a given coordinate (x, y, z) shall be projected onto the near plane, defining a 2D
coordinate (x1, y1) using the following formulas:

where n is the z coordinate of the near plane.

Scaling with perspective projection is more complicated than for orthographic projection. The FOV entry
specifies an angle that defines a cone centered along the z axis in the camera coordinate system (see Figure
70). The cone intersects with the near plane, forming a circular area on the near plane. Figure 71 shows this
circle and graphics from the position of the camera.

Figure 70 – Perspective projection of 3D artwork onto the near plane

Figure 71 – Objects projected onto the near clipping plane, as seen from the position of the camera

x1 x n
z
---×=

y1 y n
z
---×=

Far Clipping Plane Near Clipping plane

Objects projected onto near clipping plane

Circle defined by Field of View angle on near clipping plane

Field of View angle Z axis

FOV circle

Z axis projected onto near plane

PDF 32000-1:2008

526 © Adobe Systems Incorporated 2008 – All rights reserved

The PS entry specifies the diameter that this circle will have when the graphics projected onto the near plane
are rendered in the annotation’s 3D view box (see Figure 72). Although the diameter of the circle determines
the scaling factor, graphics outside the circle shall also be displayed, providing they fit within the view box, as
seen in the figure.

Figure 73 shows the entire 3D annotation. In this case, the 3D view box is smaller than the annotation’s
rectangle, which also contains 2D content outside the 3D view box.

Figure 72 – Positioning and scaling the near plane onto the annotation’s 3D view box

Figure 73 – 3D annotation positioned on the page

13.6.4.3 3D Background Dictionaries

A 3D background dictionary defines the background over which a 3D view shall be drawn.Table 306 shows the
entries in a background dictionary. Currently, only a single opaque colour is supported, where the colour shall
be defined in the DeviceRGB colour space. 3D artwork may include transparent objects; however, there is no
interaction between such objects and objects drawn below the annotation. In effect, the 3D artwork and its
background form a transparency group whose flattened results have an opacity of 1 (see 11, “Transparency”).

NOTE An annotation’s normal appearance should have the same behaviour with respect to transparency when the
appearance is intended to depict the 3D artwork. This does not apply when the appearance is used for another
purpose, such as a compatibility warning message.

3D Annotation’s 3DB box

Z axis projected onto near plane,
aligned with center of 3DB box,
scaled to fit the width of the 3DB box

New Planet
Discovered!

The Daily News

© Adobe Systems Incorporated 2008 – All rights reserved 527

PDF 32000-1:2008

13.6.4.4 3D Render Mode Dictionaries

A 3D render mode dictionary (PDF 1.7) specifies the style in which the 3D artwork shall be rendered.

NOTE 1 Surfaces may be filled with opaque colours, they may be stroked as a “wireframe,” or the artwork may be
rendered with special lighting effects.

NOTE 2 A render mode dictionary enables document authors to customize the rendered appearance of 3D artwork to
suit the needs of the intended consumer, without reauthoring the artwork. For conforming readers concerned
strictly with geometry, complex artwork rendered using the Wireframe or Points style may have much better
performance without the added overhead of texturing and lighting effects. Artwork in a document intended for
print may have a much more integrated feel when using the Illustration render mode style.

The RM entry in the 3D views dictionary may specify a 3D render mode dictionary.

Table 307 shows the entries in a render mode dictionary.

Table 306 – Entries in a 3D background dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present,
shall be 3DBG for a 3D background dictionary.

Subtype name (Optional) The type of background. The only valid value shall be SC (solid
colour), which indicates a single opaque colour. Default value: SC.

CS name or
array

(Optional) The colour space of the background. The only valid value shall be
the name DeviceRGB. Default value: DeviceRGB.
PDF consumers shall be prepared to encounter other values that may be
supported in future versions of PDF.

C (various) (Optional) The colour of the background, in the colour space defined by CS.
Default value: an array [1 1 1] representing the colour white when the value
of CS is DeviceRGB.

EA boolean (Optional) If true, the background shall apply to the entire annotation; if
false, the background shall apply only to the rectangle specified by the
annotation’s 3D view box (the 3DB entry in Table 298). Default value: false.

Table 307 – Entries in a render mode dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary
describes; if present, shall be 3DRenderMode.

Subtype name (Required) The type of render mode described by this
dictionary; see Table 308 for specific values. If an
unrecognized value is encountered, then this render mode
dictionary shall be ignored.

PDF 32000-1:2008

528 © Adobe Systems Incorporated 2008 – All rights reserved

For render modes that add a level of transparency to the rendering, the O entry specifies the additional opacity
that shall be used. All such transparency effects use a standard additive blend mode.

The CV entry sets the crease value that shall be used when determining silhouette edges, which may be used
to adjust the appearance of illustrated render modes. An edge shared by two faces shall be considered a
silhouette edge if either of the following conditions is met:

• One face is front-facing and the other is back-facing.

• The angle between the two faces is greater than or equal to the crease value.

AC array (Optional) An array that specifies the auxiliary colour that
shall be used when rendering the 3D image. The first entry in
the array shall be a colour space; the subsequent entries
shall be values specifying colour values in that colour space.
The interpretation of this entry depends on the render mode
specified by the Subtype entry, but it is often used to specify
a colour for drawing points or edges.
The only valid colour space shall be DeviceRGB. If a colour
space other than DeviceRGB is specified, this entry shall be
ignored and the default value shall be used.
Default value: [/DeviceRGB 0 0 0] representing the colour
black.

FC name or
array

(Optional) A name or array that specifies the face color to be
used when rendering the 3D image. This entry shall be
relevant only when Subtype has a value of Illustration.
If the value of FC is an array, the first entry in the array shall
be a colour space and the subsequent entries shall be values
specifying values in that colour space. The only valid colour
space is DeviceRGB. Any colour space other than
DeviceRGB shall be ignored and the default value shall be
used.
If the value of FC is a name, it shall describe a colour. The
only valid name value shall BG, specifying the current
background colour in use for displaying the artwork. If a name
other than BG is encountered, this entry shall be ignored and
the background colour for the host annotation shall be used
(see Table 189).
Default value: BG

O number (Optional) A number specifying the opacity of the added
transparency applied by some render modes, using a
standard additive blend.
Default value: 0.5

CV number (Optional) A number specifying the angle, in degrees, that
shall be used as the crease value when determining
silhouette edges. If two front-facing faces share an edge and
the angle between the normals of those faces is greater than
or equal to the crease value, then that shared edge shall be
considered a silhouette edge.
Default value: 45

Table 307 – Entries in a render mode dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 529

PDF 32000-1:2008

Table 308 describes the render modes that may be specified in a render mode dictionary.

Table 308 – Render modes

Mode Description

Solid Displays textured and lit geometric shapes. In the case of artwork
that conforms to the Universal 3D File Format specification, these
shapes are triangles. The AC entry shall be ignored.

SolidWireframe Displays textured and lit geometric shapes (triangles) with single
colour edges on top of them. The colour of these edges shall be
determined by the AC entry.

Transparent Displays textured and lit geometric shapes (triangles) with an
added level of transparency. The AC entry shall be ignored.

TransparentWireframe Displays textured and lit geometric shapes (triangles) with an
added level of transparency, with single colour opaque edges on
top of it. The colour of these edges shall be determined by the AC
entry.

BoundingBox Displays the bounding box edges of each node, aligned with the
axes of the local coordinate space for that node. The colour of the
bounding box edges shall be determined by the AC entry.

TransparentBoundingBox Displays bounding boxes faces of each node, aligned with the
axes of the local coordinate space for that node, with an added
level of transparency. The colour of the bounding box faces shall
be determined by the FC entry.

TransparentBoundingBoxOutline Displays bounding boxes edges and faces of each node, aligned
with the axes of the local coordinate space for that node, with an
added level of transparency. The colour of the bounding box
edges shall be determined by the AC entry. The colour of the
bounding boxes faces shall be determined by the FC entry.

Wireframe Displays only edges in a single colour. The colour of these edges
shall be determined by the AC entry.

ShadedWireframe Displays only edges, though interpolates their colour between
their two vertices and applies lighting. The AC entry shall be
ignored.

HiddenWireframe Displays edges in a single colour, though removes back-facing
and obscured edges. The colour of these edges shall be
determined by the AC entry.

Vertices Displays only vertices in a single colour. The colour of these points
shall be determined by the AC entry.

ShadedVertices Displays only vertices, though uses their vertex colour and applies
lighting. The AC entry shall be ignored.

Illustration Displays silhouette edges with surfaces, removes obscured lines.
The colour of these edges shall be determined by the AC entry,
and the colour of the surfaces shall be determined by the FC
entry.

SolidOutline Displays silhouette edges with lit and textured surfaces, removes
obscured lines. The colour of these edges shall be determined by
the AC entry.

ShadedIllustration Displays silhouette edges with lit and textured surfaces and an
additional emissive term to remove poorly lit areas of the artwork.
The colour of these edges shall be determined by the AC entry.

PDF 32000-1:2008

530 © Adobe Systems Incorporated 2008 – All rights reserved

If a render mode type is encountered other than those described in Table 308, the render mode dictionary
containing that entry shall be ignored by its consumers. This allows future documents using new render modes
to behave consistently with future documents using new 3D view constructs that are ignored by older viewers.

13.6.4.5 3D Lighting Scheme Dictionaries

A 3D lighting scheme dictionary (PDF 1.7) specifies the lighting to apply to 3D artwork. The LS entry in the 3D
view may include a 3D lighting scheme dictionary.

Table 301 shows the entries in a 3D lighting scheme dictionary.

Table 310 describes the supported lighting schemes. With the exception of the Artwork lighting style, all the
lights specified in Table 310 are infinite lights (also known as distant lights). Unlike lights from a point source, all
rays from an infinite light source are emitted along a single direction vector. For lights specifying an ambient
term, this term shall be added to the diffuse colour of an object’s material. All colours shall be specified in the
DeviceRGB colour space.

When a style other than Artwork is used, only those lights described shall be present; any lighting described in
the artwork shall not be used.

Table 309 – Entries in a 3D lighting scheme dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary
describes; if present, shall be 3DLightingScheme.

Subtype name (Required) The style of lighting scheme described by this
dictionary (see Table 310).

Table 310 – 3D lighting scheme styles

Scheme Description

Artwork Lights as specified in the 3D artwork. This has the same effect as if the 3D
lighting scheme dictionary were omitted.

None No lights shall be used. That is, lighting specified in the 3D artwork shall be
ignored.

White Three blue-grey infinite lights, no ambient term
Light 1 Colour: < 0.38, 0.38, 0.45 > Direction: < -2.0, -1.5, -0.5 >
Light 2 Colour: < 0.6, 0.6, 0.67 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Colour: < 0.5, 0.5, 0.57 > Direction: < -0.5, 0.0, 2.0 >

Day Three light-grey infinite lights, no ambient term
Light 1 Colour: < 0.5, 0.5, 0.5 > Direction: < -2.0, -1.5, -.5 >
Light 2 Colour: < 0.8, 0.8, 0.9 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Colour: < 0.9, 0.9, 0.9 > Direction: < 0.02, 0.01, 2.0 >

Night One yellow, one aqua, and one blue infinite light, no ambient term
Light 1 Colour: < 1, .75, .39 > Direction: < -2.0, -1.5, -0.5 >
Light 2 Colour: < 0.31, 0.47, 0.55 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Colour: < .5, .5, 1.0 > Direction: < 0.0, 0.0, 2.0 >

© Adobe Systems Incorporated 2008 – All rights reserved 531

PDF 32000-1:2008

NOTE If a lighting scheme style is encountered other than those described in Table 310, the lighting scheme
dictionary containing that entry shall be ignored. This allows future documents using new lighting schemes to
behave consistently with future documents using new 3D view constructs. That is, the expected behaviour is
for the conforming reader to ignore unrecognized lighting styles and 3D view constructs.

13.6.4.6 3D Cross Section Dictionaries

A 3D cross section dictionary (PDF 1.7) specifies how a portion of the 3D artwork shall be clipped for the
purpose of showing artwork cross sections. The SA entry of a 3D view may specify multiple 3D cross section
dictionaries.

Hard Three grey infinite lights, moderate ambient term
Light Colour: < 0.5, 0.5, 0.5 > Direction: < -1.5, -1.5, -1.5 >
Light 2 Colour: < 0.8, 0.8, 0.9 > Direction: < 1.5, 1.5, -1.5 >
Light 3 Colour: < 0.9, 0.9, 0.9 > Direction: < -0.5, 0, 2.0 >
Ambient Colour: < 0.5, 0.5, 0.5 >

Primary One red, one green, and one blue infinite light, no ambient term
Light 1 Colour: < 1, 0.2, 0.5 > Direction: < -2, -1.5, -0.5 >
Light 2 Colour: < 0.2, 1.0, 0.5 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Colour: < 0, 0, 1 > Direction: < 0.0, 0.0, 2.0 >

Blue Three blue infinite lights, no ambient term
Light 1 Colour: < 0.4, 0.4, 0.7 > Direction: < -2.0, -1.5, -0.5 >
Light 2 Colour: < 0.75, 0.75, 0.95 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Colour: < 0.7, 0.7, 0.95 > Direction: < 0.0, 0.0, 2.0 >

Red Three red infinite lights, no ambient term
Light 1 Colour: < 0.8, 0.3, 0.4 > Direction: < -2.0, -1.5, -0.5 >
Light 2 Colour: < 0.95, 0.5, 0.7 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Colour: < 0.95, 0.4, 0.5 > Direction: < 0.0, 0.0, 2.0 >

Cube Six grey infinite lights aligned with the major axes, no ambient term
Light 1 Colour: < .4, .4, .4 > Direction: < 1.0, 0.01, 0.01 >
Light 2 Colour: < .4, .4, .4 > Direction: < 0.01, 1.0, 0.01 >
Light 3 Colour: < .4, .4, .4 > Direction: < 0.01, 0.01, 1.0 >
Light 4 Colour: < .4, .4, .4 > Direction: < -1.0, 0.01, 0.01 >
Light 5 Colour: < .4, .4, .4 > Direction: < 0.01, -1.0, 0.01 >
Light 6 Colour: < .4, .4, .4 > Direction: < 0.01, 0.01, -1.0 >

CAD Three grey infinite lights and one light attached to the camera, no ambient
term
Light 1 Colour: < 0.72, 0.72, 0.81 > Direction: < 0.0, 0.0, 0.0 >
Light 2 Colour: < 0.2, 0.2, 0.2 > Direction: < -2.0, -1.5, -0.5 >
Light 3 Colour: < 0.32, 0.32, 0.32 > Direction: < 2.0, 1.1, -2.5 >
Light 4 Colour: < 0.36, 0.36, 0.36 > Direction: < 0.04, 0.01, 2.0 >

Headlamp Single infinite light attached to the camera, low ambient term
Light 1 Colour: < 0.8, 0.8, 0.9 > Direction: < 0.0, 0.0, 0.0 >
Ambient Colour: < 0.1, 0.1, 0.1 >

Table 310 – 3D lighting scheme styles (continued)

Scheme Description

PDF 32000-1:2008

532 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE Cross sections enable conforming readers to display otherwise hidden parts of the artwork. They also allow
users to comment on cross sections, using markup annotations. For example, markup annotations can be
used to apply markup annotations to a cross section or to measure distances in a cross section. If multiple
cross sections are specified for a view, the markup annotations in the view apply to all cross sections in the
view.

Table 311 shows the entries in a 3D cross section dictionary.

The C entry specifies the center of the cutting plane. This implies that the plane passes through the center
point, but it is also the point of reference when determining the orientation of the plane.

The O array indicates the orientation of the cutting plane, taking into account its center. The orientation may be
determined by a two-step process:

Table 311 – Entries in a 3D cross section dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present, shall
be 3DCrossSection for a 3D cross section dictionary.

C array (Optional) A three element array specifying the center of rotation on the cutting
plane in world space coordinates (see 13.6.5, “Coordinate Systems for 3D”).
Default value: [0 0 0] specifying a cutting plane rotating about the origin of the
world space.

O array (Required) A three-element array specifying the orientation of the cutting plane
in world space, where each value represents the orientation in relation to the X,
Y, and Z axes, respectively (see 13.6.5, “Coordinate Systems for 3D”). Exactly
one of the values shall be null, indicating an initial state of the cutting plane
that is perpendicular to the corresponding axis and clipping all geometry on the
positive side of that axis. The other two values shall be numbers indicating the
rotation of the plane, in degrees, around their corresponding axes. The order in
which these rotations are applied shall match the order in which the values
appear in the array.
Default value: [null 0 0] specifying a cutting plane that is perpendicular to the X
axis and coplanar with the Y and Z axes.

PO number (Optional) A number in the range [0, 1] indicating the opacity of the cutting
plane using a standard additive blend mode.
Default value: 0.5

PC array (Optional) An array that specifies the colour for the cutting plane. The first entry
in the array is a colour space, and the remaining entries are values in that
colour space. The only valid colour space is DeviceRGB. If a colour space
other than DeviceRGB is specified, this entry shall be ignored and the default
value shall be used.
Default value: [/DeviceRGB 1 1 1] representing the colour white.

IV boolean (Optional) A flag indicating the visibility of the intersection of the cutting plane
with any 3D geometry. If true, then the intersection shall be visible. If false,
then the intersection shall not be visible.
Default value: false

IC array (Optional) An array that specifies the colour for the cutting plane’s intersection
with the 3D artwork. The first entry in the array is a colour space, and the
remaining entries are values in that colour space. The only valid colour space
is DeviceRGB. If a colour space other than DeviceRGB is specified, this entry
shall be ignored and the default value shall be used. This entry is meaningful
only if IV is true.
Default value: [/DeviceRGB 0 1 0] representing the colour green.

© Adobe Systems Incorporated 2008 – All rights reserved 533

PDF 32000-1:2008

• The plane shall be situated such that it passes through point C, and oriented such that it is perpendicular to
the axis specified by the array entry whose value is null.

• For each of the other two axes, the plane shall be rotated the specified number of degrees around the
associated axis, while maintaining C as a fixed point on the plane. Since the two axes are perpendicular,
the order in which the rotations are performed is irrelevant.

The PO entry specifies the opacity of the plane itself when rendered, while the PC entry provides its colour.
When the PO entry is greater than 0, a visual representation of the cutting plane shall be rendered with the 3D
artwork. This representation is a square with a side length equal to the length of the diagonal of the maximum
bounding box for the 3D artwork, taking into account any keyframe animations present. When the PO entry is
0, no visible representation of the cutting plane shall be rendered.

The IV entry shall be a boolean value that determines whether a visual indication shall be drawn of the plane’s
intersection with the 3D artwork. If such an indication is drawn, the IC entry shall specify its colour.

EXAMPLE The following example describes a set of views and corresponding cross sections that illustrate the
various effects of orientation.

3 0 obj %CrossSection1
<<

/Type /3DCrossSection
/C [0 0 0]
/O [null 0 0]
/PO 0.35
/PC [/DeviceRGB 0.75 0.86 1]
/IV true
/IC [/DeviceRGB 0 1 0]

>>
endobj

4 0 obj %CrossSection2
<<

/Type /3DCrossSection
/C [0 0 0]
/O [null -30 0]
/PO 0.35
/PC [/DeviceRGB 0.75 0.86 1]
/IV true
/IC [/DeviceRGB 0 1 0]

>>
endobj

5 0 obj %CrossSection3
<<

/Type /3DCrossSection
/C [0 0 0]
/O [null 0 30]
/PO 0.35
/PC [/DeviceRGB 0.75 0.86 1]
/IV true
/IC [/DeviceRGB 0 1 0]

>>
endobj

6 0 obj %CrossSection4
<<

/Type /3DCrossSection

PDF 32000-1:2008

534 © Adobe Systems Incorporated 2008 – All rights reserved

/C [0 0 0]
/O [null -30 30]
/PO 0.35
/PC [/DeviceRGB 0.75 0.86 1]
/IV true
/IC [/DeviceRGB 0 1 0]

>>
endobj

7 0 obj %View0
<<

/Type /3DView
/XN (NoCrossSection)
/SA []
...

>>
endobj

8 0 obj %View1
<<

/Type /3DView
/XN (CrossSection1)
/SA [3 0 R]
...

>>
endobj

9 0 obj %View2
<<

/Type /3DView
/XN (CrossSection2)
/SA [4 0 R]
...

>>
endobj

10 0 obj %View3
<<

/Type /3DView
/XN (CrossSection3)
/SA [5 0 R]
...

>>
endobj

11 0 obj %View4
<<

/Type /3DView
/XN (CrossSection4)
/SA [6 0 R]
...

>>
endobj

The following illustrations show the views described in the previous example, some of which include cross
sections.

© Adobe Systems Incorporated 2008 – All rights reserved 535

PDF 32000-1:2008

Figure 74 – Rendering of the 3D artwork using View0 (no cross section)

Figure 74 through Figure 78 use world coordinates whose origin is the center of the cube. The axes illustrated
in each diagram show the relative orientation of the world coordinate axes, not the actual position of those
axes. These axes are not part of the 3D artwork used in this example.

Figure 75 – Rendering of the 3D artwork using View1
(cross section perpendicular to the x axis)

Figure 75 shows the cross section specified for the 3DView that references CrossSection1. The illustration
shows the edges of the cutting plane ending at the edges of the annotation’s rectangle. This cross section
specifies a plane with the following characteristics:

• Includes the world art origin: /C [0 0 0]

• Perpendicular to the X axis and parallel to the Y and Z axes: /O [null 0 0]

• Opacity of the cutting plane is 35%: /PO 0.35

PDF 32000-1:2008

536 © Adobe Systems Incorporated 2008 – All rights reserved

• Colour of the cutting plane is light blue: /PC [/DeviceRGB 0.75 0.86 1]

• Intersection of the cutting plane with the object is visible: /IV true

• Colour of the intersection of the cutting plane and the object is green:
/IC [/DeviceRGB 0 1 0]

Figure 76 – Rendering of the 3D artwork using View2
(cross section rotated around the y axis by -30 degrees)

Figure 76 shows the cross section specified for the 3DView that references CrossSection2. This cross section
specifies a plane that differs from the one specified in CrossSection1 (Figure 75) in the following way:

• Perpendicular to the X axis, rotated -30 degrees around the Y axis, and parallel to the Z axis: /O [null -30 0]

Figure 77 – Rendering of the 3D artwork using View3
(cross section rotated around the z axis by 30 degrees)

© Adobe Systems Incorporated 2008 – All rights reserved 537

PDF 32000-1:2008

Figure 77 shows the cross section specified for the 3DView that references CrossSection3. This cross section
specifies a plane that differs from the one specified in CrossSection1 (Figure 75) in the following way:

• Perpendicular to the X axis, parallel to the Y axis, and rotated 30 degrees around the Z axis: /O [null 0 30]

Figure 78 – Rendering of the 3D artwork using View4
(cross section rotated around the y axis by -30 degrees and around the z axis by 30 degrees)

Figure 78 shows the cross section specified for the 3DView that references CrossSection4. This cross section
specifies a plane that differs from the one specified in CrossSection1 (Figure 75) in the following way:

• Perpendicular to the X axis, rotated -30 degrees around the Y axis, and rotated 30 degrees around the Z
axis: /O [null -30 30]

13.6.4.7 3D Node Dictionaries

A 3D view may specify a 3D node dictionary (PDF 1.7), which specifies particular areas of 3D artwork and the
opacity and visibility with which individual nodes shall be displayed. The 3D artwork shall be contained in the
parent 3D stream object. The NA entry of the 3D views dictionary may specify multiple 3D node dictionaries for
a particular view.

NOTE 1 While many PDF dictionaries reference 3D artwork in its entirety, it is often useful to reference 3D artwork at a
more granular level. This enables properties such as visibility, opacity, and orientation to be applied to subsets
of the 3D artwork. These controls enable underlying nodes to be revealed, by making the overlying nodes
transparent or by moving them out of the way.

NOTE 2 Do not confuse nodes with view nodes. A node is a PDF dictionary that specifies an area in 3D artwork, while
a view node is a parameter in the 3D artwork that specifies a view.

Table 312 shows the entries in a 3D node dictionary.

PDF 32000-1:2008

538 © Adobe Systems Incorporated 2008 – All rights reserved

The N entry specifies which node in the 3D stream corresponds to this node dictionary.

The O entry describes the opacity that shall be used when rendering this node, and the V entry shall determine
whether or not the node is rendered at all. While a node with an opacity of 0 shall be rendered in the same way
as a non-visible node, having a separate value for the visibility of a node allows interactive conforming readers
to show/hide partially transparent nodes, without overwriting the intended opacity of those nodes.

The M entry specifies the node’s matrix relative to its parent, in world coordinates. If an hierarchy of nodes is
intended to be repositioned while still maintaining its internal structure, then only the node at the root of the
hierarchy needs to be adjusted.

EXAMPLE The following example shows a 3D view specifying an array of node parameters.

3 0 obj % Default node params with all shapes visible and opaque
[<< /Type /3DNode

/N (Sphere)
/O 1
/V true
/M [...]>>

<< /Type /3DNode
/N (Cone)
/O 1
/V true >>

Table 312 – Entries in a 3D node dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary
describes; if present, shall be 3DNode for a 3D node
dictionary.

N text string (Required) The name of the node being described by the
node dictionary. If the Subtype of the corresponding 3D
Stream is U3D, this entry corresponds to the field Node block
name, as described in the Universal 3D file format
specification (see Bibliography). In the future, nodes may be
described using other 3D conventions.
NOTE When comparing this entry to node names for a

particular convention (such as Universal 3D),
conforming readers shall translate between the
PDF text encoding used by PDF and the
character encoding specified in the 3D stream.

O number (Optional) A number in the range [0, 1] indicating the opacity
of the geometry supplied by this node using a standard
additive blend mode.
If this entry is absent, the viewer shall use the opacity
specified for the parent node or for the 3D artwork (in
ascending order).

V boolean (Optional) A flag indicating the visibility of this node. If true,
then the node is visible. If false, then the node shall not be
visible.
If this entry shall be absent, the viewer shall use the visibility
specified for the parent node or for the 3D artwork (in
ascending order).

M array (Optional) A 12-element 3D transformation matrix that
specifies the position and orientation of this node, relative to
its parent, in world coordinates (see 13.6.5, “Coordinate
Systems for 3D”).

© Adobe Systems Incorporated 2008 – All rights reserved 539

PDF 32000-1:2008

<< /Type /3DNode
/N (Cube)
/O 1
/V true >>

]

4 0 obj % Params with the cone hidden and the sphere semi-transparent

[<< /Type /3DNode
/N (Sphere)
/O 0.5
/V true >>

<< /Type /3DNode
/N (Cone)
/O 1
/V false >>

<< /Type /3DNode
/N (Cube)
/O 1
/V true >>

]
endobj

5 0 obj %View1, using the default set of node params

<<
/Type /3DView
/XN (View1)
/NA 3 0 R
...

>>
endobj

6 0 obj %View2, using the alternate set of node params

<<
/Type /3DView
/XN (View2)
/NA 4 0 R
...

>>
endobj

PDF 32000-1:2008

540 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 79 – Rendering of the 3D artwork using View1 (all shapes visible and opaque)

Figure 79 shows a view whose node array includes three nodes, all of which shall be rendered with the
appearance opaque (/O 1) and visible (/V true).

Figure 80 – Rendering of the 3D artwork using View2 (the cone is hidden and the sphere is semi-
transparent)

Figure 80 shows a view with a node array that specifies the same three nodes used in Figure 79. These nodes
have the following display characteristics:

• The node named Sphere is partially transparent (/O 0.5) and visible (/V true)

• The node named Cone is opaque (/O 1) and invisible (/V false)

• The node named Cube is opaque (/O 1) and visible (/V true)

© Adobe Systems Incorporated 2008 – All rights reserved 541

PDF 32000-1:2008

13.6.5 Coordinate Systems for 3D

3D artwork is a collection of objects whose positions and geometry shall be specified using three-dimensional
coordinates. 8.3, “Coordinate Systems,” discusses the concepts of two-dimensional coordinate systems, their
geometry and transformations. This sub-clause extends those concepts to include the third dimension.

As described in 8.3, “Coordinate Systems,” positions shall be defined in terms of pairs of x and y coordinates
on the Cartesian plane. The origin of the plane specifies the location (0, 0); x values increase to the right and y
values increase upward. For three-dimensional graphics, a third axis, the z axis, shall be used. The origin shall
be at (0, 0, 0); positive z values increase going into the page.

In two-dimensional graphics, the transformation matrix transforms the position, size, and orientation of objects
in a plane. It is a 3-by-3 matrix, where only six of the elements may be changed; therefore, the matrix shall be
expressed in PDF as an array of six numbers:

In 3D graphics, a 4-by-4 matrix shall be used to transform the position, size, and orientations of objects in a
three-dimensional coordinate system. Only the first three columns of the matrix may be changed; therefore, the
matrix shall be expressed in PDF as an array of 12 numbers:

3D coordinate transformations shall be expressed as matrix transformations:

Carrying out the multiplication has the following results:

Position and orientation of 3D artwork typically involves translation (movement) and rotation along any axis.
The virtual camera represents the view of the artwork. The relationship between camera and artwork may be
thought of in two ways:

• The 3D artwork is in a fixed position and orientation, and the camera moves to different positions and
orientations.

• The camera is in a fixed location, and the 3D artwork is translated and rotated.

a b 0
c d 0
tx ty 1

a b c d tx ty=

a b c 0
d e f 0
g h i 0
tx ty tz 1

a b c d e f g h i tx ty tz=

x' y' z' 1 x y z 1

a b c 0
d e f 0
g h i 0
tx ty tz 1

×=

x' a x d y g z tx+×+×+×=

y' b x e y h z ty+×+×+×=

z' c x f y i z tz+×+×+×=

PDF 32000-1:2008

542 © Adobe Systems Incorporated 2008 – All rights reserved

Both approaches may achieve the same visual effects; in practice, 3D systems typically use a combination of
both. Conceptually, there are three distinct coordinate systems:

• The artwork coordinate system.

• The camera coordinate system, in which the camera shall be positioned at (0, 0, 0) facing out along the
positive z axis, with the positive x axis to the right and the positive y axis going straight up.

• An intermediate system called the world coordinate system.

Two 3D transformation matrices shall be used in coordinate conversions:

• The artwork-to-world matrix specifies the position and orientation of the artwork in the world coordinate
system. This matrix shall be contained in the 3D stream.

• The camera-to-world matrix specifies the position and orientation of the camera in the world coordinate
system. This matrix shall be specified by either the C2W or U3DPath entries of the 3D view dictionary.

When drawing 3D artwork in a 3D annotation’s target coordinate system, the following transformations take
place:

a) Artwork coordinates shall be transformed to world coordinates:

b) World coordinates shall be transformed to camera coordinates:

c) The first two steps can be expressed as a single equation, as follows:

d) Finally, the camera coordinates shall be projected into two dimensions, eliminating the z coordinate, then
scaled and positioned within the annotation’s target coordinate system.

13.6.6 3D Markup

Beginning with PDF 1.7, users may comment on specific views of 3D artwork by using markup annotations
(see 12.5.6.2, “Markup Annotations”). Markup annotations (as other annotations) are normally associated with
a location on a page. To associate the markup with a specific view of a 3D annotation, the annotation dictionary
for the markup annotation contains an ExData entry (see Table 174) that specifies the 3D annotation and view.
Table 313 describes the entries in an external data dictionary used to markup 3D annotations.

xw yw zw 1 xa ya za 1 aw×=

xc yc zc 1 xw yw zw 1 cw 1–()×=

xc yc zc 1 xa ya za 1 aw cw 1–×()×=

© Adobe Systems Incorporated 2008 – All rights reserved 543

PDF 32000-1:2008

In a Markup3D ExData dictionary, the 3DA entry identifies the 3D annotation to which the markup shall be
associated. Even though the markup annotation exists alongside the associated annotation in the page’s
Annots array, the markup may be thought of as a child of the 3DA annotation.

The 3DV entry specifies the markup’s associated 3D view. The markup shall only be printed and displayed
when the specified view is the current view of its parent 3D annotation. This ensures that the proper context is
preserved when the markup is displayed.

NOTE An equivalent view is not sufficient; if more than one markup specify equivalent views represented by different
objects, the markups will not display simultaneously.

The MD5 entry gives conforming readers a means to detect whether or not the 3D stream of the 3D annotation
specified by 3DA has changed. If the 3D stream has changed, the context provided by the 3DV entry may no
longer apply, and the markup may no longer be useful. Any action taken as a response to such a situation is
dependent on the conforming reader, but a warning shall be issued to the user.

EXAMPLE The following example shows how markup annotations can be associated with particular views.

2 0 obj % 3D stream data with two named views
<<

/Type /3D
/Subtype /U3D
/VA [4 0 R 5 0 R]
...

>>
stream

...
endstream
endobj

3 0 obj % 3D annotation
<<

/Type /Annot
/Subtype /3D
/3DD 2 0 R

Table 313 – Entries in an external data dictionary used to markup 3D annotations

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; if present,
shall be ExData for an external data dictionary.

Subtype name (Required) The type of external data that this dictionary describes; shall be
Markup3D for a 3D comment. The only defined value is Markup3D.

3DA dictionary or
text string

(Required) The 3D annotation to which this markup annotation applies. The
3D annotation may be specified as a child dictionary or as the name of a 3D
annotation, as specified by its NM entry. In the latter case, the 3D annotation
and the markup annotation shall be on the same page of the document.

3DV dictionary (Required) The 3D view that this markup annotation is associated with. The
annotation will be hidden unless this view is currently being used for the 3D
annotation specified by 3DA.

MD5 byte string (Optional) A 16-byte string that contains the checksum of the bytes of the 3D
stream data that this 3D comment shall be associated with. The checksum
shall be calculated by applying the standard MD5 message-digest algorithm
(described in Internet RFC 1321, The MD5 Message-Digest Algorithm; see
the Bibliography) to the bytes of the stream data. This value shall be used to
determine if artwork data has changed since this 3D comment was created.

PDF 32000-1:2008

544 © Adobe Systems Incorporated 2008 – All rights reserved

...
>>

endobj

4 0 obj % CommentView1
<<

/Type /3DView
/XN (CommentView1)
...

>>
endobj

5 0 obj % CommentView2
<<

/Type /3DView
/XN (CommentView2)
...

>>
endobj

6 0 obj % Cloud comment with no ExData
<<

/Type /Annot
/Subtype /Polygon
/IT /PolygonCloud
...

>>
endobj

7 0 obj % Callout comment on CommentView1
<<

/Type /Annot
/Subtype /FreeText
/IT /FreeTextCallout
/ExData <<

/Type /Markup3D
/3DA 3 0 R
/3DV 4 0 R

>>
...

>>
endobj

8 0 obj % Dimension comment on CommentView2

<<
/Type /Annot
/Subtype /Line
/IT /LineDimension
/ExData <<

/Type /Markup3D
/3DA 3 0 R
/3DV 5 0 R

>>
...

>>

© Adobe Systems Incorporated 2008 – All rights reserved 545

PDF 32000-1:2008

endobj

9 0 obj % Stamp comment on CommentView2

<<
/Type /Annot
/Subtype /Stamp
/ExData <<

/Type /Markup3D
/3DA 3 0 R
/3DV 5 0 R

>>
...

>>
endobj

The following illustrations show the placement of markup on annotations on different views of the same 3D
artwork.

Figure 81 – 3D artwork set to its default view

Figure 81 shows the default view, which has no markup annotations.

Figure 82 – 3D artwork set to CommentView1

Figure 82 shows another view to which a markup annotation is applied.

PDF 32000-1:2008

546 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 83 – 3D artwork set to CommentView2

Figure 83 shows a view referenced by two markup annotations:

• A line annotation (/Subtype /Line) with a line dimension intent
(/IT/ LineDimension)

• A stamp annotation (/Subtype /Stamp)

© Adobe Systems Incorporated 2008 – All rights reserved 547

PDF 32000-1:2008

14 Document Interchange

14.1 General

The features described in this clause do not affect the final appearance of a document. Rather, these features
enable a document to include higher-level information that is useful for the interchange of documents among
conforming products:

• Procedure sets (14.2, “Procedure Sets”) that define the implementation of PDF operators

• Metadata (14.3, “Metadata”) consisting of general information about a document or a component of a
document, such as its title, author, and creation and modification dates

• File identifiers (14.4, “File Identifiers”) for reliable reference from one PDF file to another

• Page-piece dictionaries (14.5, “Page-Piece Dictionaries”) allowing a conforming product to embed private
data in a PDF document for its own use

• Marked-content operators (14.6, “Marked Content”) for identifying portions of a content stream and
associating them with additional properties or externally specified objects

• Logical structure facilities (14.7, “Logical Structure”) for imposing a hierarchical organization on the content
of a document

• Tagged PDF (14.8, “Tagged PDF”), a set of conventions for using the marked content and logical structure
facilities to facilitate the extraction and reuse of a document’s content for other purposes

• Various ways of increasing the accessibility of a document to users with disabilities (14.9, “Accessibility
Support”), including the identification of the natural language in which it is written (such as English or
Spanish) for the benefit of a text-to-speech engine

• The Web Capture extension (14.10, “ Web Capture”), which creates PDF files from Internet-based or
locally resident HTML, PDF, GIF, JPEG, and ASCII text files

• Facilities supporting prepress production workflows (14.11, “Prepress Support”), such as the specification
of page boundaries and the generation of printer’s marks, colour separations, output intents, traps, and
low-resolution proxies for high-resolution images

14.2 Procedure Sets

The PDF operators used in content streams are grouped into categories of related operators called procedure
sets (see Table 314). Each procedure set corresponds to a named resource containing the implementations of
the operators in that procedure set. The ProcSet entry in a content stream’s resource dictionary (see 7.8.3,
“Resource Dictionaries”) shall hold an array consisting of the names of the procedure sets used in that content
stream. These procedure sets shall be used only when the content stream is printed to a PostScript output
device. The names identify PostScript procedure sets that shall be sent to the device to interpret the PDF
operators in the content stream. Each element of this array shall be one of the predefined names shown in
Table 314.

Table 314 – Predefined procedure set

Name Category of operators

PDF Painting and graphics state

Text Text

ImageB Grayscale images or image masks

PDF 32000-1:2008

548 © Adobe Systems Incorporated 2008 – All rights reserved

Beginning with PDF 1.4, this feature is considered obsolete. For compatibility with existing conforming readers,
conforming writers should continue to specify procedure sets (preferably, all of those listed in Table 314 unless
it is known that fewer are needed). However, conforming readers should not depend on the correctness of this
information.

14.3 Metadata

14.3.1 General

A PDF document may include general information, such as the document’s title, author, and creation and
modification dates. Such global information about the document (as opposed to its content or structure) is
called metadata and is intended to assist in cataloguing and searching for documents in external databases.
Beginning with PDF 1.4, metadata may also be specified for individual components of a document.

Metadata may be stored in a PDF document in either of the following ways:

• In a metadata stream (PDF 1.4) associated with the document or a component of the document (14.3.2,
“Metadata Streams”)

• In a document information dictionary associated with the document (14.3.3, “Document Information
Dictionary”)

NOTE Document information dictionaries is the original way that metadata was included in a PDF file. Metadata
streams were introduced in PDF 1.4 and is now the preferred method to include metadata.

14.3.2 Metadata Streams

Metadata, both for an entire document and for components within a document, may be stored in PDF streams
called metadata streams (PDF 1.4).

NOTE 1 Metadata streams have the following advantages over the document information dictionary:

• PDF-based workflows often embed metadata-bearing artwork as components within larger documents.
Metadata streams provide a standard way of preserving the metadata of these components for
examination downstream. PDF-aware conforming products should be able to derive a list of all metadata-
bearing document components from the PDF document itself.

• PDF documents are often made available on the Web or in other environments, where many tools routinely
examine, catalogue, and classify documents. These tools should be able to understand the self-contained
description of the document even if they do not understand PDF.

Besides the usual entries common to all stream dictionaries (see Table 5), the metadata stream dictionary shall
contain the additional entries listed in Table 315.

The contents of a metadata stream shall be the metadata represented in Extensible Markup Language (XML).

NOTE 2 This information is visible as plain text to tools that are not PDF-aware only if the metadata stream is both
unfiltered and unencrypted.

ImageC Colour images

ImageI Indexed (colour-table) images

Table 314 – Predefined procedure set (continued)

Name Category of operators

© Adobe Systems Incorporated 2008 – All rights reserved 549

PDF 32000-1:2008

NOTE 3 The format of the XML representing the metadata is defined as part of a framework called the Extensible
Metadata Platform (XMP) and described in the Adobe document XMP: Extensible Metadata Platform (see the
Bibliography). This framework provides a way to use XML to represent metadata describing documents and
their components and is intended to be adopted by a wider class of products than just those that process PDF.
It includes a method to embed XML data within non-XML data files in a platform-independent format that can
be easily located and accessed by simple scanning rather than requiring the document file to be parsed.

A metadata stream may be attached to a document through the Metadata entry in the document catalogue
(see 7.7.2, “Document Catalog”). The metadata framework provides a date stamp for metadata expressed in
the framework. If this date stamp is equal to or later than the document modification date recorded in the
document information dictionary, the metadata stream shall be taken as authoritative. If, however, the
document modification date recorded in the document information dictionary is later than the metadata
stream’s date stamp, the document has likely been saved by a writer that is not aware of metadata streams. In
this case, information stored in the document information dictionary shall be taken to override any semantically
equivalent items in the metadata stream. In addition, PDF document components represented as a stream or
dictionary may have a Metadata entry (see Table 316).

In general, any PDF stream or dictionary may have metadata attached to it as long as the stream or dictionary
represents an actual information resource, as opposed to serving as an implementation artifact. Some PDF
constructs are considered implementational, and hence may not have associated metadata.

When there is ambiguity about exactly which stream or dictionary may bear the Metadata entry, the metadata
shall be attached as close as possible to the object that actually stores the data resource described.

NOTE 4 Metadata describing a tiling pattern should be attached to the pattern stream’s dictionary, but a shading should
have metadata attached to the shading dictionary rather than to the shading pattern dictionary that refers to it.
Similarly, metadata describing an ICCBased colour space should be attached to the ICC profile stream
describing it, and metadata for fonts should be attached to font file streams rather than to font dictionaries.

NOTE 5 In tables describing document components in this specification, the Metadata entry is listed only for those in
which it is most likely to be used. Keep in mind, however, that this entry may appear in other components
represented as streams or dictionaries.

• In addition, metadata may also be associated with marked content within a content stream. This
association shall be created by including an entry in the property list dictionary whose key shall be
Metadata and whose value shall be the metadata stream dictionary. Because this construct refers to an
object outside the content stream, the property list is referred to indirectly as a named resource (see
14.6.2, “Property Lists”).

14.3.3 Document Information Dictionary

The optional Info entry in the trailer of a PDF file (see 7.5.5, “File Trailer”) shall hold a document information
dictionary containing metadata for the document; Table 317 shows its contents. Any entry whose value is not
known should be omitted from the dictionary rather than included with an empty string as its value.

Table 315 – Additional entries in a metadata stream dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall be
Metadata for a metadata stream.

Subtype name (Required) The type of metadata stream that this dictionary describes; shall
be XML.

Table 316 – Additional entry for components having metadata

Key Type Value

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the
component.

PDF 32000-1:2008

550 © Adobe Systems Incorporated 2008 – All rights reserved

Some conforming readers may choose to permit searches on the contents of the document information
dictionary. To facilitate browsing and editing, all keys in the dictionary shall be fully spelled out, not abbreviated.
New keys should be chosen with care so that they make sense to users.

The value associated with any key not specifically mentioned in Table 317 shall be a text string.

Although conforming readers may store custom metadata in the document information dictionary, they may not
store private content or structural information there. Such information shall be stored in the document
catalogue instead (see 7.7.2, “Document Catalog”).

EXAMPLE This example shows a typical document information dictionary.

1 0 obj

<< /Title (PostScript Language Reference, Third Edition)
 /Author (Adobe Systems Incorporated)
 /Creator (Adobe FrameMaker 5 . 5 . 3 for Power Macintosh®)
 /Producer (Acrobat Distiller 3 . 01 for Power Macintosh)
 /CreationDate (D : 19970915110347 - 08 ' 00 ')
 /ModDate (D : 19990209153925 - 08 ' 00 ')

>>
endobj

Table 317 – Entries in the document information dictionary

Key Type Value

Title text string (Optional; PDF 1.1) The document’s title.

Author text string (Optional) The name of the person who created the document.

Subject text string (Optional; PDF 1.1) The subject of the document.

Keywords text string (Optional; PDF 1.1) Keywords associated with the document.

Creator text string (Optional) If the document was converted to PDF from another format,
the name of the conforming product that created the original document
from which it was converted.

Producer text string (Optional) If the document was converted to PDF from another format,
the name of the conforming product that converted it to PDF.

CreationDate date (Optional) The date and time the document was created, in human-
readable form (see 7.9.4, “Dates”).

ModDate date (Required if PieceInfo is present in the document catalogue;
otherwise optional; PDF 1.1) The date and time the document was
most recently modified, in human-readable form (see 7.9.4, “Dates”).

Trapped name (Optional; PDF 1.3) A name object indicating whether the document
has been modified to include trapping information (see 14.11.6,
“Trapping Support”):
True The document has been fully trapped; no further trapping

shall be needed. This shall be the name True, not the
boolean value true.

False The document has not yet been trapped. This shall be the
name False, not the boolean value false.

Unknown Either it is unknown whether the document has been
trapped or it has been partly but not yet fully trapped; some
additional trapping may still be needed.

Default value: Unknown.
NOTE The value of this entry may be set automatically by the

software creating the document’s trapping information, or
it may be known only to a human operator and entered
manually.

© Adobe Systems Incorporated 2008 – All rights reserved 551

PDF 32000-1:2008

14.4 File Identifiers

PDF files may contain references to other PDF files (see 7.11, “File Specifications”). Simply storing a file name,
however, even in a platform-independent format, does not guarantee that the file can be found. Even if the file
still exists and its name has not been changed, different server software applications may identify it in different
ways. Servers running on DOS platforms convert all file names to 8 characters and a 3-character extension.
Different servers may use different strategies for converting longer file names to this format.

External file references may be made more reliable by including a file identifier (PDF 1.1) in the file and using it
in addition to the normal platform-based file designation. Matching the identifier in the file reference with the
one in the file confirms whether the correct file was found.

File identifiers shall be defined by the optional ID entry in a PDF file’s trailer dictionary (see 7.5.5, “File Trailer”).
The ID entry is optional but should be used. The value of this entry shall be an array of two byte strings. The
first byte string shall be a permanent identifier based on the contents of the file at the time it was originally
created and shall not change when the file is incrementally updated. The second byte string shall be a
changing identifier based on the file’s contents at the time it was last updated. When a file is first written, both
identifiers shall be set to the same value. If both identifiers match when a file reference is resolved, it is very
likely that the correct and unchanged file has been found. If only the first identifier matches, a different version
of the correct file has been found.

To help ensure the uniqueness of file identifiers, they should be computed by means of a message digest
algorithm such as MD5 (described in Internet RFC 1321, The MD5 Message-Digest Algorithm; see the
Bibliography), using the following information:

• The current time

• A string representation of the file’s location, usually a pathname

• The size of the file in bytes

• The values of all entries in the file’s document information dictionary (see 14.3.3, “Document Information
Dictionary”)

NOTE The calculation of the file identifier need not be reproducible; all that matters is that the identifier is likely to be
unique. For example, two implementations of the preceding algorithm might use different formats for the
current time, causing them to produce different file identifiers for the same file created at the same time, but the
uniqueness of the identifier is not affected.

14.5 Page-Piece Dictionaries

A page-piece dictionary (PDF 1.3) may be used to hold private conforming product data. The data may be
associated with a page or form XObject by means of the optional PieceInfo entry in the page object (see
Table 30) or form dictionary (see Table 95). Beginning with PDF 1.4, private data may also be associated with
the PDF document by means of the PieceInfo entry in the document catalogue (see Table 28).

NOTE 1 Conforming products may use this dictionary as a place to store private data in connection with that document,
page, or form. Such private data can convey information meaningful to the conforming product that produces it
(such as information on object grouping for a graphics editor or the layer information used by Adobe
Photoshop®) but may be ignored by general-purpose conforming readers.

As Table 318 shows, a page-piece dictionary may contain any number of entries, each keyed by the name of a
distinct conforming product or of a well-known data type recognized by a family of conforming products. The
value associated with each key shall be a data dictionary containing the private data that shall be used by the
conforming product. The Private entry may have a value of any data type, but typically it is a dictionary
containing all of the private data needed by the conforming product other than the actual content of the
document, page, or form.

PDF 32000-1:2008

552 © Adobe Systems Incorporated 2008 – All rights reserved

The LastModified entry indicates when this conforming product last altered the content of the page or form. If
the page-piece dictionary contains several data dictionaries, their modification dates can be compared with
those in the corresponding entry of the page object or form dictionary (see Table 30 and Table 95), or the
ModDate entry of the document information dictionary (see Table 317), to ascertain which data dictionary
corresponds to the current content of the page or form. Because some platforms may use only an approximate
value for the date and time or may not deal correctly with differing time zones, modification dates shall be
compared only for equality and not for sequential ordering.

NOTE 2 It is possible for two or more data dictionaries to have the same modification date. Conforming products can
use this capability to define multiple or extended versions of the same data format. For example, suppose that
earlier versions of a conforming product use an data dictionary named PictureEdit, and later versions of the
same conforming product extend the data to include additional items not previously used. The original data
could continue to be kept in the PictureEdit dictionary and the additional items placed in a new dictionary
named PictureEditExtended. This allows the earlier versions of the conforming product to continue to work as
before, and later versions are able to locate and use the extended data items.

14.6 Marked Content

14.6.1 General

Marked-content operators (PDF 1.2) may identify a portion of a PDF content stream as a marked-content
element of interest to a particular conforming product. Marked-content elements and the operators that mark
them shall fall into two categories:

• The MP and DP operators shall designate a single marked-content point in the content stream.

• The BMC, BDC, and EMC operators shall bracket a marked-content sequence of objects within the
content stream.

NOTE 1 This is a sequence not simply of bytes in the content stream but of complete graphics objects. Each object is
fully qualified by the parameters of the graphics state in which it is rendered.

NOTE 2 A graphics application, for example, might use marked content to identify a set of related objects as a group to
be processed as a single unit. A text-processing application might use it to maintain a connection between a
footnote marker in the body of a document and the corresponding footnote text at the bottom of the page. The
PDF logical structure facilities use marked-content sequences to associate graphical content with structure
elements (see 14.7.4, “Structure Content”). Table 320 summarizes the marked-content operators.

All marked-content operators except EMC shall take a tag operand indicating the role or significance of the
marked-content element to the conforming reader. All such tags shall be registered with Adobe Systems (see

Table 318 – Entries in a page-piece dictionary

Key Type Value

any conforming
product name or well-
known data type

dictionary A data dictionary (see Table 319).

Table 319 – Entries in an data dictionary

Key Type Value

LastModified date (Required) The date and time when the contents of the
document, page, or form were most recently modified by this
conforming product.

Private (any) (Optional) Any private data appropriate to the conforming
product, typically in the form of a dictionary.

© Adobe Systems Incorporated 2008 – All rights reserved 553

PDF 32000-1:2008

Annex E) to avoid conflicts between different applications marking the same content stream. In addition to the
tag operand, the DP and BDC operators shall specify a property list containing further information associated
with the marked content. Property lists are discussed further in 14.6.2, “Property Lists.”

Marked-content operators may appear only between graphics objects in the content stream. They may not
occur within a graphics object or between a graphics state operator and its operands. Marked-content
sequences may be nested one within another, but each sequence shall be entirely contained within a single
content stream.

NOTE 3 A marked-content sequence may not cross page boundaries.

NOTE 4 The Contents entry of a page object (see 7.7.3.3, “Page Objects”), which may be either a single stream or an
array of streams, is considered a single stream with respect to marked-content sequences.

When the marked-content operators BMC, BDC, and EMC are combined with the text object operators BT and
ET (see 9.4, “Text Objects”), each pair of matching operators (BMC … EMC, BDC … EMC, or BT … ET) shall be
properly (separately) nested. Therefore, the sequences

BMC BT
BT BMC

… and …
ET EMC

EMC ET

are valid, but

BMC BT
BT BMC

… and …
EMC ET

BT EMC

are not valid.

Table 320 – Marked-content operators

Operands Operator Description

tag MP Designate a marked-content point. tag shall be a name object indicating
the role or significance of the point.

tag properties DP Designate a marked-content point with an associated property list. tag
shall be a name object indicating the role or significance of the point.
properties shall be either an inline dictionary containing the property list or
a name object associated with it in the Properties subdictionary of the
current resource dictionary (see 14.6.2, “Property Lists”).

tag BMC Begin a marked-content sequence terminated by a balancing EMC
operator. tag shall be a name object indicating the role or significance of
the sequence.

tag properties BDC Begin a marked-content sequence with an associated property list,
terminated by a balancing EMC operator. tag shall be a name object
indicating the role or significance of the sequence. properties shall be
either an inline dictionary containing the property list or a name object
associated with it in the Properties subdictionary of the current resource
dictionary (see 14.6.2, “Property Lists”).

— EMC End a marked-content sequence begun by a BMC or BDC operator.

PDF 32000-1:2008

554 © Adobe Systems Incorporated 2008 – All rights reserved

14.6.2 Property Lists

The marked-content operators DP and BDC associate a property list with a marked-content element within a
content stream. The property list is a dictionary containing private information meaningful to the conforming
writer creating the marked content. Conforming products should use the dictionary entries in a consistent way;
the values associated with a given key should always be of the same type (or small set of types).

If all of the values in a property list dictionary are direct objects, the dictionary may be written inline in the
content stream as a direct object. If any of the values are indirect references to objects outside the content
stream, the property list dictionary shall be defined as a named resource in the Properties subdictionary of the
current resource dictionary (see 7.8.3, “Resource Dictionaries”) and referenced by name as the properties
operand of the DP or BDC operator.

14.6.3 Marked Content and Clipping

Some PDF path and text objects are defined purely for their effect on the current clipping path, without the
objects actually being painted on the page. This occurs when a path object is defined using the operator
sequence W n or W* n (see 8.5.4, “Clipping Path Operators”) or when a text object is painted in text rendering
mode 7 (see 9.3.6, “Text Rendering Mode”). Such clipped, unpainted path or text objects are called clipping
objects. When a clipping object falls within a marked-content sequence, it shall not be considered part of the
sequence unless the entire sequence consists only of clipping objects. In Example 1, for instance, the marked-
content sequence tagged Clip includes the text string (Clip me) but not the rectangular path that defines the
clipping boundary.

EXAMPLE 1 /Clip BMC
100 100 10 10 re W n % Clipping path
(Clip me) Tj % Object to be clipped

EMC

Only when a marked-content sequence consists entirely of clipping objects shall the clipping objects be
considered part of the sequence. In this case, the sequence is known as a marked clipping sequence. Such
sequences may be nested. In Example 2, for instance, multiple lines of text are used to clip a subsequent
graphics object (in this case, a filled path). Each line of text shall be bracketed within a separate marked
clipping sequence, tagged Pgf. The entire series shall be bracketed in turn by an outer marked clipping
sequence, tagged Clip.

NOTE The marked-content sequence tagged ClippedText is not a marked clipping sequence, since it contains a filled
rectangular path that is not a clipping object. The clipping objects belonging to the Clip and Pgf sequences are
therefore not considered part of the ClippedText sequence.

EXAMPLE 2 /ClippedText BMC
/Clip << … >>

BDC
BT

7 Tr % Begin text clip mode
/Pgf BMC

(Line 1) Tj
EMC
/Pgf BMC

(Line) '
(2) Tj

EMC
ET % Set current text clip

EMC
100 100 10 10 re f % Filled path

EMC

The precise rules governing marked clipping sequences shall be as follows:

• A clipping object shall be a path object ended by the operator sequence W n or W* n or a text object
painted in text rendering mode 7.

© Adobe Systems Incorporated 2008 – All rights reserved 555

PDF 32000-1:2008

• An invisible graphics object shall be a path object ended by the operator n only (with no preceding W or
W*) or a text object painted in text rendering mode 3.

• A visible graphics object shall be a path object ended by any operator other than n, a text object painted in
any text rendering mode other than 3 or 7, or any XObject invoked by the Do operator.

• An empty marked-content element shall be a marked-content point or a marked-content sequence that
encloses no graphics objects.

• A marked clipping sequence shall be a marked-content sequence that contains at least one clipping object
and no visible graphics objects.

• Clipping objects and marked clipping sequences shall be considered part of an enclosing marked-content
sequence only if it is a marked clipping sequence.

• Invisible graphics objects and empty marked-content elements shall always be considered part of an
enclosing marked-content sequence, regardless of whether it is a marked clipping sequence.

• The q (save) and Q (restore) operators may not occur within a marked clipping sequence.

Example 3 illustrates the application of these rules. Marked-content sequence S4 is a marked clipping
sequence because it contains a clipping object (clipping path 2) and no visible graphics objects. Clipping path 2
is therefore considered part of sequence S4. Marked-content sequences S1, S2, and S3 are not marked
clipping sequences, since they each include at least one visible graphics object. Thus, clipping paths 1 and 2
are not part of any of these three sequences.

EXAMPLE 3 /S1 BMC
/S2 BMC

/S3 BMC
0 0 m
100 100 l
0 100 l W n % Clipping path 1

0 0 m
200 200 l
0 100 l f % Filled path

EMC

/S4 BMC
0 0 m
300 300 l
0 100 l W n % Clipping path 2

EMC
EMC
100 100 10 10 re f % Filled path

EMC

In Example 4 marked-content sequence S1 is a marked clipping sequence because the only graphics object it
contains is a clipping path. Thus, the empty marked-content sequence S3 and the marked-content point P1 are
both part of sequence S2, and S2, S3, and P1 are all part of sequence S1.

EXAMPLE 4 /S1 BMC
… Clipping path …
/S2 BMC

/S3 BMC
EMC
/P1 DP

EMC
EMC

PDF 32000-1:2008

556 © Adobe Systems Incorporated 2008 – All rights reserved

In Example 5 marked-content sequences S1 and S4 are marked clipping sequences because the only object
they contain is a clipping path. Hence the clipping path is part of sequences S1 and S4; S3 is part of S2; and
S2, S3, and S4 are all part of S1.

EXAMPLE 5 /S1 BMC
/S2 BMC

/S3 BMC
EMC

EMC

/S4 BMC
… Clipping path …

EMC
EMC

14.7 Logical Structure

14.7.1 General

PDF’s logical structure facilities (PDF 1.3) shall provide a mechanism for incorporating structural information
about a document’s content into a PDF file. Such information may include the organization of the document into
chapters and sections or the identification of special elements such as figures, tables, and footnotes. The
logical structure facilities shall be extensible, allowing conforming writers to choose what structural information
to include and how to represent it, while enabling conforming readers to navigate a file without knowing the
producer’s structural conventions.

PDF logical structure shares basic features with standard document markup languages such as HTML, SGML,
and XML. A document’s logical structure shall be expressed as a hierarchy of structure elements, each
represented by a dictionary object. Like their counterparts in other markup languages, PDF structure elements
may have content and attributes. In PDF, rendered document content takes over the role occupied by text in
HTML, SGML, and XML.

A PDF document’s logical structure shall be stored separately from its visible content, with pointers from each
to the other. This separation allows the ordering and nesting of logical elements to be entirely independent of
the order and location of graphics objects on the document’s pages.

The Markings entry in the document catalogue (see 7.7.2, “Document Catalog”) shall specify a mark
information dictionary, whose entries are shown in Table 321. It provides additional information relevant to
specialized uses of structured PDF documents.

Table 321 – Entries in the mark information dictionary

Key Type Value

Marked boolean (Optional) A flag indicating whether the document conforms to Tagged
PDF conventions (see 14.8, “Tagged PDF”). Default value: false.
If Suspects is true, the document may not completely conform to Tagged
PDF conventions.

UserProperties boolean (Optional; PDF 1.6) A flag indicating the presence of structure elements
that contain user properties attributes (see 14.7.5.4, “User Properties”).
Default value: false.

Suspects boolean (Optional; PDF 1.6) A flag indicating the presence of tag suspects (see
14.8.2.3, “Page Content Order”). Default value: false.

© Adobe Systems Incorporated 2008 – All rights reserved 557

PDF 32000-1:2008

14.7.2 Structure Hierarchy

The logical structure of a document shall be described by a hierarchy of objects called the structure hierarchy
or structure tree. At the root of the hierarchy shall be a dictionary object called the structure tree root, located by
means of the StructTreeRoot entry in the document catalogue (see 7.7.2, “Document Catalog”). Table 322
shows the entries in the structure tree root dictionary. The K entry shall specify the immediate children of the
structure tree root, which shall be structure elements.

Structure elements shall be represented by a dictionary, whose entries are shown in Table 323. The K entry
shall specify the children of the structure element, which may be zero or more items of the following kinds:

• Other structure elements

• References to content items, which are either marked-content sequences (see 14.6, “Marked Content”) or
complete PDF objects such as XObjects and annotations. These content items represent the graphical
content, if any, associated with a structure element. Content items are discussed in detail in 14.7.4,
“Structure Content.”

Table 322 – Entries in the structure tree root

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes;
shall be StructTreeRoot for a structure tree root.

K dictionary
or array

(Optional) The immediate child or children of the structure tree root in
the structure hierarchy. The value may be either a dictionary
representing a single structure element or an array of such
dictionaries.

IDTree name tree (Required if any structure elements have element identifiers) A name
tree that maps element identifiers (see Table 323) to the structure
elements they denote.

ParentTree number tree (Required if any structure element contains content items) A number
tree (see 7.9.7, “Number Trees”) used in finding the structure
elements to which content items belong. Each integer key in the
number tree shall correspond to a single page of the document or to
an individual object (such as an annotation or an XObject) that is a
content item in its own right. The integer key shall be the value of the
StructParent or StructParents entry in that object (see 14.7.4.4,
“Finding Structure Elements from Content Items”). The form of the
associated value shall depend on the nature of the object:
For an object that is a content item in its own right, the value shall be
an indirect reference to the object’s parent element (the structure
element that contains it as a content item).
For a page object or content stream containing marked-content
sequences that are content items, the value shall be an array of
references to the parent elements of those marked-content
sequences.
See 14.7.4.4, “Finding Structure Elements from Content Items” for
further discussion.

ParentTreeNext
Key

integer (Optional) An integer greater than any key in the parent tree, shall be
used as a key for the next entry added to the tree.

RoleMap dictionary (Optional) A dictionary that shall map the names of structure types
used in the document to their approximate equivalents in the set of
standard structure types (see 14.8.4, “Standard Structure Types”).

ClassMap dictionary (Optional) A dictionary that shall map name objects designating
attribute classes to the corresponding attribute objects or arrays of
attribute objects (see 14.7.5.2, “Attribute Classes”).

PDF 32000-1:2008

558 © Adobe Systems Incorporated 2008 – All rights reserved

Table 323 – Entries in a structure element dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if
present, shall be StructElem for a structure element.

S name (Required) The structure type, a name object identifying the
nature of the structure element and its role within the document,
such as a chapter, paragraph, or footnote (see 14.7.3, “Structure
Types”). Names of structure types shall conform to the guidelines
described in Annex E.

P dictionary (Required; shall be an indirect reference) The structure element
that is the immediate parent of this one in the structure hierarchy.

ID byte string (Optional) The element identifier, a byte string designating this
structure element. The string shall be unique among all elements
in the document’s structure hierarchy. The IDTree entry in the
structure tree root (see Table 322) defines the correspondence
between element identifiers and the structure elements they
denote.

Pg dictionary (Optional; shall be an indirect reference) A page object
representing a page on which some or all of the content items
designated by the K entry shall be rendered.

K (various) (Optional) The children of this structure element. The value of this
entry may be one of the following objects or an array consisting of
one or more of the following objects:
• A structure element dictionary denoting another structure

element
• An integer marked-content identifier denoting a marked-

content sequence
• A marked-content reference dictionary denoting a marked-

content sequence
• An object reference dictionary denoting a PDF object
Each of these objects other than the first (structure element
dictionary) shall be considered to be a content item; see 14.7.4,
“Structure Content” for further discussion of each of these forms of
representation.
If the value of K is a dictionary containing no Type entry, it shall be
assumed to be a structure element dictionary.

A (various) (Optional) A single attribute object or array of attribute objects
associated with this structure element. Each attribute object shall
be either a dictionary or a stream. If the value of this entry is an
array, each attribute object in the array may be followed by an
integer representing its revision number (see 14.7.5, “Structure
Attributes,” and 14.7.5.3, “Attribute Revision Numbers”).

C name or array (Optional) An attribute class name or array of class names
associated with this structure element. If the value of this entry is
an array, each class name in the array may be followed by an
integer representing its revision number (see 14.7.5.2, “Attribute
Classes,” and 14.7.5.3, “Attribute Revision Numbers”).
If both the A and C entries are present and a given attribute is
specified by both, the one specified by the A entry shall take
precedence.

R integer (Optional) The current revision number of this structure element
(see 14.7.5.3, “Attribute Revision Numbers”). The value shall be a
non-negative integer. Default value: 0.

© Adobe Systems Incorporated 2008 – All rights reserved 559

PDF 32000-1:2008

14.7.3 Structure Types

Every structure element shall have a structure type, a name object that identifies the nature of the structure
element and its role within the document (such as a chapter, paragraph, or footnote). To facilitate the
interchange of content among conforming products, PDF defines a set of standard structure types; see 14.8.4,
“Standard Structure Types.” Conforming products are not required to adopt them, however, and may use any
names for their structure types.

Where names other than the standard ones are used, a role map may be provided in the structure tree root,
mapping the structure types used in the document to their nearest equivalents in the standard set.

NOTE 1 A structure type named Section used in the document might be mapped to the standard type Sect. The
equivalence need not be exact; the role map merely indicates an approximate analogy between types,
allowing conforming products to share nonstandard structure elements in a reasonable way.

NOTE 2 The same structure type may occur as both a key and a value in the role map, and circular chains of
association are explicitly permitted. Therefore, a single role map may define a bidirectional mapping. A
conforming reader using the role map should follow the chain of associations until it either finds a structure
type it recognizes or returns to one it has already encountered.

NOTE 3 In PDF versions earlier than 1.5, standard element types were never remapped. Beginning with PDF 1.5, an
element name shall always be mapped to its corresponding name in the role map, if there is one, even if the
original name is one of the standard types. This shall be done to allow the element, for example, to represent a
tag with the same name as a standard role, even though its use differs from the standard role.

T text string (Optional) The title of the structure element, a text string
representing it in human-readable form. The title should
characterize the specific structure element, such as Chapter 1,
rather than merely a generic element type, such as Chapter.

Lang text string (Optional; PDF 1.4) A language identifier specifying the natural
language for all text in the structure element except where
overridden by language specifications for nested structure
elements or marked content (see 14.9.2, “Natural Language
Specification”). If this entry is absent, the language (if any)
specified in the document catalogue applies.

Alt text string (Optional) An alternate description of the structure element and its
children in human-readable form, which is useful when extracting
the document’s contents in support of accessibility to users with
disabilities or for other purposes (see 14.9.3, “Alternate
Descriptions”).

E text string (Optional; PDF 1.5) The expanded form of an abbreviation.

ActualText text string (Optional; PDF 1.4) Text that is an exact replacement for the
structure element and its children. This replacement text (which
should apply to as small a piece of content as possible) is useful
when extracting the document’s contents in support of
accessibility to users with disabilities or for other purposes (see
14.9.4, “Replacement Text”).

Table 323 – Entries in a structure element dictionary (continued)

Key Type Value

PDF 32000-1:2008

560 © Adobe Systems Incorporated 2008 – All rights reserved

14.7.4 Structure Content

14.7.4.1 General

Any structure element may have associated graphical content, consisting of one or more content items.
Content items shall be graphical objects that exist in the document independently of the structure tree but are
associated with structure elements as described in the following sub-clauses. Content items are of two kinds:

• Marked-content sequences within content streams (see 14.7.4.2, “Marked-Content Sequences as Content
Items”)

• Complete PDF objects such as annotations and XObjects (see 14.7.4.3, “PDF Objects as Content Items”)

The K entry in a structure element dictionary (see Table 323) shall specify the children of the structure element,
which may include any number of content items, as well as child structure elements that may in turn have
content items of their own.

Content items shall be leaf nodes of the structure tree; that is, they may not have other content items nested
within them for purposes of logical structure. The hierarchical relationship among structure elements shall be
represented entirely by the K entries of the structure element dictionaries, not by nesting of the associated
content items. Therefore, the following restrictions shall apply:

• A marked-content sequence delimiting a structure content item may not have another marked-content
sequence for a content item nested within it though non-structural marked content shall be allowed.

• A structure content item shall not invoke (with the Do operator) an XObject that is itself a structure content
item.

14.7.4.2 Marked-Content Sequences as Content Items

A sequence of graphics operators in a content stream may be specified as a content item of a structure
element in the following way:

• The operators shall be bracketed as a marked-content sequence between BDC and EMC operators (see
14.6, “Marked Content”). Although the tag associated with a marked-content sequence is not directly
related to the document’s logical structure, it should be the same as the structure type of the associated
structure element.

• The marked-content sequence shall have a property list (see 14.6.2, “Property Lists”) containing an MCID
entry, which i shall be an integer marked-content identifier that uniquely identifies the marked-content
sequence within its content stream, as shown in the following example:

EXAMPLE 1 2 0 obj % Page object
<< /Type /Page

 /Contents 3 0 R % Content stream
 …

>>
endobj

3 0 obj % Page's content stream

<< /Length … >>
stream

…
/P << /MCID 0 >> % Start of marked-content sequence

BDC
…
(Here is some text) Tj
…

EMC % End of marked-content sequence
…

© Adobe Systems Incorporated 2008 – All rights reserved 561

PDF 32000-1:2008

endstream
endobj

NOTE This example and the following examples omit required StructParents entries in the objects used as content
items (see 14.7.4.4, “Finding Structure Elements from Content Items”).

A structure element dictionary may include one or more marked-content sequences as content items by
referring to them in its K entry (see Table 323). This reference may have two forms:

• A dictionary object called a marked-content reference. Table 324 shows the contents of this type of
dictionary, which shall specify the marked-content identifier, as well other information identifying the stream
in which the sequence is contained. Example 2 illustrates the use of a marked-content reference to the
marked-content sequence shown in Example 3.

• An integer that specifies the marked-content identifier. This may be done in the common case where the
marked-content sequence is contained in the content stream of the page that is specified in the Pg entry of
the structure element dictionary. Example 3 shows a structure element that has three children: a marked-
content sequence specified by a marked-content identifier, as well as two other structure elements.

EXAMPLE 2 1 0 obj % Structure element
<< /Type /StructElem

 /S /P % Structure type
 /P … % Parent in structure hierarchy

 /K << /Type /MCR
 /Pg 2 0 R % Page containing marked-content sequence
 /MCID 0 % Marked-content identifier

>>
>>

endobj

EXAMPLE 3 1 0 obj % Containing structure element
<< /Type /StructElem

 /S /MixedContainer % Structure type
 /P … % Parent in structure hierarchy

Table 324 – Entries in a marked-content reference dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall be
MCR for a marked-content reference.

Pg dictionary (Optional; shall be an indirect reference) The page object representing
the page on which the graphics objects in the marked-content sequence
shall be rendered. This entry overrides any Pg entry in the structure
element containing the marked-content reference; it shall be required if
the structure element has no such entry.

Stm stream (Optional; shall be an indirect reference) The content stream containing
the marked-content sequence. This entry should be present only if the
marked-content sequence resides in a content stream other than the
content stream for the page (see 8.10, “Form XObjects” and 12.5.5,
“Appearance Streams”).
If this entry is absent, the marked-content sequence shall be contained in
the content stream of the page identified by Pg (either in the marked-
content reference dictionary or in the parent structure element).

StmOwn (any) (Optional; shall be an indirect reference) The PDF object owning the
stream identified by Stems annotation to which an appearance stream
belongs.

MCID integer (Required) The marked-content identifier of the marked-content
sequence within its content stream.

PDF 32000-1:2008

562 © Adobe Systems Incorporated 2008 – All rights reserved

 /Pg 2 0 R % Page containing marked-content sequence
 /K [4 0 R % Three children: a structure element

 0 % a marked-content identifier
 5 0 R % another structure element

]
>>

endobj

2 0 obj % Page object

<< /Type /Page
 /Contents 3 0 R % Content stream
 …
>>

endobj

3 0 obj % Page's content stream

<< /Length … >>
stream

…
/P << /MCID 0 >> % Start of marked-content sequence

BDC
(Here is some text) Tj
…

EMC % End of marked-content sequence
…

endstream
endobj

Content streams other than page contents may also contain marked content sequences that are content items
of structure elements. The content of form XObjects may be incorporated into structure elements in one of the
following ways:

• A Do operator that paints a form XObject may be part of a marked-content sequence that shall be
associated with a structure element (see Example 4). In this case, the entire form XObject shall be
considered to be part of the structure element’s content, as if it were inserted into the marked-content
sequence at the point of the Do operator. The form XObject shall not in turn contain any marked-content
sequences associated with this or other structure elements.

• The content stream of a form XObject may contain one or more marked-content sequences that shall be
associated with structure elements (see Example 5). The form XObject may have arbitrary substructure,
containing any number of marked-content sequences associated with logical structure elements. However,
any Do operator that paints the form XObject should not be part of a logical structure content item.

A form XObject that is painted with multiple invocations of the Do operator may be incorporated into the
document’s logical structure only by the first method, with each invocation of Do individually associated with a
structure element.

EXAMPLE 4 1 0 obj % Structure element
<< /Type /StructElem

 /S /P % Structure type
 /P … % Parent in structure hierarchy
 /Pg 2 0 R % Page containing marked-content sequence
 /K 0 % Marked-content identifier

>>
endobj

2 0 obj % Page object

<< /Type /Page
 /Resources << /XObject << /Fm4 4 0 R >> % Resource dictionary

>> % containing form XObject
 /Contents 3 0 R % Content stream
 …
>>

© Adobe Systems Incorporated 2008 – All rights reserved 563

PDF 32000-1:2008

endobj

3 0 obj % Page's content stream

<< /Length … >>
stream

…
/P << /MCID 0 >> % Start of marked-content sequence

BDC
/Fm4 Do % Paint form XObject

EMC % End of marked-content sequence
…

endstream
endobj

4 0 obj % Form XObject

<< /Type /XObject
 /Subtype /Form
 /Length …
>>

stream
…
(Here is some text) Tj
…

endstream
endobj

EXAMPLE 5 1 0 obj % Structure element
<< /Type /StructElem
 /S /P % Structure type
 /P … % Parent in structure hierarchy
 /K << /Type /MCR

 /Pg 2 0 R % Page containing marked-content sequence
 /Stm 4 0 R % Stream containing marked-content sequence
 /MCID 0 % Marked-content identifier
>>

>>
endobj

2 0 obj % Page object

<< /Type /Page
 /Resources << /XObject << /Fm4 4 0 R >> % Resource dictionary

>> % containing form XObject
 /Contents 3 0 R % Content stream
 …
>>

endobj

3 0 obj % Page's content stream

<< /Length … >>
stream

…
/Fm4 Do % Paint form XObject
…

endstream
endobj

4 0 obj % Form XObject

<< /Type /XObject
 /Subtype /Form
 /Length …
>>

stream
…
/P << /MCID 0 >> % Start of marked-content sequence

BDC

PDF 32000-1:2008

564 © Adobe Systems Incorporated 2008 – All rights reserved

…
(Here is some text) Tj
…

EMC % End of marked-content sequence
…

endstream
endobj

14.7.4.3 PDF Objects as Content Items

When a structure element’s content includes an entire PDF object, such as an XObject or an annotation, that is
associated with a page but not directly included in the page’s content stream, the object shall be identified in
the structure element’s K entry by an object reference dictionary (see Table 325).

NOTE 1 This form of reference is used only for entire objects. If the referenced content forms only part of the object’s
content stream, it is instead handled as a marked-content sequence, as described in the preceding sub-
clause.

NOTE 2 If the referenced object is rendered on multiple pages, each rendering requires a separate object reference.
However, if it is rendered multiple times on the same page, just a single object reference suffices to identify all
of them. (If it is important to distinguish between multiple renditions of the same XObject on the same page,
they should be accessed by means of marked-content sequences enclosing particular invocations of the Do
operator rather than through object references.)

14.7.4.4 Finding Structure Elements from Content Items

Because a stream may not contain object references, there is no way for content items that are marked-content
sequences to refer directly back to their parent structure elements (the ones to which they belong as content
items). Instead, a different mechanism, the structural parent tree, shall be provided for this purpose. For
consistency, content items that are entire PDF objects, such as XObjects, also shall use the parent tree to refer
to their parent structure elements.

The parent tree is a number tree (see 7.9.7, “Number Trees”), accessed from the ParentTree entry in a
document’s structure tree root (Table 322). The tree shall contain an entry for each object that is a content item
of at least one structure element and for each content stream containing at least one marked-content sequence
that is a content item. The key for each entry shall be an integer given as the value of the StructParent or
StructParents entry in the object (see Table 326). The values of these entries shall be as follows:

• For an object identified as a content item by means of an object reference (see 14.7.4.3, “PDF Objects as
Content Items”), the value shall be an indirect reference to the parent structure element.

• For a content stream containing marked-content sequences that are content items, the value shall be an
array of indirect references to the sequences’ parent structure elements. The array element corresponding
to each sequence shall be found by using the sequence’s marked-content identifier as a zero-based index
into the array.

Table 325 – Entries in an object reference dictionary

Key Type Value

Type name (Required) The type of PDF object that this dictionary describes; shall be OBJR
for an object reference.

Pg dictionary (Optional; shall be an indirect reference) The page object of the page on which
the object shall be rendered. This entry overrides any Pg entry in the structure
element containing the object reference; it shall be used if the structure element
has no such entry.

Obj (any) (Required; shall be an indirect reference) The referenced object.

© Adobe Systems Incorporated 2008 – All rights reserved 565

PDF 32000-1:2008

NOTE Because marked-content identifiers serve as indices into an array in the structural parent tree, their assigned
values should be as small as possible to conserve space in the array.

The ParentTreeNextKey entry in the structure tree root shall hold an integer value greater than any that is
currently in use as a key in the structural parent tree. Whenever a new entry is added to the parent tree, the
current value of ParentTreeNextKey shall be used as its key. The value shall be then incremented to prepare
for the next new entry to be added.

To locate the relevant parent tree entry, each object or content stream that is represented in the tree shall
contain a special dictionary entry, StructParent or StructParents (see Table 326). Depending on the type of
content item, this entry may appear in the page object of a page containing marked-content sequences, in the
stream dictionary of a form or image XObject, in an annotation dictionary, or in any other type of object
dictionary that is included as a content item in a structure element. Its value shall be the integer key under
which the entry corresponding to the object shall be found in the structural parent tree.

For a content item identified by an object reference, the parent structure element may be found by using the
value of the StructParent entry in the item’s object dictionary as a retrieval key in the structural parent tree
(found in the ParentTree entry of the structure tree root). The corresponding value in the parent tree shall be a
reference to the parent structure element (see Example 1).

EXAMPLE 1 1 0 obj % Parent structure element
<< /Type /StructElem
 …

 /K << /Type /OBJR % Object reference
 /Pg 2 0 R % Page containing form XObject
 /Obj 4 0 R % Reference to form XObject

 >>
>>

endobj

2 0 obj % Page object

<< /Type /Page
 /Resources << /XObject << /Fm4 4 0 R >> % Resource dictionary

>> % containing form XObject
 /Contents 3 0 R % Content stream
 …

>>
endobj

3 0 obj % Page's content stream

<< /Length … >>
stream

…
/Fm4 Do % Paint form XObject
…

endstream
endobj

Table 326 – Additional dictionary entries for structure element access

Key Type Value

StructParent integer (Required for all objects that are structural content items; PDF 1.3) The
integer key of this object’s entry in the structural parent tree.

StructParents integer (Required for all content streams containing marked-content sequences
that are structural content items; PDF 1.3) The integer key of this object’s
entry in the structural parent tree.
At most one of these two entries shall be present in a given object. An
object may be either a content item in its entirety or a container for
marked-content sequences that are content items, but not both.

PDF 32000-1:2008

566 © Adobe Systems Incorporated 2008 – All rights reserved

4 0 obj % Form XObject
<< /Type /XObject
 /Subtype /Form
 /Length …
 /StructParent 6 % Parent tree key
>>

stream
…

endstream
endobj

100 0 obj % Parent tree (accessed from structure tree root)

<< /Nums [0 101 0 R
 1 102 0 R
 …
 6 1 0 R % Entry for page object 2; points back
 … % to parent structure element

]
>>

endobj

For a content item that is a marked-content sequence, the retrieval method is similar but slightly more
complicated. Because a marked-content sequence is not an object in its own right, its parent tree key shall be
found in the StructParents entry of the page object or other content stream in which the sequence resides.
The value retrieved from the parent tree shall not be a reference to the parent structure element itself but to an
array of such references—one for each marked-content sequence contained within that content stream. The
parent structure element for the given sequence shall be found by using the sequence’s marked-content
identifier as an index into this array (see Example 2).

EXAMPLE 2 1 0 obj % Parent structure element
<< /Type /StructElem
 …
 /Pg 2 0 R % Page containing marked-content sequence
 /K 0 % Marked-content identifier
>>

endobj

2 0 obj % Page object

<< /Type /Page
 /Contents 3 0 R % Content stream
 /StructParents 6 % Parent tree key
 …
>>

endobj

3 0 obj % Page's content stream

<< /Length … >>
stream

…
/P << /MCID 0 >> % Start of marked-content sequence

BDC
(Here is some text) TJ
…

EMC % End of marked-content sequence
…

endstream
endobj

100 0 obj % Parent tree (accessed from structure tree root)

<< /Nums [0 101 0 R
 1 102 0 R
 …

© Adobe Systems Incorporated 2008 – All rights reserved 567

PDF 32000-1:2008

 6 [1 0 R] % Entry for page object 2; array element at index 0
 … % points back to parent structure element

]
>>

endobj

14.7.5 Structure Attributes

14.7.5.1 General

A conforming product that processes logical structure may attach additional information, called attributes, to
any structure element. The attribute information shall be held in one or more attribute objects associated with
the structure element. An attribute object shall be a dictionary or stream that includes an O entry (see
Table 327) identifying the conforming product that owns the attribute information. Other entries shall represent
the attributes: the keys shall be attribute names, and values shall be the corresponding attribute values. To
facilitate the interchange of content among conforming products, PDF defines a set of standard structure
attributes identified by specific standard owners; see 14.8.5, “Standard Structure Attributes.” In addition, (PDF
1.6) attributes may be used to represent user properties (see 14.7.5.4, “User Properties”).

Any conforming product may attach attributes to any structure element, even one created by another
conforming product. Multiple conforming products may attach attributes to the same structure element. The A
entry in the structure element dictionary (see Table 323) shall hold either a single attribute object or an array of
such objects, together with revision numbers for coordinating attributes created by different conforming
products (see 14.7.5.3, “Attribute Revision Numbers”). A conforming product creating or destroying the second
attribute object for a structure element shall be responsible for converting the value of the A entry from a single
object to an array or vice versa, as well as for maintaining the integrity of the revision numbers. No inherent
order shall be defined for the attribute objects in an A array, but new objects should be added at the end of the
array so that the first array element is the one belonging to the conforming product that originally created the
structure element.

14.7.5.2 Attribute Classes

If many structure elements share the same set of attribute values, they may be defined as an attribute class
sharing the identical attribute object. Structure elements shall refer to the class by name. The association
between class names and attribute objects shall be defined by a dictionary called the class map, that shall be
kept in the ClassMap entry of the structure tree root (see Table 322). Each key in the class map shall be a
name object denoting the name of a class. The corresponding value shall be an attribute object or an array of
such objects.

NOTE PDF attribute classes are unrelated to the concept of a class in object-oriented programming languages such
as Java and C++. Attribute classes are strictly a mechanism for storing attribute information in a more compact
form; they have no inheritance properties like those of true object-oriented classes.

The C entry in a structure element dictionary (see Table 323) shall contain a class name or an array of class
names (typically accompanied by revision numbers as well; see 14.7.5.3, “Attribute Revision Numbers”). For
each class named in the C entry, the corresponding attribute object or objects shall be considered to be
attached to the given structure element, along with those identified in the element’s A entry. If both the A and C
entries are present and a given attribute is specified by both, the one specified by the A entry shall take
precedence.

Table 327 – Entry common to all attribute object dictionaries

Key Type Value

O name (Required) The name of the conforming product owning the attribute data. The
name shall conform to the guidelines described in Annex E.

PDF 32000-1:2008

568 © Adobe Systems Incorporated 2008 – All rights reserved

14.7.5.3 Attribute Revision Numbers

When a conforming product modifies a structure element or its contents, the change may affect the validity of
attribute information attached to that structure element by other conforming products. A system of revision
numbers shall allow conforming products to detect such changes and update their own attribute information
accordingly, as described in this sub-clause.

A structure element shall have a revision number, that shall be stored in the R entry in the structure element
dictionary (see Table 323) or default to 0 if no R entry is present. Initially, the revision number shall be 0. When
a conforming product modifies the structure element or any of its content items, it may signal the change by
incrementing the revision number.

NOTE 1 The revision number is unrelated to the generation number associated with an indirect object (see 7.3.10,
“Indirect Objects”).

NOTE 2 If their is no R entry and the revision number is to be incremented from the default value of 0 to 1, an R entry
must be created in the structure element dictionary in order to record the 1.

Each attribute object attached to a structure element shall have an associated revision number. The revision
number shall be stored in the array that associates the attribute object with the structure element or if not stored
in the array that associates the attribute object with the structure element shall default to 0.

• Each attribute object in a structure element’s A array shall be represented by a single or a pair of array
elements, the first or only element shall contain the attribute object itself and the second (when present)
shall contain the integer revision number associated with it in this structure element.

• The structure element’s C array shall contain a single or a pair of elements for each attribute class, the first
or only shall contain the class name and the second (when present) shall contain the associated revision
number.

The revision numbers are optional in both the A and C arrays. An attribute object or class name that is not
followed by an integer array element shall have a revision number of 0 and is represented by a single entry in
the array.

NOTE 3 The revision number is not stored directly in the attribute object because a single attribute object may be
associated with more than one structure element (whose revision numbers may differ). Since an attribute
object reference is distinct from an integer, that distinction is used to determine whether the attribute object is
represented in the array by a single or a pair of entries.

NOTE 4 When an attribute object is created or modified, its revision number is set to the current value of the structure
element’s R entry. By comparing the attribute object’s revision number with that of the structure element, an
application can determine whether the contents of the attribute object are still current or whether they have
been outdated by more recent changes in the underlying structure element.

Changes in an attribute object shall not change the revision number of the associated structure element, which
shall change only when the structure element itself or any of its content items is modified.

Occasionally, a conforming product may make extensive changes to a structure element that are likely to
invalidate all previous attribute information associated with it. In this case, instead of incrementing the structure
element’s revision number, the conforming product may choose to delete all unknown attribute objects from its
A and C arrays. These two actions shall be mutually exclusive: the conforming product should either increment
the structure element’s revision number or remove its attribute objects, but not both.

NOTE 5 Any conforming product creating attribute objects needs to be prepared for the possibility that they can be
deleted at any time by another conforming product.

14.7.5.4 User Properties

Most structure attributes (see 14.8.5, “Standard Structure Attributes”) specify information that is reflected in the
element’s appearance; for example, BackgroundColor or BorderStyle.

© Adobe Systems Incorporated 2008 – All rights reserved 569

PDF 32000-1:2008

Some conforming writers, such as CAD applications, may use objects that have a standardized appearance,
each of which contains non-graphical information that distinguishes the objects from one another. For example,
several transistors might have the same appearance but different attributes such as type and part number.

User properties (PDF 1.6) may be used to contain such information. Any graphical object that corresponds to a
structure element may have associated user properties, specified by means of an attribute object dictionary
that shall have a value of UserProperties for the O entry (see Table 328).

The P entry shall be an array specifying the user properties. Each element in the array shall be a user property
dictionary representing an individual property (see Table 329). The order of the array elements shall specify
attributes in order of importance.

PDF documents that contain user properties shall provide a UserProperties entry with a value of true in the
document’s mark information dictionary (see Table 321). This entry allows conforming readers to quickly
determine whether it is necessary to search the structure tree for elements containing user properties.

EXAMPLE The following example shows a structure element containing user properties called Part Name, Part
Number, Supplier, and Price.

100 0 obj

<< /Type /StructElem
/S /Figure % Structure type
/P 50 0 R % Parent in structure tree
/A << /O /UserProperties % Attribute object

/P [% Array of user properties
<< /N (Part Name) /V (Framostat) >>
<< /N (Part Number) /V 11603 >>
<< /N (Supplier) /V (Just Framostats) /H true >> % Hidden attribute
<< /N (Price) /V -37.99 /F ($37.99) >> % Formatted value
]

>>
>>

endobj

Table 328 – Additional entries in an attribute object dictionary for user properties

Key Type Value

O name (Required) The attribute owner. Shall be UserProperties.

P array (Required) An array of dictionaries, each of which represents a user property (see
Table 329).

Table 329 – Entries in a user property dictionary

Key Type Value

N text (Required) The name of the user property.

V any (Required) The value of the user property.
While the value of this entry shall be any type of PDF object, conforming writers
should use only text string, number, and boolean values. Conforming readers
should display text, number and boolean values to users but need not display
values of other types; however, they should not treat other values as errors.

F text
string

(Optional) A formatted representation of the value of V, that shall be used for
special formatting; for example “($123.45)” for the number -123.45. If this entry is
absent, conforming readers should use a default format.

H boolean (Optional) If true, the attribute shall be hidden; that is, it shall not be shown in any
user interface element that presents the attributes of an object. Default value:
false.

PDF 32000-1:2008

570 © Adobe Systems Incorporated 2008 – All rights reserved

14.7.6 Example of Logical Structure

The next Example shows portions of a PDF file with a simple document structure. The structure tree root
(object 300) contains elements with structure types Chap (object 301) and Para (object 304). The Chap
element, titled Chapter 1, contains elements with types Head1 (object 302) and Para (object 303).

These elements are mapped to the standard structure types specified in Tagged PDF (see 14.8.4, “Standard
Structure Types”) by means of the role map specified in the structure tree root. Objects 302 through 304 have
attached attributes (see 14.7.5, “Structure Attributes,” and 14.8.5, “Standard Structure Attributes”).

The example also illustrates the structure of a parent tree (object 400) that maps content items back to their
parent structure elements and an ID tree (object 403) that maps element identifiers to the structure elements
they denote.

EXAMPLE 1 0 obj % Document catalog
<< /Type /Catalog
 /Pages 100 0 R % Page tree
 /StructTreeRoot 300 0 R % Structure tree root
>>

endobj

100 0 obj % Page tree

<< /Type /Pages
 /Kids [101 1 R % First page object

 102 0 R % Second page object
]

 /Count 2 % Page count
>>

endobj

101 1 obj % First page object

<< /Type /Page
 /Parent 100 0 R % Parent is the page tree
 /Resources << /Font << /F1 6 0 R % Font resources

 /F12 7 0 R
 >>

 /ProcSet [/PDF /Text] % Procedure sets
>>

/MediaBox [0 0 612 792] % Media box
 /Contents 201 0 R % Content stream
 /StructParents 0 % Parent tree key
>>

endobj

201 0 obj % Content stream for first page

<< /Length … >>
stream

1 1 1 rg
0 0 612 792 re f
BT % Start of text object

/Head1 << /MCID 0 >> % Start of marked-content sequence 0

BDC
0 0 0 rg
/F1 1 Tf
30 0 0 30 18 732 Tm
(This is a first level heading . Hello world :) Tj
1.1333 TL
T*
(goodbye universe .) Tj

EMC % End of marked-content sequence 0

/Para << /MCID 1 >> % Start of marked-content sequence 1

© Adobe Systems Incorporated 2008 – All rights reserved 571

PDF 32000-1:2008

BDC
/F12 1 Tf
14 0 0 14 18 660.8 Tm
(This is the first paragraph, which spans pages . It has four fairly short and \

concise sentences . This is the next to last) Tj
EMC % End of marked-content sequence 1

ET % End of text object

endstream
endobj

102 0 obj % Second page object

<< /Type /Page
 /Parent 100 0 R % Parent is the page tree
 /Resources << /Font << /F1 6 0 R % Font resources

 /F12 7 0 R
 >>

 /ProcSet [/PDF /Text] % Procedure sets
>>

/MediaBox [0 0 612 792] % Media box
 /Contents 202 0 R % Content stream

 /StructParents 1 % Parent tree key
>>

endobj

202 0 obj % Content stream for second page

<< /Length … >>
stream

1 1 1 rg
0 0 612 792 re f
BT % Start of text object

/Para << /MCID 0 >> % Start of marked-content sequence 0

BDC
0 0 0 rg
/F12 1 Tf
14 0 0 14 18 732 Tm
(sentence . This is the very last sentence of the first paragraph .) Tj

EMC % End of marked-content sequence 0

/Para << /MCID 1 >> % Start of marked-content sequence 1
BDC

/F12 1 Tf
14 0 0 14 18 570.8 Tm
(This is the second paragraph . It has four fairly short and concise sentences . \ This is the next

to last) Tj
EMC % End of marked-content sequence 1

/Para << /MCID 2 >> % Start of marked-content sequence 2

BDC
1.1429 TL
T*
(sentence . This is the very last sentence of the second paragraph .) Tj

EMC % End of marked-content sequence 2

ET % End of text object
endstream
endobj

300 0 obj % Structure tree root

<< /Type /StructTreeRoot
 /K [301 0 R % Two children: a chapter
 304 0 R % and a paragraph
]

PDF 32000-1:2008

572 © Adobe Systems Incorporated 2008 – All rights reserved

 /RoleMap << /Chap /Sect % Mapping to standard structure types
 /Head1 /H
 /Para /P

 >>
/ClassMap << /Normal 305 0 R >> % Class map containing one attribute class

 /ParentTree 400 0 R % Number tree for parent elements
 /ParentTreeNextKey 2 % Next key to use in parent tree
 /IDTree 403 0 R % Name tree for element identifiers
>>

endobj

301 0 obj % Structure element for a chapter

<< /Type /StructElem
 /S /Chap
 /ID (Chap1) % Element identifier
 /T (Chapter 1) % Human-readable title
 /P 300 0 R % Parent is the structure tree root
 /K [302 0 R % Two children: a section head

 303 0 R % and a paragraph
]

>>
endobj

302 0 obj % Structure element for a section head

<< /Type /StructElem
 /S /Head1
 /ID (Sec1.1) % Element identifier
 /T (Section 1.1) % Human-readable title
 /P 301 0 R % Parent is the chapter
 /Pg 101 1 R % Page containing content items

/A << /O /Layout % Attribute owned by Layout
/SpaceAfter 25
/SpaceBefore 0
/TextIndent 12.5

>>
 /K 0 % Marked-content sequence 0
>>

endobj

303 0 obj % Structure element for a paragraph

<< /Type /StructElem
 /S /Para
 /ID (Para1) % Element identifier
 /P 301 0 R % Parent is the chapter
 /Pg 101 1 R % Page containing first content item

/C /Normal % Class containing this element’s attributes
 /K [1 % Marked-content sequence 1

<< /Type /MCR % Marked-content reference to 2nd item
/Pg 102 0 R % Page containing second item
/MCID 0 % Marked-content sequence 0

>>
]

>>
endobj

304 0 obj % Structure element for another paragraph

<< /Type /StructElem
 /S /Para
 /ID (Para2) % Element identifier
 /P 300 0 R % Parent is the structure tree root
 /Pg 102 0 R % Page containing content items

/C /Normal % Class containing this element’s attributes
/A << /O /Layout

/TextAlign /Justify % Overrides attribute provided by classmap

© Adobe Systems Incorporated 2008 – All rights reserved 573

PDF 32000-1:2008

>>
 /K [1 2] % Marked-content sequences 1 and 2
>>

endobj

305 0 obj % Attribute class

<< /O /Layout % Owned by Layout
/EndIndent 0
/StartIndent 0
/WritingMode /LrTb
/TextAlign /Start

>>
endobj

400 0 obj % Parent tree

<< /Nums [0 401 0 R % Parent elements for first page
 1 402 0 R % Parent elements for second page

]
>>

endobj

401 0 obj % Array of parent elements for first page

[302 0 R % Parent of marked-content sequence 0
 303 0 R % Parent of marked-content sequence 1

]
endobj

402 0 obj % Array of parent elements for second page

[303 0 R % Parent of marked-content sequence 0
 304 0 R % Parent of marked-content sequence 1
 304 0 R % Parent of marked-content sequence 2

]
endobj

403 0 obj % ID tree root node

<< /Kids [404 0 R] >> % Reference to leaf node
endobj

404 0 obj % ID tree leaf node

<< /Limits [(Chap1) (Sec1.3)] % Least and greatest keys in tree
 /Names [(Chap1) 301 0 R % Mapping from element identifiers

 (Sec1.1) 302 0 R % to structure elements
 (Sec1.2) 303 0 R
 (Sec1.3) 304 0 R

]
>>

endobj

14.8 Tagged PDF

14.8.1 General

Tagged PDF (PDF 1.4) is a stylized use of PDF that builds on the logical structure framework described in 14.7,
“Logical Structure.” It defines a set of standard structure types and attributes that allow page content (text,
graphics, and images) to be extracted and reused for other purposes. A tagged PDF document is one that
conforms to the rules described in this sub-clause. A conforming writer is not required to produce tagged PDF
documents; however, if it does, it shall conform to these rules.

NOTE 1 It is intended for use by tools that perform the following types of operations:

• Simple extraction of text and graphics for pasting into other applications

PDF 32000-1:2008

574 © Adobe Systems Incorporated 2008 – All rights reserved

• Automatic reflow of text and associated graphics to fit a page of a different size than was assumed for the
original layout

• Processing text for such purposes as searching, indexing, and spell-checking

• Conversion to other common file formats (such as HTML, XML, and RTF) with document structure and
basic styling information preserved

• Making content accessible to users with visual impairments (see 14.9, “Accessibility Support”)

A tagged PDF document shall conform to the following rules:

• Page content (14.8.2, “Tagged PDF and Page Content”). Tagged PDF defines a set of rules for
representing text in the page content so that characters, words, and text order can be determined reliably.
All text shall be represented in a form that can be converted to Unicode. Word breaks shall be represented
explicitly. Actual content shall be distinguished from artifacts of layout and pagination. Content shall be
given in an order related to its appearance on the page, as determined by the conforming writer.

• A basic layout model (14.8.3, “Basic Layout Model”). A set of rules for describing the arrangement of
structure elements on the page.

• Structure types (14.8.4, “Standard Structure Types”). A set of standard structure types define the meaning
of structure elements, such as paragraphs, headings, articles, and tables.

• Structure attributes (14.8.5, “Standard Structure Attributes”). Standard structure attributes preserve styling
information used by the conforming writer in laying out content on the page.

A Tagged PDF document shall also contain a mark information dictionary (see Table 321) with a value of true
for the Marked entry.

NOTE 2 The types and attributes defined for Tagged PDF are intended to provide a set of standard fallback roles and
minimum guaranteed attributes to enable conforming readers to perform operations such as those mentioned
previously. Conforming writers are free to define additional structure types as long as they also provide a role
mapping to the nearest equivalent standard types, as described in 14.7.3, “Structure Types.” Likewise,
conforming writers can define additional structure attributes using any of the available extension mechanisms.

14.8.2 Tagged PDF and Page Content

14.8.2.1 General

Like all PDF documents, a Tagged PDF document consists of a sequence of self-contained pages, each of
which shall be described by one or more page content streams (including any subsidiary streams such as form
XObjects and annotation appearances). Tagged PDF defines some further rules for organizing and marking
content streams so that additional information can be derived from them:

• Distinguishing between the author’s original content and artifacts of the layout process (see 14.8.2.2, “Real
Content and Artifacts”).

• Specifying a content order to guide the layout process if the conforming reader reflows the page content
(see 14.8.2.3, “Page Content Order”).

• Representing text in a form from which a Unicode representation and information about font characteristics
can be unambiguously derived (see 14.8.2.4, “Extraction of Character Properties”).

• Representing word breaks unambiguously (see 14.8.2.5, “Identifying Word Breaks”).

• Marking text with information for making it accessible to users with visual impairments (see 14.9,
“Accessibility Support”).

© Adobe Systems Incorporated 2008 – All rights reserved 575

PDF 32000-1:2008

14.8.2.2 Real Content and Artifacts

14.8.2.2.1 General

The graphics objects in a document can be divided into two classes:

• The real content of a document comprises objects representing material originally introduced by the
document’s author.

• Artifacts are graphics objects that are not part of the author’s original content but rather are generated by
the conforming writer in the course of pagination, layout, or other strictly mechanical processes.

NOTE Artifacts may also be used to describe areas of the document where the author uses a graphical background,
with the goal of enhancing the visual experience. In such a case, the background is not required for
understanding the content.

The document’s logical structure encompasses all graphics objects making up the real content and describes
how those objects relate to one another. It does not include graphics objects that are mere artifacts of the
layout and production process.

A document’s real content includes not only the page content stream and subsidiary form XObjects but also
associated annotations that meet all of the following conditions:

• The annotation has an appearance stream (see 12.5.5, “Appearance Streams”) containing a normal (N)
appearance.

• The annotation’s Hidden flag (see 12.5.3, “Annotation Flags”) is not set.

• The annotation is included in the document’s logical structure (see 14.7, “Logical Structure”).

14.8.2.2.2 Specification of Artifacts

An artifact shall be explicitly distinguished from real content by enclosing it in a marked-content sequence with
the tag Artifact:

/Artifact /Artifact propertyList
BMC BDC

… or …
EMC EMC

The first form shall be used to identify a generic artifact; the second shall be used for those that have an
associated property list. Table 330 shows the properties that can be included in such a property list.

NOTE 1 To aid in text reflow, artifacts should be defined with property lists whenever possible. Artifacts lacking a
specified bounding box are likely to be discarded during reflow.

Table 330 – Property list entries for artifacts

Key Type Value

Type name (Optional) The type of artifact that this property list describes; if present,
shall be one of the names Pagination, Layout, Page, or (PDF 1.7)
Background.

BBox rectangle (Optional; required for background artifacts) An array of four numbers in
default user space units giving the coordinates of the left, bottom, right,
and top edges, respectively, of the artifact’s bounding box (the rectangle
that completely encloses its visible extent).

PDF 32000-1:2008

576 © Adobe Systems Incorporated 2008 – All rights reserved

The following types of artifacts can be specified by the Type entry:

• Pagination artifacts. Ancillary page features such as running heads and folios (page numbers).

• Layout artifacts. Purely cosmetic typographical or design elements such as footnote rules or background
screens.

• Page artifacts. Production aids extraneous to the document itself, such as cut marks and colour bars.

• Background artifacts. Images, patterns or coloured blocks that either run the entire length and/or width of
the page or the entire dimensions of a structural element. Background artifacts typically serve as a
background for content shown either on top of or placed adjacent to that background.

A background artifact can further be classified as visual content that serves to enhance the user experience,
that lies under the actual content, and that is not required except to retain visual fidelity.

NOTE 2 Examples of this include a coloured background, pattern, blend, or image that resides under main body text. In
the case of white text on a black background, the black background is absolutely necessary to be able to read
the white text; however, the background itself is merely there to enhance the visual experience. However, a
draft or other identifying watermark is classified as a pagination artifact because it does not serve to enhance
the experience; rather, it serves as a running artifact typically used on every page in the document. As a further
example, a Figure differs from a background artifact in that removal of the graphics objects from a Figure
would detract from the overall contextual understanding of the Figure as an entity.

• Tagged conforming readers may have their own ideas about what page content to consider relevant. A
text-to-speech engine, for instance, probably should not speak running heads or page numbers when the
page is turned. In general, conforming readers can do any of the following:

• Disregard elements of page content (for example, specific types of artifacts) that are not of interest

• Treat some page elements as terminals that are not to be examined further (for example, to treat an
illustration as a unit for reflow purposes)

• Replace an element with alternate text (see 14.9.3, “Alternate Descriptions”)

NOTE 3 Depending on their goals, different conforming readers can make different decisions in this regard. The
purpose of Tagged PDF is not to prescribe what the conforming reader should do, but to provide sufficient
declarative and descriptive information to allow it to make appropriate choices about how to process the
content.

To support conforming readers in providing accessibility to users with disabilities, Tagged PDF documents
should use the natural language specification (Lang), alternate description (Alt), replacement text
(ActualText), and abbreviation expansion text (E) facilities described in 14.9, “Accessibility Support.”

Attached array (Optional; pagination and full-page background artifacts only) An array of
name objects containing one to four of the names Top, Bottom, Left, and
Right, specifying the edges of the page, if any, to which the artifact is
logically attached. Page edges shall be defined by the page’s crop box
(see 14.11.2, “Page Boundaries”). The ordering of names within the array
is immaterial. Including both Left and Right or both Top and Bottom
indicates a full-width or full-height artifact, respectively.
Use of this entry for background artifacts shall be limited to full-page
artifacts. Background artifacts that are not full-page take their dimensions
from their parent structural element.

Subtype name (Optional; PDF 1.7) The subtype of the artifact. This entry should appear
only when the Type entry has a value of Pagination. Standard values are
Header, Footer, and
Watermark. Additional values may be specified for this entry, provided
they comply with the naming conventions described in Annex E.

Table 330 – Property list entries for artifacts (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 577

PDF 32000-1:2008

14.8.2.2.3 Incidental Artifacts

In addition to objects that are explicitly marked as artifacts and excluded from the document’s logical structure,
the running text of a page may contain other elements and relationships that are not logically part of the
document’s real content, but merely incidental results of the process of laying out that content into a document.
They may include the following elements:

• Hyphenation. Among the artifacts introduced by text layout is the hyphen marking the incidental division of
a word at the end of a line. In Tagged PDF, such an incidental word division shall be represented by a soft
hyphen character, which the Unicode mapping algorithm (see “Unicode Mapping in Tagged PDF” in
14.8.2.4, “Extraction of Character Properties”) translates to the Unicode value U+00AD. (This character is
distinct from an ordinary hard hyphen, whose Unicode value is U+002D.) The producer of a Tagged PDF
document shall distinguish explicitly between soft and hard hyphens so that the consumer does not have
to guess which type a given character represents.

NOTE 1 In some languages, the situation is more complicated: there may be multiple hyphen characters, and
hyphenation may change the spelling of words. See the Example in 14.9.4, “Replacement Text.”

• Text discontinuities. The running text of a page, as expressed in page content order (see 14.8.2.3, “Page
Content Order”), may contain places where the normal progression of text suffers a discontinuity.
Conforming readers may recognize such discontinuities by examining the document’s logical structure.

NOTE 2 For example, the page may contain the beginnings of two separate articles (see 12.4.3, “Articles”), each of
which is continued onto a later page of the document. The last words of the first article appearing on the page
should not be run together with the first words of the second article.

• Hidden page elements. For a variety of reasons, elements of a document’s logical content may be invisible
on the page: they may be clipped, their colour may match the background, or they may be obscured by
other, overlapping objects. For the purposes of Tagged PDF, page content shall be considered to include
all text and illustrations in their entirety, regardless of whether they are visible when the document is
displayed or printed.

NOTE 3 For example, formerly invisible elements may become visible when a page is reflowed, or a text-to-speech
engine may choose to speak text that is not visible to a sighted reader.

14.8.2.3 Page Content Order

14.8.2.3.1 General

When dealing with material on a page-by-page basis, some Tagged PDF conforming readers may choose to
process elements in page content order, determined by the sequencing of graphics objects within a page’s
content stream and of characters within a text object, rather than in the logical structure order defined by a
depth-first traversal of the page’s logical structure hierarchy. The two orderings are logically distinct and may or
may not coincide. In particular, any artifacts the page may contain shall be included in the page content order
but not in the logical structure order, since they are not considered part of the document’s logical structure. The
conforming writer is responsible for establishing both an appropriate page content order for each page and an
appropriate logical structure hierarchy for the entire document.

Because the primary requirement for page content order is to enable reflow to maintain elements in proper
reading sequence, it should normally (for Western writing systems) proceed from top to bottom (and, in a
multiple-column layout, from column to column), with artifacts in their correct relative places. In general, all
parts of an article that appear on a given page should be kept together, even if the article flows to scattered
locations on the page. Illustrations or footnotes may be interspersed with the text of the associated article or
may appear at the end of its content (or, in the case of footnotes, at the end of the entire page’s logical content).

In some situations, conforming writer may be unable to determine correct page content order for part of a
document’s contents. In such cases, tag suspects (PDF 1.6) can be used. The conforming writer shall identify
suspect content by using marked content (see 14.6, “Marked Content”) with a tag of TagSuspect, as shown in
next Example. The marked content shall have a properties dictionary with an entry whose name is TagSuspect

PDF 32000-1:2008

578 © Adobe Systems Incorporated 2008 – All rights reserved

and whose value is Ordering, which indicates that the ordering of the enclosed marked content does not meet
Tagged PDF specifications.

NOTE This can occur, for example, if content was extracted from another application, or if there are ambiguities or
missing information in text output.

EXAMPLE /TagSuspect <</TagSuspect /Ordering>>
BDC

.... % Problem page contents
EMC

Documents containing tag suspects shall contain a Suspects entry with a value of true in the mark information
dictionary (see Table 321).

14.8.2.3.2 Sequencing of Annotations

Annotations associated with a page are not interleaved within the page’s content stream but shall be placed in
the Annots array in its page object (see 7.7.3.3, “Page Objects”). Consequently, the correct position of an
annotation in the page content order is not readily apparent but shall be determined from the document’s logical
structure.

Both page content (marked-content sequences) and annotations may be treated as content items that are
referenced from structure elements (see 14.7.4, “Structure Content”). Structure elements of type Annot (PDF
1.5), Link, or Form (see 14.8.4.4, “Inline-Level Structure Elements,” and 14.8.4.5, “Illustration Elements”)
explicitly specify the association between a marked-content sequence and a corresponding annotation. In other
cases, if the structure element corresponding to an annotation immediately precedes or follows (in the logical
structure order) a structure element corresponding to a marked-content sequence, the annotation is considered
to precede or follow the marked-content sequence, respectively, in the page content order.

NOTE If necessary, a conforming writer may introduce an empty marked-content sequence solely to serve as a
structure element for the purpose of positioning adjacent annotations in the page content order.

14.8.2.3.3 Reverse-Order Show Strings

NOTE 1 In writing systems that are read from right to left (such as Arabic or Hebrew), one might expect that the glyphs
in a font would have their origins at the lower right and their widths (rightward horizontal displacements)
specified as negative. For various technical and historical reasons, however, many such fonts follow the same
conventions as those designed for Western writing systems, with glyph origins at the lower left and positive
widths, as shown in Figure 39. Consequently, showing text in such right-to-left writing systems requires either
positioning each glyph individually (which is tedious and costly) or representing text with show strings (see 9.2,
“Organization and Use of Fonts”) whose character codes are given in reverse order. When the latter method is
used, the character codes’ correct page content order is the reverse of their order within the show string.

The marked-content tag ReversedChars informs the conforming reader that show strings within a marked-
content sequence contain characters in the reverse of page content order. If the sequence encompasses
multiple show strings, only the individual characters within each string shall be reversed; the strings themselves
shall be in natural reading order.

EXAMPLE The sequence

/ReversedChars

BMC
(olleH) Tj
−200 0 Td
(. dlrow) Tj

EMC

represents the text

Hello world .

© Adobe Systems Incorporated 2008 – All rights reserved 579

PDF 32000-1:2008

The show strings may have a SPACE (U+0020) character at the beginning or end to indicate a word break (see
14.8.2.5, “Identifying Word Breaks”) but shall not contain interior SPACEs.

NOTE 2 This limitation is not serious, since a SPACE provides an opportunity to realign the typography without visible
effect, and it serves the valuable purpose of limiting the scope of reversals for word-processing conforming
readers.

14.8.2.4 Extraction of Character Properties

14.8.2.4.1 General

Tagged PDF enables character codes to be unambiguously converted to Unicode values representing the
information content of the text. There are several methods for doing this; a Tagged PDF document shall
conform to at least one of them (see “Unicode Mapping in Tagged PDF” in 14.8.2.4, “Extraction of Character
Properties”). In addition, Tagged PDF enables some characteristics of the associated fonts to be deduced (see
“Font Characteristics” in 14.8.2.4, “Extraction of Character Properties”).

NOTE These Unicode values and font characteristics can then be used for such operations as cut-and-paste editing,
searching, text-to-speech conversion, and exporting to other applications or file formats.

14.8.2.4.2 Unicode Mapping in Tagged PDF

Tagged PDF requires that every character code in a document can be mapped to a corresponding Unicode
value.

NOTE 1 Unicode defines scalar values for most of the characters used in the world’s languages and writing systems, as
well as providing a private use area for application-specific characters. Information about Unicode can be
found in the Unicode Standard, by the Unicode Consortium (see the Bibliography).

The methods for mapping a character code to a Unicode value are described in 9.10.2, “Mapping Character
Codes to Unicode Values.” A conforming writer shall ensure that the PDF file contains enough information to
map all character codes to Unicode by one of the methods described there.

NOTE 2 An Alt, ActualText, or E entry specified in a structure element dictionary or a marked-content property list (see
14.9.3, “Alternate Descriptions,” 14.9.4, “Replacement Text,” and 14.9.5, “Expansion of Abbreviations and
Acronyms”) may affect the character stream that some conforming readers actually use. For example, some
conforming readers may choose to use the Alt or ActualText value and ignore all text and other content
associated with the structure element and its descendants.

NOTE 3 Some uses of Tagged PDF require characters that may not be available in all fonts, such as the soft hyphen
(see 14.8.2.2.3, “Incidental Artifacts”). Such characters may be represented either by adding them to the font’s
encoding or CMap and using ToUnicode to map them to appropriate Unicode values, or by using an
ActualText entry in the associated structure element to provide substitute characters.

14.8.2.4.3 Font Characteristics

In addition to a Unicode value, each character code in a content stream has an associated set of font
characteristics. These characteristics are not specified explicitly in the PDF file. Instead, the conforming reader
derives the characteristics from the font descriptor for the font that is set in the text state at the time the
character is shown.

NOTE These characteristics are useful when exporting text to another application or file format that has a limited
repertoire of available fonts.

Table 331 lists a common set of font characteristics corresponding to those used in CSS and XSL; the W3C
document Extensible Stylesheet Language (XSL) 1.0 provides more information (see the Bibliography). Each
of the characteristics shall be derived from information available in the font descriptor’s Flags entry (see 9.8.2,
“Font Descriptor Flags”).

PDF 32000-1:2008

580 © Adobe Systems Incorporated 2008 – All rights reserved

The characteristics shown in the table apply only to character codes contained in show strings within content
streams. They do not exist for alternate description text (Alt), replacement text (ActualText), or abbreviation
expansion text (E).

For the standard 14 Type 1 fonts, the font descriptor may be missing; the well-known values for those fonts
shall be used.

Tagged PDF in PDF 1.5 defines a wider set of font characteristics, which provide information needed when
converting PDF to other files formats such as RTF, HTML, XML, and OEB, and also improve accessibility and
reflow of tables. Table 332 lists these font selector attributes and shows how their values shall be derived.

If the FontFamily, FontWeight and FontStretch fields are not present in the font descriptor, these values shall be
derived from the font name in a manner of the conforming reader’s choosing.

Table 331 – Derivation of font characteristics

Characteristic Type Derivation

Serifed boolean The value of the Serif flag in the font descriptor’s Flags entry

Proportional boolean The complement of the FixedPitch flag in the font descriptor’s Flags
entry

Italic boolean The value of the Italic flag in the font descriptor’s Flags entry

Smallcap boolean The value of the SmallCap flag in the font descriptor’s Flags entry

Table 332 – Font selector attributes

Attribute Description

FontFamily A string specifying the preferred font family name. Derived from the FontFamily
entry in the font descriptor (see Table 122).

GenericFontFamily A general font classification, used if FontFamily is not found. Derived from the
font descriptor’s Flags entry as follows:
Serif Chosen if the Serif flag is set and the FixedPitch and Script flags

are not set
SansSerif Chosen if the FixedPitch, Script and Serif flags are all not set
Cursive Chosen if the Script flag is set and the FixedPitch flag is not set
Monospace Chosen if the FixedPitch flag is set
NOTE The values Decorative and Symbol cannot be derived

FontSize The size of the font: a positive number specifying the height of the typeface in
points. Derived from the a, b, c, and d fields of the current text matrix.

FontStretch The stretch value of the font. Derived from FontStretch in the font descriptor
(see Table 122).

FontStyle The italicization value of the font. It shall be Italic if the Italic flag is set in the
Flags field of the font descriptor; otherwise, it shall be Normal.

FontVariant The small-caps value of the font. It shall be SmallCaps if the SmallCap flag is set
in the Flags field of the font descriptor; otherwise, it shall be Normal.

FontWeight The weight (thickness) value of the font. Derived from FontWeight in the font
descriptor (see Table 122).
The ForceBold flag and the StemV field should not be used to set this attribute.

© Adobe Systems Incorporated 2008 – All rights reserved 581

PDF 32000-1:2008

14.8.2.5 Identifying Word Breaks

NOTE 1 A document’s text stream defines not only the characters in a page’s text but also the words. Unlike a
character, the notion of a word is not precisely defined but depends on the purpose for which the text is being
processed. A reflow tool needs to determine where it can break the running text into lines; a text-to-speech
engine needs to identify the words to be vocalized; spelling checkers and other applications all have their own
ideas of what constitutes a word. It is not important for a Tagged PDF document to identify the words within the
text stream according to a single, unambiguous definition that satisfies all of these clients. What is important is
that there be enough information available for each client to make that determination for itself.

A conforming reader of a Tagged PDF document may find words by sequentially examining the Unicode
character stream, perhaps augmented by replacement text specified with ActualText (see 14.9.4,
“Replacement Text”). For this purpose the spacing characters that would be present to separate words in a
pure text representation shall be present in the Tagged PDF representation of the text.

NOTE 2 The conforming reader does not need to guess about word breaks based on information such as glyph
positioning on the page, font changes, or glyph sizes.

NOTE 3 The identification of what constitutes a word is unrelated to how the text happens to be grouped into show
strings. The division into show strings has no semantic significance. In particular, a SPACE (U+0020) or other
word-breaking character is still needed even if a word break happens to fall at the end of a show string.

NOTE 4 Some conforming readers may identify words by simply separating them at every SPACE character. Others
may be slightly more sophisticated and treat punctuation marks such as hyphens or em dashes as word
separators as well. Still others may identify possible line-break opportunities by using an algorithm similar to
the one in Unicode Standard Annex #29, Text Boundaries, available from the Unicode Consortium (see the
Bibliography).

14.8.3 Basic Layout Model

The basic layout model begins with the notion of a reference area. This is a rectangular region used as a frame
or guide in which to place the document’s content. Some of the standard structure attributes, such as
StartIndent and EndIndent (see 14.8.5.4.3, “Layout Attributes for BLSEs”), shall be measured from the
boundaries of the reference area. Reference areas are not specified explicitly but are inferred from context.
Those of interest are generally the column area or areas in a general text layout, the outer bounding box of a
table and those of its component cells, and the bounding box of an illustration or other floating element.

NOTE 1 Tagged PDF’s standard structure types and attributes shall be interpreted in the context of a basic layout
model that describes the arrangement of structure elements on the page. This model is designed to capture
the general intent of the document’s underlying structure and does not necessarily correspond to the one
actually used for page layout by the application creating the document. (The PDF content stream specifies the
exact appearance.) The goal is to provide sufficient information for conforming readers to make their own
layout decisions while preserving the authoring application’s intent as closely as their own layout models allow.

NOTE 2 The Tagged PDF layout model resembles the ones used in markup languages such as HTML, CSS, XSL, and
RTF, but does not correspond exactly to any of them. The model is deliberately defined loosely to allow
reasonable latitude in the interpretation of structure elements and attributes when converting to other
document formats. Some degree of variation in the resulting layout from one format to another is to be
expected.

The standard structure types are divided into four main categories according to the roles they play in page
layout:

• Grouping elements (see 14.8.4.2, “Grouping Elements”) group other elements into sequences or
hierarchies but hold no content directly and have no direct effect on layout.

• Block-level structure elements (BLSEs) (see 14.8.4.3, “Block-Level Structure Elements”) describe the
overall layout of content on the page, proceeding in the block-progression direction.

• Inline-level structure elements (ILSEs) (see 14.8.4.4, “Inline-Level Structure Elements”) describe the layout
of content within a BLSE, proceeding in the inline-progression direction.

PDF 32000-1:2008

582 © Adobe Systems Incorporated 2008 – All rights reserved

• Illustration elements (see 14.8.4.5, “Illustration Elements”) are compact sequences of content, in page
content order, that are considered to be unitary objects with respect to page layout. An illustration can be
treated as either a BLSE or an ILSE.

The meaning of the terms block-progression direction and inline-progression direction depends on the writing
system in use, as specified by the standard attribute WritingMode (see 14.8.5.4.2, “General Layout
Attributes”). In Western writing systems, the block direction is from top to bottom and the inline direction is from
left to right. Other writing systems use different directions for laying out content.

Because the progression directions can vary depending on the writing system, edges of areas and directions
on the page are identified by terms that are neutral with respect to the progression order rather than by familiar
terms such as up, down, left, and right. Block layout proceeds from before to after, inline from start to end.
Thus, for example, in Western writing systems, the before and after edges of a reference area are at the top
and bottom, respectively, and the start and end edges are at the left and right. Another term, shift direction (the
direction of shift for a superscript), refers to the direction opposite that for block progression—that is, from after
to before (in Western writing systems, from bottom to top).

BLSEs shall be stacked within a reference area in block-progression order. In general, the first BLSE shall be
placed against the before edge of the reference area. Subsequent BLSEs shall be stacked against preceding
ones, progressing toward the after edge, until no more BLSEs fit in the reference area. If the overflowing BLSE
allows itself to be split—such as a paragraph that can be split between lines of text—a portion of it may be
included in the current reference area and the remainder carried over to a subsequent reference area (either
elsewhere on the same page or on another page of the document). Once the amount of content that fits in a
reference area is determined, the placements of the individual BLSEs may be adjusted to bias the placement
toward the before edge, the middle, or the after edge of the reference area, or the spacing within or between
BLSEs may be adjusted to fill the full extent of the reference area.

BLSEs may be nested, with child BLSEs stacked within a parent BLSE in the same manner as BLSEs within a
reference area. Except in a few instances noted (the BlockAlign and InlineAlign elements), such nesting of
BLSEs does not result in the nesting of reference areas; a single reference area prevails for all levels of nested
BLSEs.

Within a BLSE, child ILSEs shall be packed into lines. Direct content items—those that are immediate children
of a BLSE rather than contained within a child ILSE—shall be implicitly treated as ILSEs for packing purposes.
Each line shall be treated as a synthesized BLSE and shall be stacked within the parent BLSE. Lines may be
intermingled with other BLSEs within the parent area. This line-building process is analogous to the stacking of
BLSEs within a reference area, except that it proceeds in the inline-progression rather than the block-
progression direction: a line shall be packed with ILSEs beginning at the start edge of the containing BLSE and
continuing until the end edge shall be reached and the line is full. The overflowing ILSE may allow itself to be
broken at linguistically determined or explicitly marked break points (such as hyphenation points within a word),
and the remaining fragment shall be carried over to the next line.

Certain values of an element’s Placement attribute remove the element from the normal stacking or packing
process and allow it instead to float to a specified edge of the enclosing reference area or parent BLSE; see
“General Layout Attributes” in 14.8.5.4, “Layout Attributes,” for further discussion.

Two enclosing rectangles shall be associated with each BLSE and ILSE (including direct content items that are
treated implicitly as ILSEs):

• The content rectangle shall be derived from the shape of the enclosed content and defines the bounds
used for the layout of any included child elements.

• The allocation rectangle includes any additional borders or spacing surrounding the element, affecting how
it shall be positioned with respect to adjacent elements and the enclosing content rectangle or reference
area.

The definitions of these rectangles shall be determined by layout attributes associated with the structure
element; see 14.8.5.4.5, “Content and Allocation Rectangles” for further discussion.

© Adobe Systems Incorporated 2008 – All rights reserved 583

PDF 32000-1:2008

14.8.4 Standard Structure Types

14.8.4.1 General

Tagged PDF’s standard structure types characterize the role of a content element within the document and, in
conjunction with the standard structure attributes (described in 14.8.5, “Standard Structure Attributes”), how
that content is laid out on the page. As discussed in 14.7.3, “Structure Types,” the structure type of a logical
structure element shall be specified by the S entry in its structure element dictionary. To be considered a
standard structure type, this value shall be either:

• One of the standard structure type names described in 14.8.4.2, “Grouping Elements.”

• An arbitrary name that shall be mapped to one of the standard names by the document’s role map (see
14.7.3, “Structure Types”), possibly through multiple levels of mapping.

NOTE 1 Beginning with PDF 1.5, an element name is always mapped to its corresponding name in the role map, if
there is one, even if the original name is one of the standard types. This is done to allow the element, for
example, to represent a tag with the same name as a standard role, even though its use differs from the
standard role.

Ordinarily, structure elements having standard structure types shall be processed the same way whether the
type is expressed directly or is determined indirectly from the role map. However, some conforming readers
may ascribe additional semantics to nonstandard structure types, even though the role map associates them
with standard ones.

NOTE 2 For instance, the actual values of the S entries may be used when exporting to a tagged representation such
as XML, and the corresponding role-mapped values shall be used when converting to presentation formats
such as HTML or RTF, or for purposes such as reflow or accessibility to users with disabilities.

NOTE 3 Most of the standard element types are designed primarily for laying out text; the terminology reflects this
usage. However, a layout may in fact include any type of content, such as path or image objects.

The content items associated with a structure element shall be laid out on the page as if they were blocks of
text (for a BLSE) or characters within a line of text (for an ILSE).

14.8.4.2 Grouping Elements

Grouping elements shall be used solely to group other structure elements; they are not directly associated with
content items. Table 333 describes the standard structure types for elements in this category. H.8, “Structured
Elements That Describe Hierarchical Lists” provides an example of nested table of content items.

In a tagged PDF document, the structure tree shall contain a single top-level element; that is, the structure tree
root (identified by the StructTreeRoot entry in the document catalogue) shall have only one child in its K (kids)
array. If the PDF file contains a complete document, the structure type Document should be used for this top-
level element in the logical structure hierarchy. If the file contains a well-formed document fragment, one of the
structure types Part, Art, Sect, or Div may be used instead.

Table 333 – Standard structure types for grouping elements

Structure type Description

Document (Document) A complete document. This is the root element of any structure tree
containing multiple parts or multiple articles.

Part (Part) A large-scale division of a document. This type of element is appropriate for
grouping articles or sections.

Art (Article) A relatively self-contained body of text constituting a single narrative or
exposition. Articles should be disjoint; that is, they should not contain other articles as
constituent elements.

PDF 32000-1:2008

584 © Adobe Systems Incorporated 2008 – All rights reserved

14.8.4.3 Block-Level Structure Elements

14.8.4.3.1 General

A block-level structure element (BLSE) is any region of text or other content that is laid out in the block-
progression direction, such as a paragraph, heading, list item, or footnote. A structure element is a BLSE if its
structure type (after role mapping, if any) is one of those listed in Table 334. All other standard structure types
shall be treated as ILSEs, with the following exceptions:

Sect (Section) A container for grouping related content elements.
NOTE 1 For example, a section might contain a heading, several introductory

paragraphs, and two or more other sections nested within it as
subsections.

Div (Division) A generic block-level element or group of elements.

BlockQuote (Block quotation) A portion of text consisting of one or more paragraphs attributed to
someone other than the author of the surrounding text.

Caption (Caption) A brief portion of text describing a table or figure.

TOC (Table of contents) A list made up of table of contents item entries (structure type
TOCI) and/or other nested table of contents entries (TOC).
A TOC entry that includes only TOCI entries represents a flat hierarchy. A TOC entry
that includes other nested TOC entries (and possibly TOCI entries) represents a
more complex hierarchy. Ideally, the hierarchy of a top level TOC entry reflects the
structure of the main body of the document.
NOTE 2 Lists of figures and tables, as well as bibliographies, can be treated as

tables of contents for purposes of the standard structure types.

TOCI (Table of contents item) An individual member of a table of contents. This entry’s
children may be any of the following structure types:
Lbl A label (see “List Elements” in 14.8.4.3, “Block-Level Structure

Elements”)
Reference A reference to the title and the page number (see “Inline-Level

Structure Elements” in 14.8.4.4, “Inline-Level Structure Elements”)
NonStruct Non-structure elements for wrapping a leader artifact (see “Grouping

Elements” in 14.8.4.2, “Grouping Elements”).
P Descriptive text (see “Paragraphlike Elements” 14.8.4.3, “Block-Level

Structure Elements”)
TOC Table of content elements for hierarchical tables of content, as

described for the TOC entry

Index (Index) A sequence of entries containing identifying text accompanied by reference
elements (structure type Reference; see 14.8.4.4, “Inline-Level Structure Elements”)
that point out occurrences of the specified text in the main body of a document.

NonStruct (Nonstructural element) A grouping element having no inherent structural
significance; it serves solely for grouping purposes. This type of element differs from
a division (structure type Div) in that it shall not be interpreted or exported to other
document formats; however, its descendants shall be processed normally.

Private (Private element) A grouping element containing private content belonging to the
application producing it. The structural significance of this type of element is
unspecified and shall be determined entirely by the conforming writer. Neither the
Private element nor any of its descendants shall be interpreted or exported to other
document formats.

Table 333 – Standard structure types for grouping elements (continued)

Structure type Description

© Adobe Systems Incorporated 2008 – All rights reserved 585

PDF 32000-1:2008

• TR (Table row), TH (Table header), TD (Table data), THead (Table head), TBody (Table body), and TFoot
(Table footer), which shall be used to group elements within a table and shall be considered neither BLSEs
nor ILSEs

• Elements with a Placement attribute (see “General Layout Attributes” in 14.8.5.4, “Layout Attributes”)
other than the default value of Inline

In many cases, a BLSE may appear as one compact, contiguous piece of page content; in other cases, it may
be discontiguous.

NOTE Examples of the latter include a BLSE that extends across a page boundary or is interrupted in the page
content order by another, nested BLSE or a directly included footnote. When necessary, Tagged conforming
readers can recognize such fragmented BLSEs from the logical structure and use this information to
reassemble them and properly lay them out.

14.8.4.3.2 Paragraphlike Elements

Table 335 describes structure types for paragraphlike elements that consist of running text and other content
laid out in the form of conventional paragraphs (as opposed to more specialized layouts such as lists and
tables).

14.8.4.3.3 List Elements

Table 336 describes structure types for organizing the content of lists. H.8, “Structured Elements That Describe
Hierarchical Lists” provides an example of nested list entries.

Table 334 – Block-level structure elements

Category Structure types

Paragraphlike elements P H1 H4
H H2 H5

H3 H6

List elements L Lbl
LI LBody

Table element Table

Table 335 – Standard structure types for paragraphlike elements

Structure Type Description

H (Heading) A label for a subdivision of a document’s content. It should be the first
child of the division that it heads.

H1–H6 Headings with specific levels, for use in conforming writers that cannot
hierarchically nest their sections and thus cannot determine the level of a heading
from its level of nesting.

P (Paragraph) A low-level division of text.

Table 336 – Standard structure types for list elements

Structure Type Description

L (List) A sequence of items of like meaning and importance. Its immediate children
should be an optional caption (structure type Caption; see 14.8.4.2, “Grouping
Elements”) followed by one or more list items (structure type LI).

LI (List item) An individual member of a list. Its children may be one or more labels,
list bodies, or both (structure types Lbl or LBody).

PDF 32000-1:2008

586 © Adobe Systems Incorporated 2008 – All rights reserved

14.8.4.3.4 Table Elements

The structure types described in Table 337 shall be used for organizing the content of tables.

NOTE 1 Strictly speaking, the Table element is a BLSE; the others in this table are neither BLSEs or ILSEs.

NOTE 2 The association of headers with rows and columns of data is typically determined heuristically by applications.
Such heuristics may fail for complex tables; the standard attributes for tables shown in Table 348 can be used
to make the association explicit.

14.8.4.3.5 Usage Guidelines for Block-Level Structure

Because different conforming readers use PDF’s logical structure facilities in different ways, Tagged PDF does
not enforce any strict rules regarding the order and nesting of elements using the standard structure types.
Furthermore, each export format has its own conventions for logical structure. However, adhering to certain
general guidelines helps to achieve the most consistent and predictable interpretation among different Tagged
PDF consumers.

Lbl (Label) A name or number that distinguishes a given item from others in the same
list or other group of like items.
NOTE In a dictionary list, for example, it contains the term being defined; in a

bulleted or numbered list, it contains the bullet character or the
number of the list item and associated punctuation.

LBody (List body) The descriptive content of a list item. In a dictionary list, for example, it
contains the definition of the term. It may either contain the content directly or have
other BLSEs, perhaps including nested lists, as children.

Table 337 – Standard structure types for table elements

Structure Type Description

Table (Table) A two-dimensional layout of rectangular data cells, possibly having a
complex substructure. It contains either one or more table rows (structure type TR)
as children; or an optional table head (structure type THead) followed by one or
more table body elements (structure type TBody) and an optional table footer
(structure type TFoot). In addition, a table may have a caption (structure type
Caption; see 14.8.4.2, “Grouping Elements”) as its first or last child.

TR (Table row) A row of headings or data in a table. It may contain table header cells
and table data cells (structure types TH and TD).

TH (Table header cell) A table cell containing header text describing one or more rows
or columns of the table.

TD (Table data cell) A table cell containing data that is part of the table’s content.

THead (Table header row group; PDF 1.5) A group of rows that constitute the header of a
table. If the table is split across multiple pages, these rows may be redrawn at the
top of each table fragment (although there is only one THead element).

TBody (Table body row group; PDF 1.5) A group of rows that constitute the main body
portion of a table. If the table is split across multiple pages, the body area may be
broken apart on a row boundary. A table may have multiple TBody elements to
allow for the drawing of a border or background for a set of rows.

TFoot (Table footer row group; PDF 1.5) A group of rows that constitute the footer of a
table. If the table is split across multiple pages, these rows may be redrawn at the
bottom of each table fragment (although there is only one TFoot element.)

Table 336 – Standard structure types for list elements (continued)

Structure Type Description

© Adobe Systems Incorporated 2008 – All rights reserved 587

PDF 32000-1:2008

As described under 14.8.4.2, “Grouping Elements,” a Tagged PDF document may have one or more levels of
grouping elements, such as Document, Part, Art (Article), Sect (Section), and Div (Division). The descendants
of these should be BLSEs, such as H (Heading), P (Paragraph), and L (List), that hold the actual content. Their
descendants, in turn, should be either content items or ILSEs that further describe the content.

NOTE 1 As noted earlier, elements with structure types that would ordinarily be treated as ILSEs may have a
Placement attribute (see “General Layout Attributes” in 14.8.5.4, “Layout Attributes”) that causes them to be
treated as BLSEs instead. Such elements may be included as BLSEs in the same manner as headings and
paragraphs.

The block-level structure may follow one of two principal paradigms:

• Strongly structured. The grouping elements nest to as many levels as necessary to reflect the organization
of the material into articles, sections, subsections, and so on. At each level, the children of the grouping
element should consist of a heading (H), one or more paragraphs (P) for content at that level, and perhaps
one or more additional grouping elements for nested subsections.

• Weakly structured. The document is relatively flat, having perhaps only one or two levels of grouping
elements, with all the headings, paragraphs, and other BLSEs as their immediate children. In this case, the
organization of the material is not reflected in the logical structure; however, it may be expressed by the
use of headings with specific levels (H1–H6).

NOTE 2 The strongly structured paradigm is used by some rich document models based on XML. The weakly
structured paradigm is typical of documents represented in HTML.

Lists and tables should be organized using the specific structure types described under “List Elements” in
14.8.4.3, “Block-Level Structure Elements,” and “Table Elements” in 14.8.4.3, “Block-Level Structure Elements”.
Likewise, tables of contents and indexes should be structured as described for the TOC and Index structure
types under “Grouping Elements” in 14.8.4.2, “Grouping Elements.”

14.8.4.4 Inline-Level Structure Elements

14.8.4.4.1 General

An inline-level structure element (ILSE) contains a portion of text or other content having specific styling
characteristics or playing a specific role in the document. Within a paragraph or other block defined by a
containing BLSE, consecutive ILSEs—possibly intermixed with other content items that are direct children of
the parent BLSE—are laid out consecutively in the inline-progression direction (left to right in Western writing
systems). The resulting content may be broken into multiple lines, which in turn shall be stacked in the block-
progression direction. An ILSE may in turn contain a BLSE, which shall be treated as a unitary item of layout in
the inline direction. Table 338 lists the standard structure types for ILSEs.

PDF 32000-1:2008

588 © Adobe Systems Incorporated 2008 – All rights reserved

Table 338 – Standard structure types for inline-level structure elements

Structure Type Description

Span (Span) A generic inline portion of text having no particular inherent characteristics.
It can be used, for example, to delimit a range of text with a given set of styling
attributes.
NOTE 1 Not all inline style changes need to be identified as a span. Text colour

and font changes (including modifiers such as bold, italic, and small
caps) need not be so marked, since these can be derived from the
PDF content (see “Font Characteristics” in 14.8.2.4, “Extraction of
Character Properties”). However, it is necessary to use a span to
apply explicit layout attributes such as LineHeight, BaselineShift, or
TextDecorationType (see “Layout Attributes for ILSEs” in 14.8.5.4,
“Layout Attributes”).

NOTE 2 Marked-content sequences having the tag Span are also used to
carry certain accessibility properties (Alt, ActualText, Lang, and E;
see 14.9, “Accessibility Support”). Such sequences lack an MCID
property and are not associated with any structure element. This use
of the Span marked-content tag is distinct from its use as a structure
type.

Quote (Quotation) An inline portion of text attributed to someone other than the author of
the surrounding text.
The quoted text should be contained inline within a single paragraph. This differs
from the block-level element BlockQuote (see 14.8.4.2, “Grouping Elements”),
which consists of one or more complete paragraphs (or other elements presented
as if they were complete paragraphs).

Note (Note) An item of explanatory text, such as a footnote or an endnote, that is
referred to from within the body of the document. It may have a label (structure type
Lbl; see “List Elements” in 14.8.4.3, “Block-Level Structure Elements”) as a child.
The note may be included as a child of the structure element in the body text that
refers to it, or it may be included elsewhere (such as in an endnotes section) and
accessed by means of a reference (structure type Reference).
Tagged PDF does not prescribe the placement of footnotes in the page content
order. They may be either inline or at the end of the page, at the discretion of the
conforming writer.

Reference (Reference) A citation to content elsewhere in the document.

BibEntry (Bibliography entry) A reference identifying the external source of some cited
content. It may contain a label (structure type Lbl; see “List Elements” in 14.8.4.3,
“Block-Level Structure Elements”) as a child.
Although a bibliography entry is likely to include component parts identifying the
cited content’s author, work, publisher, and so forth, no standard structure types
are defined at this level of detail.

Code (Code) A fragment of computer program text.

Link (Link) An association between a portion of the ILSE’s content and a corresponding
link annotation or annotations (see 12.5.6.5, “Link Annotations”). Its children should
be one or more content items or child ILSEs and one or more object references
(see 14.7.4.3, “PDF Objects as Content Items”) identifying the associated link
annotations. See “Link Elements” in 14.8.4.3, “Block-Level Structure Elements,” for
further discussion.

Annot (Annotation; PDF 1.5) An association between a portion of the ILSE’s content and
a corresponding PDF annotation (see 12.5, “Annotations”). Annot shall be used for
all PDF annotations except link annotations (see the Link element) and widget
annotations (see the Form element in Table 340). See “Annotation Elements”
14.8.4.4, “Inline-Level Structure Elements,” for further discussion.

© Adobe Systems Incorporated 2008 – All rights reserved 589

PDF 32000-1:2008

14.8.4.4.2 Link Elements

NOTE 1 Link annotations (like all PDF annotations) are associated with a geometric region of the page rather than with
a particular object in its content stream. Any connection between the link and the content is based solely on
visual appearance rather than on an explicitly specified association. For this reason, link annotations alone are
not useful to users with visual impairments or to applications needing to determine which content can be
activated to invoke a hypertext link.

Tagged PDF link elements (structure type Link) use PDF’s logical structure facilities to establish the association
between content items and link annotations, providing functionality comparable to HTML hypertext links. The
following items may be children of a link element:

• One or more content items or other ILSEs (except other links)

• Object references (see 14.7.4.3, “PDF Objects as Content Items”) to one or more link annotations
associated with the content

When a Link structure element describes a span of text to be associated with a link annotation and that span
wraps from the end of one line to the beginning of another, the Link structure element shall include a single
object reference that associates the span with the associated link annotation. Further, the link annotation shall
use the QuadPoint entry to denote the active areas on the page.

EXAMPLE 1 The Link structure element references a link annotation that includes a QuadPoint entry that boxes the
strings “with a” and “link”. That is, the QuadPoint entry contains 16 numbers: the first 8 numbers describe
a quadrilateral for “with a”, and the next 8 describe a quadrilateral for “link.”

NOTE 2 Beginning with PDF 1.7, use of the Link structure element to enclose multiple link annotations is deprecated.

EXAMPLE 2 Consider the following fragment of HTML code, which produces a line of text containing a hypertext link:

< html >

< body >
< p >
Here is some text < a href = http : / / www . adobe . com >with a link< /a > inside .

< /body >
< /html >

This code sample shows an equivalent fragment of PDF using a link element, whose text it displays in
blue and underlined.

/P << /MCID 0 >> % Marked-content sequence 0 (paragraph)
BDC % Begin marked-content sequence

Ruby (Ruby; PDF 1.5) A side-note (annotation) written in a smaller text size and placed
adjacent to the base text to which it refers. A Ruby element may also contain the
RB, RT, and RP elements. See “Ruby and Warichu Elements” in14.8.4.4, “Inline-
Level Structure Elements,” for more details.

Warichu (Warichu; PDF 1.5) A comment or annotation in a smaller text size and formatted
onto two smaller lines within the height of the containing text line and placed
following (inline) the base text to which it refers. A Warichu element may also
contain the WT and WP elements. See “Ruby and Warichu Elements” in14.8.4.4,
“Inline-Level Structure Elements,” for more details.

Table 338 – Standard structure types for inline-level structure elements (continued)

Structure Type Description

Here is some text with a
link ins ide.

PDF 32000-1:2008

590 © Adobe Systems Incorporated 2008 – All rights reserved

BT % Begin text object
/T1_0 1 Tf % Set text font and size
14 0 0 14 10.000 753.976 Tm % Set text matrix
0.0 0.0 0.0 rg % Set nonstroking colour to black
(Here is some text) Tj % Show text preceding link

ET % End text object
EMC % End marked-content sequence

/Link << /MCID 1 >> % Marked-content sequence 1 (link)

BDC % Begin marked-content sequence
0.7 w % Set line width
[] 0 d % Solid dash pattern

111.094 751.8587 m % Move to beginning of underline
174.486 751.8587 l % Draw underline
0.0 0.0 1.0 RG % Set stroking colour to blue
S % Stroke underline

BT % Begin text object

14 0 0 14 111.094 753.976 Tm % Set text matrix
0.0 0.0 1.0 rg % Set nonstroking colour to blue
(with a link) Tj % Show text of link

ET % End text object
EMC % End marked-content sequence

/P << /MCID 2 >> % Marked-content sequence 2 (paragraph)

BDC % Begin marked-content sequence
BT % Begin text object

14 0 0 14 174.486 753.976 Tm % Set text matrix
0.0 0.0 0.0 rg % Set nonstroking colour to black
(inside .) Tj % Show text following link

ET % End text object
EMC % End marked-content sequence

EXAMPLE 3 This example shows an excerpt from the associated logical structure hierarchy.

501 0 obj % Structure element for paragraph

<< /Type /StructElem
 /S /P
 . . .
 /K [0 % Three children: marked-content sequence 0

 502 0 R % Link
 2 % Marked-content sequence 2

]
>>

endobj

502 0 obj % Structure element for link

<< /Type /StructElem
 /S /Link
 . . .
 /K [1 % Two children: marked-content sequence 1

 503 0 R % Object reference to link annotation
]

>>
endobj

503 0 obj % Object reference to link annotation

<< /Type /OBJR
 /Obj 600 0 R % Link annotation (not shown)
>>

endobj

© Adobe Systems Incorporated 2008 – All rights reserved 591

PDF 32000-1:2008

14.8.4.4.3 Annotation Elements

Tagged PDF annotation elements (structure type Annot; PDF 1.5) use PDF’s logical structure facilities to
establish the association between content items and PDF annotations. Annotation elements shall be used for
all types of annotations other than links (see “Link Elements” in 14.8.4.3, “Block-Level Structure Elements”) and
forms (see Table 340).

The following items may be children of an annotation element:

• Object references (see 14.7.4.3, “PDF Objects as Content Items”) to one or more annotation dictionaries

• Optionally, one or more content items (such as marked-content sequences) or other ILSEs (except other
annotations) associated with the annotations

If an Annot element has no children other than object references, its rendering shall be defined by the
appearance of the referenced annotations, and its text content shall be treated as if it were a Span element. It
may have an optional BBox attribute; if supplied, this attribute overrides the rectangle specified by the
annotation dictionary’s Rect entry.

If the Annot element has children that are content items, those children represent the displayed form of the
annotation, and the appearance of the associated annotation may also be applied (for example, with a
Highlight annotation).

There may be multiple children that are object references to different annotations, subject to the constraint that
the annotations shall be the same except for their Rect entry. This is much the same as is done for the Link
element; it allows an annotation to be associated with discontiguous pieces of content, such as line-wrapped
text.

14.8.4.4.4 Ruby and Warichu Elements

Ruby text is a side note, written in a smaller text size and placed adjacent to the base text to which it refers. It is
used in Japanese and Chinese to describe the pronunciation of unusual words or to describe such items as
abbreviations and logos.

Warichu text is a comment or annotation, written in a smaller text size and formatted onto two smaller lines
within the height of the containing text line and placed following (inline) the base text to which it refers. It is used
in Japanese for descriptive comments and for ruby annotation text that is too long to be aesthetically formatted
as a ruby.

Table 339 – Standard structure types for Ruby and Warichu elements (PDF 1.5)

Structure Type Description

Ruby (Ruby) The wrapper around the entire ruby assembly. It shall contain one RB
element followed by either an RT element or a three-element group consisting of
RP, RT, and RP. Ruby elements and their content elements shall not break across
multiple lines.

RB (Ruby base text) The full-size text to which the ruby annotation is applied. RB may
contain text, other inline elements, or a mixture of both. It may have the RubyAlign
attribute.

RT (Ruby annotation text) The smaller-size text that shall be placed adjacent to the
ruby base text. It may contain text, other inline elements, or a mixture of both. It
may have the RubyAlign and RubyPosition attributes.

PDF 32000-1:2008

592 © Adobe Systems Incorporated 2008 – All rights reserved

14.8.4.5 Illustration Elements

Tagged PDF defines an illustration element as any structure element whose structure type (after role mapping,
if any) is one of those listed in Table 340. The illustration’s content shall consist of one or more complete
graphics objects. It shall not appear between the BT and ET operators delimiting a text object (see 9.4, “Text
Objects”). It may include clipping only in the form of a contained marked clipping sequence, as defined in
14.6.3, “Marked Content and Clipping.” In Tagged PDF, all such marked clipping sequences shall carry the
marked-content tag Clip.

An illustration may have logical substructure, including other illustrations. For purposes of reflow, however, it
shall be moved (and perhaps resized) as a unit, without examining its internal contents. To be useful for reflow,
it shall have a BBox attribute. It may also have Placement, Width, Height, and BaselineShift attributes (see
14.8.5.4, “Layout Attributes”).

RP (Ruby punctuation) Punctuation surrounding the ruby annotation text. It is used
only when a ruby annotation cannot be properly formatted in a ruby style and
instead is formatted as a normal comment, or when it is formatted as a warichu. It
contains text (usually a single LEFT or RIGHT PARENTHESIS or similar
bracketing character).

Warichu (Warichu) The wrapper around the entire warichu assembly. It may contain a three-
element group consisting of WP, WT, and WP. Warichu elements (and their content
elements) may wrap across multiple lines, according to the warichu breaking rules
described in the Japanese Industrial Standard (JIS) X 4051-1995.

WT (Warichu text) The smaller-size text of a warichu comment that is formatted into
two lines and placed between surrounding WP elements.

WP (Warichu punctuation) The punctuation that surrounds the WT text. It contains text
(usually a single LEFT or RIGHT PARENTHESIS or similar bracketing character).
According to JIS X 4051-1995, the parentheses surrounding a warichu may be
converted to a SPACE (nominally 1/4 EM in width) at the discretion of the
formatter.

Table 340 – Standard structure types for illustration elements

Structure Type Description

Figure (Figure) An item of graphical content. Its placement may be specified with the
Placement layout attribute (see “General Layout Attributes” in 14.8.5.4, “Layout
Attributes”).

Formula (Formula) A mathematical formula.
This structure type is useful only for identifying an entire content element as a
formula. No standard structure types are defined for identifying individual
components within the formula. From a formatting standpoint, the formula shall be
treated similarly to a figure (structure type Figure).

Form (Form) A widget annotation representing an interactive form field (see 12.7,
“Interactive Forms”). If the element contains a Role attribute, it may contain content
items that represent the value of the (non-interactive) form field. If the element
omits a Role attribute (see Table 348), it shall have only one child: an object
reference (see 14.7.4.3, “PDF Objects as Content Items”) identifying the widget
annotation. The annotations’ appearance stream (see 12.5.5, “Appearance
Streams”) shall describe the appearance of the form element.

Table 339 – Standard structure types for Ruby and Warichu elements (PDF 1.5) (continued)

Structure Type Description

© Adobe Systems Incorporated 2008 – All rights reserved 593

PDF 32000-1:2008

Often an illustration is logically part of, or at least attached to, a paragraph or other element of a document. Any
such containment or attachment shall be represented through the use of the Figure structure type. The Figure
element indicates the point of attachment, and its Placement attribute describes the nature of the attachment.
An illustration element without a Placement attribute shall be treated as an ILSE and laid out inline.

For accessibility to users with disabilities and other text extraction purposes, an illustration element should
have an Alt entry or an ActualText entry (or both) in its structure element dictionary (see 14.9.3, “Alternate
Descriptions,” and 14.9.4, “Replacement Text”). Alt is a description of the illustration, whereas ActualText
gives the exact text equivalent of a graphical illustration that has the appearance of text.

14.8.5 Standard Structure Attributes

14.8.5.1 General

In addition to the standard structure types, Tagged PDF defines standard layout and styling attributes for
structure elements of those types. These attributes enable predictable formatting to be applied during
operations such as reflow and export of PDF content to other document formats.

As discussed in 14.7.5, “Structure Attributes,” attributes shall be defined in attribute objects, which are
dictionaries or streams attached to a structure element in either of two ways:

• The A entry in the structure element dictionary identifies an attribute object or an array of such objects.

• The C entry in the structure element dictionary gives the name of an attribute class or an array of such
names. The class name is in turn looked up in the class map, a dictionary identified by the ClassMap entry
in the structure tree root, yielding an attribute object or array of objects corresponding to the class.

In addition to the standard structure attributes described in 14.8.5.2, “Standard Attribute Owners,” there are
several other optional entries—Lang, Alt, ActualText, and E—that are described in 14.9, “Accessibility
Support,” but are useful to other PDF consumers as well. They appear in the following places in a PDF file
(rather than in attribute dictionaries):

• As entries in the structure element dictionary (see Table 323)

• As entries in property lists attached to marked-content sequences with a Span tag (see 14.6, “Marked
Content”)

The Example in 14.7.6, “Example of Logical Structure,” illustrates the use of standard structure attributes.

14.8.5.2 Standard Attribute Owners

Each attribute object has an owner, specified by the object’s O entry, which determines the interpretation of the
attributes defined in the object’s dictionary. Multiple owners may define like-named attributes with different
value types or interpretations. Tagged PDF defines a set of standard attribute owners, shown in Table 341.

Table 341 – Standard attribute owners

Owner Description

Layout Attributes governing the layout of content

List Attributes governing the numbering of lists

PrintField (PDF 1.7) Attributes governing Form structure elements for
non-interactive form fields

Table Attributes governing the organization of cells in tables

PDF 32000-1:2008

594 © Adobe Systems Incorporated 2008 – All rights reserved

An attribute object owned by a specific export format, such as XML-1.00, shall be applied only when exporting
PDF content to that format. Such format-specific attributes shall override any corresponding attributes owned
by Layout, List, PrintField, or Table. There may also be additional format-specific attributes; the set of
possible attributes is open-ended and is not explicitly specified or limited by Tagged PDF.

14.8.5.3 Attribute Values and Inheritance

Some attributes are defined as inheritable. Inheritable attributes propagate down the structure tree; that is, an
attribute that is specified for an element shall apply to all the descendants of the element in the structure tree
unless a descendent element specifies an explicit value for the attribute.

NOTE 1 The description of each of the standard attributes in this sub-clause specifies whether their values are
inheritable.

An inheritable attribute may be specified for an element for the purpose of propagating its value to child
elements, even if the attribute is not meaningful for the parent element. Non-inheritable attributes may be
specified only for elements on which they would be meaningful.

The following list shows the priority for determining attribute values. A conforming reader determines an
attribute’s value to be the first item in the following list that applies:

a) The value of the attribute specified in the element’s A entry, owned by one of the export formats (such as
XML, HTML-3.20, HTML-4.01, OEB-1.0, CSS-1.00, CSS-2.0, and RTF), if present, and if outputting to that
format

b) The value of the attribute specified in the element’s A entry, owned by Layout, PrintField, Table or List, if
present

c) The value of the attribute specified in a class map associated with the element’s C entry, if there is one

d) The resolved value of the parent structure element, if the attribute is inheritable

e) The default value for the attribute, if there is one

NOTE 2 The attributes Lang, Alt, ActualText, and E do not appear in attribute dictionaries. The rules governing their
application are discussed in 14.9, “Accessibility Support.”

XML-1.00 Additional attributes governing translation to XML, version
1.00

HTML-3.20 Additional attributes governing translation to HTML, version
3.20

HTML-4.01 Additional attributes governing translation to HTML, version
4.01

OEB-1.00 Additional attributes governing translation to OEB, version
1.0

RTF-1.05 Additional attributes governing translation to Microsoft Rich
Text Format, version 1.05

CSS-1.00 Additional attributes governing translation to a format using
CSS, version 1.00

CSS-2.00 Additional attributes governing translation to a format using
CSS, version 2.00

Table 341 – Standard attribute owners (continued)

Owner Description

© Adobe Systems Incorporated 2008 – All rights reserved 595

PDF 32000-1:2008

There is no semantic distinction between attributes that are specified explicitly and ones that are inherited.
Logically, the structure tree has attributes fully bound to each element, even though some may be inherited
from an ancestor element. This is consistent with the behaviour of properties (such as font characteristics) that
are not specified by structure attributes but shall be derived from the content.

14.8.5.4 Layout Attributes

14.8.5.4.1 General

Layout attributes specify parameters of the layout process used to produce the appearance described by a
document’s PDF content. Attributes in this category shall be defined in attribute objects whose O (owner) entry
has the value Layout (or is one of the format-specific owner names listed in Table 341).

NOTE The intent is that these parameters can be used to reflow the content or export it to some other document
format with at least basic styling preserved.

Table 342 summarizes the standard layout attributes and the structure elements to which they apply. The
following sub-clauses describe the meaning and usage of these attributes.

As described in 14.8.5.3, “Attribute Values and Inheritance,” an inheritable attribute may be specified for any
element to propagate it to descendants, regardless of whether it is meaningful for that element.

Table 342 – Standard layout attributes

Structure Elements Attributes Inheritable

Any structure element Placement
WritingMode
BackgroundColor
BorderColor
BorderStyle
BorderThickness
Color
Padding

No
Yes
No
Yes
No
Yes
Yes
No

Any BLSE
ILSEs with Placement other
than Inline

SpaceBefore
SpaceAfter
StartIndent
EndIndent

No
No
Yes
Yes

BLSEs containing text TextIndent
TextAlign

Yes
Yes

Illustration elements (Figure,
Formula, Form)
Table

BBox
Width
Height

No
No
No

TH (Table header)
TD (Table data)

Width
Height
BlockAlign
InlineAlign
TBorderStyle
TPadding

No
No
Yes
Yes
Yes
Yes

PDF 32000-1:2008

596 © Adobe Systems Incorporated 2008 – All rights reserved

14.8.5.4.2 General Layout Attributes

The layout attributes described in Table 343 may apply to structure elements of any of the standard types at the
block level (BLSEs) or the inline level (ILSEs).

Any ILSE
BLSEs containing ILSEs or
containing direct or nested
content items

LineHeight
BaselineShift
TextDecorationType
TextDecorationColor
TextDecorationThickness

Yes
No
No
Yes
Yes

Grouping elements Art, Sect,
and Div

ColumnCount
ColumnWidths
ColumnGap

No
No
No

Vertical text GlyphOrientationVertical Yes

Ruby text RubyAlign
RubyPosition

Yes
Yes

Table 342 – Standard layout attributes (continued)

Structure Elements Attributes Inheritable

© Adobe Systems Incorporated 2008 – All rights reserved 597

PDF 32000-1:2008

Table 343 – Standard layout attributes common to all standard structure types

Key Type Value

Placement name (Optional; not inheritable) The positioning of the element with respect
to the enclosing reference area and other content:
Block Stacked in the block-progression direction within an

enclosing reference area or parent BLSE.
Inline Packed in the inline-progression direction within an enclosing

BLSE.
Before Placed so that the before edge of the element’s allocation

rectangle (see “Content and Allocation Rectangles” in
14.8.5.4, “Layout Attributes”) coincides with that of the
nearest enclosing reference area. The element may float, if
necessary, to achieve the specified placement. The element
shall be treated as a block occupying the full extent of the
enclosing reference area in the inline direction. Other content
shall be stacked so as to begin at the after edge of the
element’s allocation rectangle.

Start Placed so that the start edge of the element’s allocation
rectangle (see “Content and Allocation Rectangles” in
14.8.5.4, “Layout Attributes”) coincides with that of the
nearest enclosing reference area. The element may float, if
necessary, to achieve the specified placement. Other content
that would intrude into the element’s allocation rectangle shall
be laid out as a runaround.

End Placed so that the end edge of the element’s allocation
rectangle (see “Content and Allocation Rectangles” in
14.8.5.4, “Layout Attributes”) coincides with that of the
nearest enclosing reference area. The element may float, if
necessary, to achieve the specified placement. Other content
that would intrude into the element’s allocation rectangle shall
be laid out as a runaround.

When applied to an ILSE, any value except Inline shall cause the
element to be treated as a BLSE instead. Default value: Inline.
Elements with Placement values of Before, Start, or End shall be
removed from the normal stacking or packing process and allowed to
float to the specified edge of the enclosing reference area or parent
BLSE. Multiple such floating elements may be positioned adjacent to
one another against the specified edge of the reference area or placed
serially against the edge, in the order encountered. Complex cases
such as floating elements that interfere with each other or do not fit on
the same page may be handled differently by different conforming
readers. Tagged PDF merely identifies the elements as floating and
indicates their desired placement.

PDF 32000-1:2008

598 © Adobe Systems Incorporated 2008 – All rights reserved

WritingMode name (Optional; inheritable) The directions of layout progression for packing
of ILSEs (inline progression) and stacking of BLSEs (block
progression):
LrTb Inline progression from left to right; block progression from top

to bottom. This is the typical writing mode for Western writing
systems.

RlTb Inline progression from right to left; block progression from top
to bottom. This is the typical writing mode for Arabic and
Hebrew writing systems.

TbRl Inline progression from top to bottom; block progression from
right to left. This is the typical writing mode for Chinese and
Japanese writing systems.

The specified layout directions shall apply to the given structure
element and all of its descendants to any level of nesting. Default
value: LrTb.
For elements that produce multiple columns, the writing mode defines
the direction of column progression within the reference area: the
inline direction determines the stacking direction for columns and the
default flow order of text from column to column. For tables, the writing
mode controls the layout of rows and columns: table rows (structure
type TR) shall be stacked in the block direction, cells within a row
(structure type TD) in the inline direction.
The inline-progression direction specified by the writing mode is
subject to local override within the text being laid out, as described in
Unicode Standard Annex #9, The Bidirectional Algorithm, available
from the Unicode Consortium (see the Bibliography).

BackgroundColor array (Optional; not inheritable; PDF 1.5) The colour to be used to fill the
background of a table cell or any element’s content rectangle (possibly
adjusted by the Padding attribute). The value shall be an array of
three numbers in the range 0.0 to 1.0, representing the red, green, and
blue values, respectively, of an RGB colour space. If this attribute is
not specified, the element shall be treated as if it were transparent.

BorderColor array (Optional; inheritable; PDF 1.5) The colour of the border drawn on the
edges of a table cell or any element’s content rectangle (possibly
adjusted by the Padding attribute). The value of each edge shall be an
array of three numbers in the range 0.0 to 1.0, representing the red,
green, and blue values, respectively, of an RGB colour space. There
are two forms:
A single array of three numbers representing the RGB values to apply
to all four edges.
An array of four arrays, each specifying the RGB values for one edge
of the border, in the order of the before, after, start, and end edges. A
value of null for any of the edges means that it shall not be drawn.
If this attribute is not specified, the border colour for this element shall
be the current text fill colour in effect at the start of its associated
content.

Table 343 – Standard layout attributes common to all standard structure types (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 599

PDF 32000-1:2008

BorderStyle array or
name

(Optional; not inheritable; PDF 1.5) The style of an element’s border.
Specifies the stroke pattern of each edge of a table cell or any
element’s content rectangle (possibly adjusted by the Padding
attribute). There are two forms:
• A name from the list below representing the border style to apply

to all four edges.

• An array of four entries, each entry specifying the style for one
edge of the border in the order of the before, after, start, and end
edges. A value of null for any of the edges means that it shall not
be drawn.

None No border. Forces the computed value of BorderThickness
to be 0.

Hidden Same as None, except in terms of border conflict resolution
for table elements.

Dotted The border is a series of dots.
Dashed The border is a series of short line segments.
Solid The border is a single line segment.
Double The border is two solid lines. The sum of the two lines and

the space between them equals the value of
BorderThickness.

Groove The border looks as though it were carved into the canvas.
Ridge The border looks as though it were coming out of the canvas

(the opposite of Groove).
Inset The border makes the entire box look as though it were

embedded in the canvas.
Outset The border makes the entire box look as though it were

coming out of the canvas (the opposite of Inset).
Default value: None
All borders shall be drawn on top of the box’s background. The colour
of borders drawn for values of Groove, Ridge, Inset, and Outset shall
depend on the structure element’s BorderColor attribute and the
colour of the background over which the border is being drawn.

NOTE Conforming HTML applications may interpret Dotted,
Dashed, Double, Groove, Ridge, Inset, and Outset to be
Solid.

BorderThickness number or
array

(Optional; inheritable; PDF 1.5) The thickness of the border drawn on
the edges of a table cell or any element’s content rectangle (possibly
adjusted by the Padding attribute). The value of each edge shall be a
positive number in default user space units representing the border’s
thickness (a value of 0 indicates that the border shall not be drawn).
There are two forms:
A number representing the border thickness for all four edges.
An array of four entries, each entry specifying the thickness for one
edge of the border, in the order of the before, after, start, and end
edges. A value of null for any of the edges means that it shall not be
drawn.

Table 343 – Standard layout attributes common to all standard structure types (continued)

Key Type Value

PDF 32000-1:2008

600 © Adobe Systems Incorporated 2008 – All rights reserved

14.8.5.4.3 Layout Attributes for BLSEs

Table 344 describes layout attributes that shall apply only to block-level structure elements (BLSEs).

Inline-level structure elements (ILSEs) with a Placement attribute other than the default value of Inline shall be
treated as BLSEs and shall also be subject to the attributes described here.

Padding number or
array

(Optional; not inheritable; PDF 1.5) Specifies an offset to account for
the separation between the element’s content rectangle and the
surrounding border (see “Content and Allocation Rectangles” in
14.8.5.4, “Layout Attributes”). A positive value enlarges the
background area; a negative value trims it, possibly allowing the
border to overlap the element’s text or graphic.
The value shall be either a single number representing the width of the
padding, in default user space units, that applies to all four sides or a
4-element array of numbers representing the padding width for the
before, after, start, and end edge, respectively, of the content
rectangle. Default value: 0.

Color array (Optional; inheritable; PDF 1.5) The colour to be used for drawing text
and the default value for the colour of table borders and text
decorations. The value shall be an array of three numbers in the range
0.0 to 1.0, representing the red, green, and blue values, respectively,
of an RGB colour space. If this attribute is not specified, the border
colour for this element shall be the current text fill colour in effect at the
start of its associated content.

Table 344 – Additional standard layout attributes specific to
block-level structure elements

Key Type Value

SpaceBefore number (Optional; not inheritable) The amount of extra space preceding the
before edge of the BLSE, measured in default user space units in the
block-progression direction. This value shall be added to any
adjustments induced by the LineHeight attributes of ILSEs within the
first line of the BLSE (see “Layout Attributes for ILSEs” in 14.8.5.4,
“Layout Attributes”). If the preceding BLSE has a SpaceAfter attribute,
the greater of the two attribute values shall be used. Default value: 0.
This attribute shall be disregarded for the first BLSE placed in a given
reference area.

SpaceAfter number (Optional; not inheritable) The amount of extra space following the
after edge of the BLSE, measured in default user space units in the
block-progression direction. This value shall be added to any
adjustments induced by the LineHeight attributes of ILSEs within the
last line of the BLSE (see 14.8.5.4, “Layout Attributes”). If the following
BLSE has a SpaceBefore attribute, the greater of the two attribute
values shall be used. Default value: 0.
This attribute shall be disregarded for the last BLSE placed in a given
reference area.

Table 343 – Standard layout attributes common to all standard structure types (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 601

PDF 32000-1:2008

StartIndent number (Optional; inheritable) The distance from the start edge of the
reference area to that of the BLSE, measured in default user space
units in the inline-progression direction. This attribute shall apply only
to structure elements with a Placement attribute of Block or Start (see
“General Layout Attributes” in 14.8.5.4, “Layout Attributes”). The
attribute shall be disregarded for elements with other Placement
values. Default value: 0.
A negative value for this attribute places the start edge of the BLSE
outside that of the reference area. The results are implementation-
dependent and may not be supported by all conforming products that
process Tagged PDF or by particular export formats.
If a structure element with a StartIndent attribute is placed adjacent to
a floating element with a Placement attribute of Start, the actual value
used for the element’s starting indent shall be its own StartIndent
attribute or the inline extent of the adjacent floating element, whichever
is greater. This value may be further adjusted by the element’s
TextIndent attribute, if any.

EndIndent number (Optional; inheritable) The distance from the end edge of the BLSE to
that of the reference area, measured in default user space units in the
inline-progression direction. This attribute shall apply only to structure
elements with a Placement attribute of Block or End (see “General
Layout Attributes” in 14.8.5.4, “Layout Attributes”). The attribute shall
be disregarded for elements with other Placement values. Default
value: 0.
A negative value for this attribute places the end edge of the BLSE
outside that of the reference area. The results are implementation-
dependent and may not be supported by all conforming products that
process Tagged PDF or by particular export formats.
If a structure element with an EndIndent attribute is placed adjacent to
a floating element with a Placement attribute of End, the actual value
used for the element’s ending indent shall be its own EndIndent
attribute or the inline extent of the adjacent floating element, whichever
is greater.

TextIndent number (Optional; inheritable; applies only to some BLSEs) The additional
distance, measured in default user space units in the inline-
progression direction, from the start edge of the BLSE, as specified by
StartIndent, to that of the first line of text. A negative value shall
indicate a hanging indent. Default value: 0.
This attribute shall apply only to paragraphlike BLSEs and those of
structure types Lbl (Label), LBody (List body), TH (Table header), and
TD (Table data), provided that they contain content other than nested
BLSEs.

TextAlign name (Optional; inheritable; applies only to BLSEs containing text) The
alignment, in the inline-progression direction, of text and other content
within lines of the BLSE:
Start Aligned with the start edge.
Center Centered between the start and end edges.
End Aligned with the end edge.
Justify Aligned with both the start and end edges, with internal

spacing within each line expanded, if necessary, to achieve
such alignment. The last (or only) line shall be aligned with
the start edge only.

Default value: Start.

Table 344 – Additional standard layout attributes specific to
block-level structure elements (continued)

Key Type Value

PDF 32000-1:2008

602 © Adobe Systems Incorporated 2008 – All rights reserved

BBox rectangle (Optional for Annot; required for any figure or table appearing in its
entirety on a single page; not inheritable) An array of four numbers in
default user space units that shall give the coordinates of the left,
bottom, right, and top edges, respectively, of the element’s bounding
box (the rectangle that completely encloses its visible content). This
attribute shall apply to any element that lies on a single page and
occupies a single rectangle.

Width number
or name

(Optional; not inheritable; illustrations, tables, table headers, and table
cells only; should be used for table cells) The width of the element’s
content rectangle (see “Content and Allocation Rectangles” in
14.8.5.4, “Layout Attributes”), measured in default user space units in
the inline-progression direction. This attribute shall apply only to
elements of structure type Figure, Formula, Form, Table, TH (Table
header), or TD (Table data).
The name Auto in place of a numeric value shall indicate that no
specific width constraint is to be imposed; the element’s width shall be
determined by the intrinsic width of its content. Default value: Auto.

Height number
or name

(Optional; not inheritable; illustrations, tables, table headers, and table
cells only) The height of the element’s content rectangle (see “Content
and Allocation Rectangles” in 14.8.5.4, “Layout Attributes”), measured
in default user space units in the block-progression direction. This
attribute shall apply only to elements of structure type Figure, Formula,
Form, Table, TH (Table header), or TD (Table data).
The name Auto in place of a numeric value shall indicate that no
specific height constraint is to be imposed; the element’s height shall
be determined by the intrinsic height of its content. Default value: Auto.

BlockAlign name (Optional; inheritable; table cells only) The alignment, in the block-
progression direction, of content within the table cell:
Before Before edge of the first child’s allocation rectangle aligned

with that of the table cell’s content rectangle.
Middle Children centered within the table cell. The distance

between the before edge of the first child’s allocation
rectangle and that of the table cell’s content rectangle
shall be the same as the distance between the after edge
of the last child’s allocation rectangle and that of the table
cell’s content rectangle.

After After edge of the last child’s allocation rectangle aligned
with that of the table cell’s content rectangle.

Justify Children aligned with both the before and after edges of
the table cell’s content rectangle. The first child shall be
placed as described for Before and the last child as
described for After, with equal spacing between the
children. If there is only one child, it shall be aligned with
the before edge only, as for Before.

This attribute shall apply only to elements of structure type TH (Table
header) or TD (Table data) and shall control the placement of all
BLSEs that are children of the given element. The table cell’s content
rectangle (see “Content and Allocation Rectangles” in 14.8.5.4,
“Layout Attributes”) shall become the reference area for all of its
descendants. Default value: Before.

Table 344 – Additional standard layout attributes specific to
block-level structure elements (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 603

PDF 32000-1:2008

14.8.5.4.4 Layout Attributes for ILSEs

The attributes described in Table 345 apply to inline-level structure elements (ILSEs). They may also be
specified for a block-level element (BLSE) and may apply to any content items that are its immediate children.

InlineAlign name (Optional; inheritable; table cells only) The alignment, in the inline-
progression direction, of content within the table cell:
Start Start edge of each child’s allocation rectangle aligned with

that of the table cell’s content rectangle.
Center Each child centered within the table cell. The distance

between the start edges of the child’s allocation rectangle
and the table cell’s content rectangle shall be the same as
the distance between their end edges.

End End edge of each child’s allocation rectangle aligned with
that of the table cell’s content rectangle.

This attribute shall apply only to elements of structure type TH (Table
header) or TD (Table data) and controls the placement of all BLSEs
that are children of the given element. The table cell’s content
rectangle (see “Content and Allocation Rectangles” in 14.8.5.4,
“Layout Attributes”) shall become the reference area for all of its
descendants. Default value: Start.

TBorderStyle name or
array

(Optional; inheritable; PDF 1.5) The style of the border drawn on each
edge of a table cell. Allowed values shall be the same as those
specified for BorderStyle (see Table 343). If both TBorderStyle and
BorderStyle apply to a given table cell, BorderStyle shall supersede
TBorderStyle. Default value: None.

TPadding integer or
array

(Optional; inheritable; PDF 1.5) Specifies an offset to account for the
separation between the table cell’s content rectangle and the
surrounding border (see “Content and Allocation Rectangles” in
14.8.5.4, “Layout Attributes”). If both TPadding and Padding apply to
a given table cell, Padding shall supersede TPadding. A positive
value shall enlarge the background area; a negative value shall trim it,
and the border may overlap the element’s text or graphic. The value
shall be either a single number representing the width of the padding,
in default user space units, that applies to all four edges of the table
cell or a 4-entry array representing the padding width for the before
edge, after edge, start edge, and end edge, respectively, of the content
rectangle. Default value: 0.

Table 344 – Additional standard layout attributes specific to
block-level structure elements (continued)

Key Type Value

PDF 32000-1:2008

604 © Adobe Systems Incorporated 2008 – All rights reserved

Table 345 – Standard layout attributes specific to inline-level structure elements

Key Type Value

BaselineShift number (Optional; not inheritable) The distance, in default user space units,
by which the element’s baseline shall be shifted relative to that of its
parent element. The shift direction shall be the opposite of the
block-progression direction specified by the prevailing
WritingMode attribute (see “General Layout Attributes” in 14.8.5.4,
“Layout Attributes”). Thus, positive values shall shift the baseline
toward the before edge and negative values toward the after edge
of the reference area (upward and downward, respectively, in
Western writing systems). Default value: 0.
The shifted element may be a superscript, a subscript, or an inline
graphic. The shift shall apply to the element, its content, and all of
its descendants. Any further baseline shift applied to a child of this
element shall be measured relative to the shifted baseline of this
(parent) element.

LineHeight number
or name

(Optional; inheritable) The element’s preferred height, measured in
default user space units in the block-progression direction. The
height of a line shall be determined by the largest LineHeight value
for any complete or partial ILSE that it contains.
The name Normal or Auto in place of a numeric value shall indicate
that no specific height constraint is to be imposed. The element’s
height shall be set to a reasonable value based on the content’s font
size:
Normal Adjust the line height to include any nonzero value

specified for BaselineShift.
Auto Adjustment for the value of BaselineShift shall not be

made.
Default value: Normal.
This attribute applies to all ILSEs (including implicit ones) that are
children of this element or of its nested ILSEs, if any. It shall not
apply to nested BLSEs.
When translating to a specific export format, the values Normal and
Auto, if specified, shall be used directly if they are available in the
target format. The meaning of the term “reasonable value” is left to
the conforming reader to determine. It should be approximately 1.2
times the font size, but this value can vary depending on the export
format.
NOTE 1 In the absence of a numeric value for LineHeight or

an explicit value for the font size, a reasonable method
of calculating the line height from the information in a
Tagged PDF file is to find the difference between the
associated font’s Ascent and Descent values (see
9.8, “Font Descriptors”), map it from glyph space to
default user space (see 9.4.4, “Text Space Details”),
and use the maximum resulting value for any character
in the line.

TextDecorationColor array (Optional; inheritable; PDF 1.5) The colour to be used for drawing
text decorations. The value shall be an array of three numbers in
the range 0.0 to 1.0, representing the red, green, and blue values,
respectively, of an RGB colour space. If this attribute is not
specified, the border colour for this element shall be the current fill
colour in effect at the start of its associated content.

© Adobe Systems Incorporated 2008 – All rights reserved 605

PDF 32000-1:2008

TextDecorationThickness number (Optional; inheritable; PDF 1.5) The thickness of each line drawn as
part of the text decoration. The value shall be a non-negative
number in default user space units representing the thickness (0 is
interpreted as the thinnest possible line). If this attribute is not
specified, it shall be derived from the current stroke thickness in
effect at the start of the element’s associated content, transformed
into default user space units.

TextDecorationType name (Optional; not inheritable) The text decoration, if any, to be applied
to the element’s text.
None No text decoration
Underline A line below the text
Overline A line above the text
LineThrough A line through the middle of the text
Default value: None.
This attribute shall apply to all text content items that are children of
this element or of its nested ILSEs, if any. The attribute shall not
apply to nested BLSEs or to content items other than text.
The colour, position, and thickness of the decoration shall be
uniform across all children, regardless of changes in colour, font
size, or other variations in the content’s text characteristics.

RubyAlign name (Optional; inheritable; PDF 1.5) The justification of the lines within a
ruby assembly:
Start The content shall be aligned on the start edge in the

inline-progression direction.
Center The content shall be centered in the inline-progression

direction.
End The content shall be aligned on the end edge in the

inline-progression direction.
Justify The content shall be expanded to fill the available width

in the inline-progression direction.
Distribute The content shall be expanded to fill the available width

in the inline-progression direction. However, space shall
also be inserted at the start edge and end edge of the
text. The spacing shall be distributed using a 1:2:1
(start:infix:end) ratio. It shall be changed to a 0:1:1 ratio
if the ruby appears at the start of a text line or to a 1:1:0
ratio if the ruby appears at the end of the text line.

Default value: Distribute.
This attribute may be specified on the RB and RT elements. When a
ruby is formatted, the attribute shall be applied to the shorter line of
these two elements. (If the RT element has a shorter width than the
RB element, the RT element shall be aligned as specified in its
RubyAlign attribute.)

Table 345 – Standard layout attributes specific to inline-level structure elements (continued)

Key Type Value

PDF 32000-1:2008

606 © Adobe Systems Incorporated 2008 – All rights reserved

14.8.5.4.5 Content and Allocation Rectangles

As defined in 14.8.3, “Basic Layout Model,” an element’s content rectangle is an enclosing rectangle derived
from the shape of the element’s content, which shall define the bounds used for the layout of any included child
elements. The allocation rectangle includes any additional borders or spacing surrounding the element,
affecting how it shall be positioned with respect to adjacent elements and the enclosing content rectangle or
reference area.

The exact definition of the content rectangle shall depend on the element’s structure type:

• For a table cell (structure type TH or TD), the content rectangle shall be determined from the bounding box
of all graphics objects in the cell’s content, taking into account any explicit bounding boxes (such as the
BBox entry in a form XObject). This implied size may be explicitly overridden by the cell’s Width and
Height attributes. The cell’s height shall be adjusted to equal the maximum height of any cell in its row; its
width shall be adjusted to the maximum width of any cell in its column.

RubyPosition name (Optional; inheritable; PDF 1.5) The placement of the RT structure
element relative to the RB element in a ruby assembly:
Before The RT content shall be aligned along the before edge of

the element.
After The RT content shall be aligned along the after edge of

the element.
Warichu The RT and associated RP elements shall be formatted

as a warichu, following the RB element.
Inline The RT and associated RP elements shall be formatted

as a parenthesis comment, following the RB element.
Default value: Before.

GlyphOrientationVertical name (Optional; inheritable; PDF 1.5) Specifies the orientation of glyphs
when the inline-progression direction is top to bottom or bottom to
top.
This attribute may take one of the following values:
angle A number representing the clockwise rotation in degrees of
the top of the glyphs relative to the top of the reference area. Shall
be a multiple of 90 degrees between -180 and +360.
AutoSpecifies a default orientation for text, depending on whether it
is fullwidth (as wide as it is high). Fullwidth Latin and fullwidth
ideographic text (excluding ideographic punctuation) shall be set
with an angle of 0. Ideographic punctuation and other ideographic
characters having alternate horizontal and vertical forms shall use
the vertical form of the glyph. Non-fullwidth text shall be set with an
angle of 90.
Default value: Auto.
NOTE 2 This attribute is used most commonly to differentiate

between the preferred orientation of alphabetic (non-
ideographic) text in vertically written Japanese
documents (Auto or 90) and the orientation of the
ideographic characters and/or alphabetic (non-
ideographic) text in western signage and advertising
(90).

This attribute shall affect both the alignment and width of the glyphs.
If a glyph is perpendicular to the vertical baseline, its horizontal
alignment point shall be aligned with the alignment baseline for the
script to which the glyph belongs. The width of the glyph area shall
be determined from the horizontal width font characteristic for the
glyph.

Table 345 – Standard layout attributes specific to inline-level structure elements (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 607

PDF 32000-1:2008

• For any other BLSE, the height of the content rectangle shall be the sum of the heights of all BLSEs it
contains, plus any additional spacing adjustments between these elements.

• For an ILSE that contains text, the height of the content rectangle shall be set by the LineHeight attribute.
The width shall be determined by summing the widths of the contained characters, adjusted for any
indents, letter spacing, word spacing, or line-end conditions.

• For an ILSE that contains an illustration or table, the content rectangle shall be determined from the
bounding box of all graphics objects in the content, and shall take into account any explicit bounding boxes
(such as the BBox entry in a form XObject). This implied size may be explicitly overridden by the element’s
Width and Height attributes.

• For an ILSE that contains a mixture of elements, the height of the content rectangle shall be determined by
aligning the child objects relative to one another based on their text baseline (for text ILSEs) or end edge
(for non-text ILSEs), along with any applicable BaselineShift attribute (for all ILSEs), and finding the
extreme top and bottom for all elements.

NOTE Some conforming readers may apply this process to all elements within the block; others may apply it on a
line-by-line basis.

The allocation rectangle shall be derived from the content rectangle in a way that also depends on the structure
type:

• For a BLSE, the allocation rectangle shall be equal to the content rectangle with its before and after edges
adjusted by the element’s SpaceBefore and SpaceAfter attributes, if any, but with no changes to the start
and end edges.

• For an ILSE, the allocation rectangle is the same as the content rectangle.

14.8.5.4.6 Illustration Attributes

Particular uses of illustration elements (structure types Figure, Formula, or Form) shall have additional
restrictions:

• When an illustration element has a Placement attribute of Block, it shall have a Height attribute with an
explicitly specified numerical value (not Auto). This value shall be the sole source of information about the
illustration’s extent in the block-progression direction.

• When an illustration element has a Placement attribute of Inline, it shall have a Width attribute with an
explicitly specified numerical value (not Auto). This value shall be the sole source of information about the
illustration’s extent in the inline-progression direction.

• When an illustration element has a Placement attribute of Inline, Start, or End, the value of its
BaselineShift attribute shall be used to determine the position of its after edge relative to the text baseline;
BaselineShift shall be ignored for all other values of Placement. (An illustration element with a
Placement value of Start may be used to create a dropped capital; one with a Placement value of Inline
may be used to create a raised capital.)

14.8.5.4.7 Column Attributes

The attributes described in Table 346 shall be present for the grouping elements Art, Sect, and Div (see
14.8.4.2, “Grouping Elements”). They shall be used when the content in the grouping element is divided into
columns.

PDF 32000-1:2008

608 © Adobe Systems Incorporated 2008 – All rights reserved

14.8.5.5 List Attribute

If present, the ListNumbering attribute, described in Table 347, shall appear in an L (List) element. It controls
the interpretation of the Lbl (Label) elements within the list’s LI (List item) elements (see “List Elements” in
14.8.4.3, “Block-Level Structure Elements”). This attribute may only be defined in attribute objects whose O
(owner) entry has the value List or is one of the format-specific owner names listed in Table 341.

Table 346 – Standard column attributes

Key Type Value

ColumnCount integer (Optional; not inheritable; PDF 1.6) The number of columns in the content
of the grouping element. Default value: 1.

ColumnGap number
or array

(Optional; not inheritable; PDF 1.6) The desired space between adjacent
columns, measured in default user space units in the inline-progression
direction. If the value is a number, it specifies the space between all
columns. If the value is an array, it should contain numbers, the first
element specifying the space between the first and second columns, the
second specifying the space between the second and third columns, and
so on. If there are fewer than ColumnCount - 1 numbers, the last
element shall specify all remaining spaces; if there are more than
ColumnCount - 1 numbers, the excess array elements shall be ignored.

ColumnWidths number
or array

(Optional; not inheritable; PDF 1.6) The desired width of the columns,
measured in default user space units in the inline-progression direction. If
the value is a number, it specifies the width of all columns. If the value is
an array, it shall contain numbers, representing the width of each column,
in order. If there are fewer than ColumnCount numbers, the last element
shall specify all remaining widths; if there are more than ColumnCount
numbers, the excess array elements shall be ignored.

Table 347 – Standard list attribute

Key Type Value

ListNumbering name (Optional; inheritable) The numbering system used to generate the
content of the Lbl (Label) elements in an autonumbered list, or the symbol
used to identify each item in an unnumbered list. The value of the
ListNumbering shall be one of the following, and shall be applied as
described here.
None No autonumbering; Lbl elements (if present) contain

arbitrary text not subject to any numbering scheme
Disc Solid circular bullet
Circle Open circular bullet
Square Solid square bullet
Decimal Decimal arabic numerals (1–9, 10–99, …)
UpperRoman Uppercase roman numerals (I, II, III, IV, …)
LowerRoman Lowercase roman numerals (i, ii, iii, iv, …)
UpperAlpha Uppercase letters (A, B, C, …)
LowerAlpha Lowercase letters (a, b, c, …)
Default value: None.
The alphabet used for UpperAlpha and LowerAlpha shall be determined
by the prevailing Lang entry (see 14.9.2, “Natural Language
Specification”).
The set of possible values may be expanded as Unicode identifies
additional numbering systems. A conforming reader shall ignore any value
not listed in this table; it shall behave as though the value were None.

© Adobe Systems Incorporated 2008 – All rights reserved 609

PDF 32000-1:2008

NOTE This attribute is used to allow a content extraction tool to autonumber a list. However, the Lbl elements within
the table should nevertheless contain the resulting numbers explicitly, so that the document can be reflowed or
printed without the need for autonumbering.

14.8.5.6 PrintField Attributes

(PDF 1.7) The attributes described in Table 348 identify the role of fields in non-interactive PDF forms. Such
forms may have originally contained interactive fields such as text fields and radio buttons but were then
converted into non-interactive PDF files, or they may have been designed to be printed out and filled in
manually. Since the roles of the fields cannot be determined from interactive elements, the roles are defined
using PrintField attributes.

NOTE PrintField attributes enable screen readers to identify page content that represents form fields (radio buttons,
check boxes, push buttons, and text fields). These attributes enable the controls in print form fields to be
represented in the logical structure tree and to be presented to assistive technology as if they were read-only
interactive fields.

14.8.5.7 Table Attributes

The value of the O (owner) entry of a Table attributes element shall be Table or one of the format-specific
owner names listed in Table 341.

Table 348 – PrintField attributes

Key Type Value

Role name (Optional; not inheritable) The type of form field represented by this
graphic. The value of Role shall be one of the following, and a conforming
reader shall interpret its meaning as defined herein.
rb Radio button
cb Check box
pb Push button
tv Text-value field
The tv role shall be used for interactive fields whose values have been
converted to text in the non-interactive document. The text that is the
value of the field shall be the content of the Form element (see Table 340).
NOTE 1 Examples include text edit fields, numeric fields, password

fields, digital signatures, and combo boxes.

Default value: None specified.

checked name (Optional; not inheritable) The state of a radio button or check box field.
The value shall be one of: on, off (default), or neutral.
NOTE 2 The case (capitalization) used for this key does not conform

to the same conventions used elsewhere in this standard.

Desc text string (Optional; not inheritable) The alternate name of the field.
NOTE 3 Similar to the value supplied in the TU entry of the field

dictionary for interactive fields (see Table 220).

PDF 32000-1:2008

610 © Adobe Systems Incorporated 2008 – All rights reserved

14.9 Accessibility Support

14.9.1 General

PDF includes several facilities in support of accessibility of documents to users with disabilities. In particular,
many visually computer users with visual impairments use screen readers to read documents aloud. To enable
proper vocalization, either through a screen reader or by some more direct invocation of a text-to-speech
engine, PDF supports the following features:

• Specifying the natural language used for text in a PDF document—for example, as English or Spanish, or
used to hide or reveal optional content (see 14.9.2, “Natural Language Specification”)

• Providing textual descriptions for images or other items that do not translate naturally into text (14.9.3,
“Alternate Descriptions”), or replacement text for content that does translate into text but is represented in
a nonstandard way (such as with a ligature or illuminated character; see 14.9.4, “Replacement Text”)

• Specifying the expansion of abbreviations or acronyms (Section 14.9.5, “Expansion of Abbreviations and
Acronyms”)

Table 349 – Standard table attributes

Key Type Value

RowSpan integer (Optional; not inheritable) The number of rows in the enclosing table that
shall be spanned by the cell. The cell shall expand by adding rows in the
block-progression direction specified by the table’s WritingMode
attribute. If this entry is absent, a conforming reader shall assume a value
of 1.
This entry shall only be used when the table cell has a structure type of
TH or TD or one that is role mapped to structure type TH or TD (see
Table 337).

ColSpan integer (Optional; not inheritable) The number of columns in the enclosing table
that shall be spanned by the cell. The cell shall expand by adding
columns in the inline-progression direction specified by the table’s
WritingMode attribute. If this entry is absent, a conforming reader shall
assume a value of 1
This entry shall only be used when the table cell has a structure type of
TH or TD or one that is role mapped to structure types TH or TD (see
Table 337).

Headers array (Optional; not inheritable; PDF 1.5) An array of byte strings, where each
string shall be the element identifier (see the ID entry in Table 323) for a
TH structure element that shall be used as a header associated with this
cell.
This attribute may apply to header cells (TH) as well as data cells (TD)
(see Table 337). Therefore, the headers associated with any cell shall be
those in its Headers array plus those in the Headers array of any TH
cells in that array, and so on recursively.

Scope name (Optional; not inheritable; PDF 1.5) A name whose value shall be one of
the following: Row, Column, or Both. This attribute shall only be used
when the structure type of the element is TH. (see Table 337). It shall
reflect whether the header cell applies to the rest of the cells in the row
that contains it, the column that contains it, or both the row and the
column that contain it.

Summary text string (Optional; not inheritable; PDF 1.7) A summary of the table’s purpose and
structure. This entry shall only be used within Table structure elements
(see Table 337).
NOTE For use in non-visual rendering such as speech or braille

© Adobe Systems Incorporated 2008 – All rights reserved 611

PDF 32000-1:2008

The core of this support lies in the ability to determine the logical order of content in a PDF document,
independently of the content’s appearance or layout, through logical structure and Tagged PDF, as described
under 14.8.2.3, “Page Content Order.” An accessibility application can extract the content of a document for
presentation to users with disabilities by traversing the structure hierarchy and presenting the contents of each
node. For this reason, conforming writers ensure that all information in a document is reachable by means of
the structure hierarchy, and they should use the facilities described in this sub-clause.

NOTE 1 Text can be extracted from Tagged PDF documents and examined or reused for purposes other than
accessibility; see 14.8, “Tagged PDF.”

NOTE 2 Additional guidelines for accessibility support of content published on the Web can be found in the W3C
document Web Content Accessibility Guidelines and the documents it points to (see the Bibliography).

14.9.2 Natural Language Specification

14.9.2.1 General

Natural language may be specified for text in a document or for optional content.

The natural language used for text in a document shall be determined in a hierarchical fashion, based on
whether an optional Lang entry (PDF 1.4) is present in any of several possible locations. At the highest level,
the document’s default language (which applies to both text strings and text within content streams) may be
specified by a Lang entry in the document catalogue (see 7.7.2, “Document Catalog”). Below this, the
language may be specified for the following items:

• Structure elements of any type (see 14.7.2, “Structure Hierarchy”), through a Lang entry in the structure
element dictionary.

• Marked-content sequences that are not in the structure hierarchy (see 14.6, “Marked Content”), through a
Lang entry in a property list attached to the marked-content sequence with a Span tag.

NOTE 1 Although Span is also a standard structure type, as described under 14.8.4.4, “Inline-Level Structure
Elements,” its use here is entirely independent of logical structure.

NOTE 2 The natural language used for optional content allows content to be hidden or revealed, based on the Lang
entry (PDF 1.5) in the Language dictionary of an optional content usage dictionary.

NOTE 3 The following sub-clauses provide details on the value of the Lang entry and the hierarchical manner in which
the language for text in a document is determined.

Text strings encoded in Unicode may include an escape sequence or language tag indicating the language of
the text and overriding the prevailing Lang entry (see 7.9.2.2, “Text String Type”).

14.9.2.2 Language Identifiers

Certain language-related dictionary entries are text strings that specify language identifiers. Such text strings
may appear as Lang entries in the following structures or dictionaries:

• Document catalogue, structure element dictionary, or property list

• Optional content usage dictionary’s Language dictionary, the hierarchical issues described in 14.9.2.3,
“Language Specification Hierarchy,” shall not apply to this entry

A language identifier shall either be the empty text string, to indicate that the language is unknown, or a
Language-Tag as defined in RFC 3066, Tags for the Identification of Languages.

Although language codes are commonly represented using lowercase letters and country codes are commonly
represented using uppercase letters, all tags shall be treated as case insensitive.

PDF 32000-1:2008

612 © Adobe Systems Incorporated 2008 – All rights reserved

14.9.2.3 Language Specification Hierarchy

The Lang entry in the document catalogue shall specify the default natural language for all text in the
document. Language specifications may appear within structure elements, and they may appear within
marked-content sequences that are not in the structure hierarchy. If present, such language specifications
override the default.

Language specifications within the structure hierarchy apply in this order:

• A structure element’s language specification. If a structure element does not have a Lang entry, the
element shall inherit its language from any parent element that has one.

• Within a structure element, a language specification for a nested structure element or marked-content
sequence

If only part of the page content is contained in the structure hierarchy, and the structured content is nested
within nonstructured content for which a different language specification applies, the structure element’s
language specification shall take precedence.

A language identifier attached to a marked-content sequence with the Span tag specifies the language for all
text in the sequence except for nested marked content that is contained in the structure hierarchy (in which
case the structure element’s language applies) and except where overridden by language specifications for
other nested marked content.

NOTE Examples in this sub-clause illustrate the hierarchical manner in which the language for text in a document is
determined.

EXAMPLE 1 This example shows how a language specified for the document as a whole could be overridden by one
specified for a marked-content sequence within a page’s content stream, independent of any logical
structure. In this case, the Lang entry in the document catalogue (not shown) has the value en-US,
meaning U.S. English, and it is overridden by the Lang property attached (with the Span tag) to the
marked-content sequence Hasta la vista. The Lang property identifies the language for this marked
content sequence with the value es-MX, meaning Mexican Spanish.

2 0 obj % Page object

<< /Type /Page
 /Contents 3 0 R % Content stream
 …
>>

endobj

3 0 obj % Page's content stream

<< /Length … >>
stream

BT
(See you later, or as Arnold would say,) Tj
/Span << /Lang (es-MX) >> % Start of marked-content sequence

BDC
(Hasta la vista .) Tj

EMC % End of marked-content sequence
ET

endstream
endobj

EXAMPLE 2 In the following example, the Lang entry in the structure element dictionary (specifying English) applies to
the marked-content sequence having an MCID (marked-content identifier) value of 0 within the indicated
page’s content stream. However, nested within that marked-content sequence is another one in which the
Lang property attached with the Span tag (specifying Spanish) overrides the structure element’s
language specification.

This example omits required StructParents entries in the objects used as content items (see 14.7.4.4,
“Finding Structure Elements from Content Items”).

© Adobe Systems Incorporated 2008 – All rights reserved 613

PDF 32000-1:2008

1 0 obj % Structure element
<< /Type /StructElem
 /S /P % Structure type
 /P … % Parent in structure hierarchy
 /K << /Type /MCR

 /Pg 2 0 R % Page containing marked-content sequence
 /MCID 0 % Marked-content identifier
>>

/Lang (en-US) % Language specification for this element
>>

endobj

2 0 obj % Page object

<< /Type /Page
 /Contents 3 0 R % Content stream
 …
>>

endobj

3 0 obj % Page's content stream

<< /Length … >>
stream

BT
/P << /MCID 0 >> % Start of marked-content sequence

BDC
(See you later, or in Spanish you would say,) Tj
/Span << /Lang (es-MX) >> % Start of nested marked-content sequence

BDC
(Hasta la vista .) Tj

EMC % End of nested marked-content sequence
EMC % End of marked-content sequence

ET
endstream
endobj

EXAMPLE 3 The page’s content stream consists of a marked-content sequence that specifies Spanish as its language
by means of the Span tag with a Lang property. Nested within it is content that is part of a structure
element (indicated by the MCID entry in that property list), and the language specification that applies to
the latter content is that of the structure element, English.

This example omits required StructParents entries in the objects used as content items (see 14.7.4.4,
“Finding Structure Elements from Content Items”).

1 0 obj % Structure element

<< /Type /StructElem
 /S /P % Structure type
 /P … % Parent in structure hierarchy
 /K << /Type /MCR

 /Pg 2 0 R % Page containing marked-content sequence
 /MCID 0 % Marked-content identifier
>>

/Lang (en-US) % Language specification for this element
>>

endobj

2 0 obj % Page object

<< /Type /Page
 /Contents 3 0 R % Content stream
 …
>>

endobj

3 0 obj % Page's content stream

<< /Length … >>
stream

PDF 32000-1:2008

614 © Adobe Systems Incorporated 2008 – All rights reserved

/Span << /Lang (es-MX) >> % Start of marked-content sequence
BDC

(Hasta la vista,) Tj
/P << /MCID 0 >> % Start of structured marked-content sequence,

BDC % to which structure element's language applies
(as Arnold would say .) Tj

EMC % End of structured marked-content sequence
EMC % End of marked-content sequence

endstream
endobj

14.9.2.4 Multi-language Text Arrays

A multi-language text array (PDF 1.5) allows multiple text strings to be specified, each in association with a
language identifier. (See the Alt entry in Tables 274 and 277 for examples of its use.)

A multi-language text array shall contain pairs of strings. The first string in each pair shall be a language
identifier (14.9.2.2, “Language Identifiers”). A language identifier shall not appear more than once in the array;
any unrecognized language identifier shall be ignored. An empty string specifies default text that may be used
when no suitable language identifier is found in the array. The second string is text associated with the
language.

EXAMPLE [(en-US) (My vacation) (fr) (mes vacances) () (default text)]

When a conforming reader searches a multi-language text array to find text for a given language, it shall look
for an exact (though case-insensitive) match between the given language’s identifier and the language
identifiers in the array. If no exact match is found, prefix matching shall be attempted in increasing array order:
a match shall be declared if the given identifier is a leading, case-insensitive, substring of an identifier in the
array, and the first post-substring character in the array identifier is a hyphen. For example, given identifier en
matches array identifier en-US, but given identifier en-US matches neither en nor en-GB. If no exact or prefix
match can be found, the default text (if any) should be used.

14.9.3 Alternate Descriptions

PDF documents may be enhanced by providing alternate descriptions for images, formulas, or other items that
do not translate naturally into text.

NOTE 1 Alternate descriptions are human-readable text that could, for example, be vocalized by a text-to-speech
engine for the benefit of users with visual impairments.

An alternate description may be specified for the following items:

• A structure element (see 14.7.2, “Structure Hierarchy”), through an Alt entry in the structure element
dictionary

• (PDF 1.5) A marked-content sequence (see 14.6, “Marked Content”), through an Alt entry in a property list
attached to the marked-content sequence with a Span tag.

• Any type of annotation (see 12.5, “Annotations”) that does not already have a text representation, through
a Contents entry in the annotation dictionary

For annotation types that normally display text, the Contents entry of the annotation dictionary shall be used as
the source for an alternate description. For annotation types that do not display text, a Contents entry (PDF
1.4) may be included to specify an alternate description. Sound annotations, which need no alternate
description for the purpose of vocalization, may include a Contents entry specifying a description that may be
displayed for the benefit of users with hearing impairments.

© Adobe Systems Incorporated 2008 – All rights reserved 615

PDF 32000-1:2008

An alternate name may be specified for an interactive form field (see 12.7, “Interactive Forms”) which, if
present, shall be used in place of the actual field name when a conforming reader identifies the field in a user-
interface. This alternate name, if provided, shall be specified using the TU entry of the field dictionary.

NOTE 2 The TU entry is useful for vocalization purposes.

Alternate descriptions are text strings, which shall be encoded in either PDFDocEncoding or Unicode
character encoding.

NOTE 3 As described in 7.9.2.2, “Text String Type,” Unicode defines an escape sequence for indicating the language of
the text. This mechanism enables the alternate description to change from the language specified by the
prevailing Lang entry (as described in the preceding sub-clause). Within alternate descriptions, Unicode
escape sequences specifying language shall override the prevailing Lang entry.

When applied to structure elements, the alternate description text shall be considered to be a complete (or
whole) word or phrase substitution for the current element. If each of two (or more) elements in a sequence
have an Alt entry in their dictionaries, they shall be treated as if a word break is present between them. The
same applies to consecutive marked-content sequences.

The Alt entry in property lists may be combined with other entries.

EXAMPLE This example shows the Alt entry combined with a Lang entry.

/Span << /Lang (en-us) /Alt (six-point star) >> BDC (A) Tj EMC

14.9.4 Replacement Text

NOTE 1 Just as alternate descriptions can be provided for images and other items that do not translate naturally into
text (as described in the preceding sub-clause), replacement text can be specified for content that does
translate into text but that is represented in a nonstandard way. These nonstandard representations might
include, for example, glyphs for ligatures or custom characters, or inline graphics corresponding to letters in an
illuminated manuscript or to dropped capitals.

Replacement text may be specified for the following items:

• A structure element (see 14.7.2, “Structure Hierarchy”), by means of the optional ActualText entry (PDF
1.4) of the structure element dictionary.

• (PDF 1.5) A marked-content sequence (see 14.6, “Marked Content”), through an ActualText entry in a
property list attached to the marked-content sequence with a Span tag.

The ActualText value shall be used as a replacement, not a description, for the content, providing text that is
equivalent to what a person would see when viewing the content. The value of ActualText shall be considered
to be a character substitution for the structure element or marked-content sequence. If each of two (or more)
consecutive structure or marked-content sequences has an ActualText entry, they shall be treated as if no
word break is present between them.

NOTE 2 The treatment of ActualText as a character replacement is different from the treatment of Alt, which is treated
as a whole word or phrase substitution.

EXAMPLE This example shows the use of replacement text to indicate the correct character content in a case where
hyphenation changes the spelling of a word (in German, up until recent spelling reforms, the word
“Drucker” when hyphenated was rendered as “Druk-” and “ker”).

(Dru) Tj
/Span

<</Actual Text (c) >>
BDC

(k-) Tj
EMC

(ker) '

PDF 32000-1:2008

616 © Adobe Systems Incorporated 2008 – All rights reserved

Like alternate descriptions (and other text strings), replacement text, if encoded in Unicode, may include an
escape sequence for indicating the language of the text. Such a sequence shall override the prevailing Lang
entry (see 7.9.2.2, “Text String Type”).

14.9.5 Expansion of Abbreviations and Acronyms

The expansion of an abbreviation or acronym may be specified for the following items:

• Marked-content sequences, through an E property (PDF 1.4) in a property list attached to the sequence
with a Span tag.

• Structure elements, through an E entry (PDF 1.5) in the structure element dictionary.

NOTE 1 Abbreviations and acronyms can pose a problem for text-to-speech engines. Sometimes the full pronunciation
for an abbreviation can be divined without aid. For example, a dictionary search will probably reveal that “Blvd.”
is pronounced “boulevard” and that “Ave.” is pronounced “avenue.” However, some abbreviations are difficult
to resolve, as in the sentence “Dr. Healwell works at 123 Industrial Dr.”.

EXAMPLE BT
/Span << /E (Doctor) >>

BDC
(Dr.) Tj

EMC
(Healwell works at 123 Industrial) Tj
/Span << /E (Drive) >>

BDC
(Dr.) Tj

EMC
ET

The E value (a text string) shall be considered to be a word or phrase substitution for the tagged text and
therefore shall be treated as if a word break separates it from any surrounding text.The expansion text, if
encoded in Unicode, may include an escape sequence for indicating the language of the text (see 7.9.2.2, “Text
String Type”). Such a sequence shall override the prevailing Lang entry.

NOTE 2 Some abbreviations or acronyms are conventionally not expanded into words. For the text “XYZ,” for example,
either no expansion should be supplied (leaving its pronunciation up to the text-to-speech engine) or, to be
safe, the expansion “X Y Z” should be specified.

14.10 Web Capture

14.10.1 General

The information in the Web Capture data structures enables conforming products to perform the following
operations:

• Save locally and preserve the visual appearance of material from the Web

• Retrieve additional material from the Web and add it to an existing PDF file

• Update or modify existing material previously captured from the Web

• Find source information for material captured from the Web, such as the URL (if any) from which it was
captured

• Find all material in a PDF file that was generated from a given URL

• Find all material in a PDF file that matches a given digital identifier (MD5 hash)

© Adobe Systems Incorporated 2008 – All rights reserved 617

PDF 32000-1:2008

The information needed to perform these operations shall be recorded in two data structures in the PDF file:

• The Web Capture information dictionary, which shall hold document-level information related to Web
Capture.

• The Web Capture content database, which shall hold a complete registry of the source content resources
retrieved by Web Capture and where it came from.

NOTE 3 The Web Capture content database enables the capturing process to avoid downloading material that is
already present in the file.

14.10.2 Web Capture Information Dictionary

The optional SpiderInfo entry in the document catalogue (see 7.7.2, “Document Catalog”), if present, shall hold
Web Capture information dictionary.

14.10.3 Content Database

14.10.3.1 General

When a PDF file, or part of a PDF file, is built from a content resource stored in another format, such as an
HTML page, the resulting PDF file (or portion thereof) may contain content from more than the single content
resources. Conversely, since many content formats do not have static pagination, a single content resource
may give rise to multiple PDF pages.

To keep track of the correspondence between PDF content and the resources from which the content was
derived, a PDF file may contain a content database that maps URLs and digital identifiers to PDF objects such
as pages and XObjects.

NOTE 4 By looking up digital identifiers in the database, Web Capture can determine whether newly downloaded
content is identical to content already retrieved from a different URL. Thus, it can perform optimizations such
as storing only one copy of an image that is referenced by multiple HTML pages.

Web Capture’s content database shall be organized into content sets. Each content set shall be a dictionary
holding information about a group of related PDF objects generated from the same source data. A content set
shall have for the value of its S (subtype) entry either the value SPS, for a page set, or SIS, for an image set.

The mapping from a source content resource to a content set in a PDF document may be saved in the PDF file.
The mapping may be an association from the resource's URL to the content set, stored in the PDF document's
URLS name tree. The mapping may also be an association from a digital identifier (14.10.3.3, “Digital
Identifiers”) generated from resource's data to the content set, stored in the PDF document's IDS name tree.
Both associations may be present in the PDF file.

Table 350 – Entries in the Web Capture information dictionary

Key Type Value

V number (Required) The Web Capture version number. The version number shall be 1.0 in a
conforming file.
This value shall be a single real number, not a major and minor version number.
EXAMPLE A version number of 1.2 would be considered greater than 1.15.

C array (Optional) An array of indirect references to Web Capture command dictionaries
(see 14.10.5.3, “Command Dictionaries”) describing commands that were used in
building the PDF file. The commands shall appear in the array in the order in which
they were executed in building the file.

PDF 32000-1:2008

618 © Adobe Systems Incorporated 2008 – All rights reserved

Figure 84 – Simple Web Capture file structure

Entries in the URLS and IDS name trees may refer to an array of content sets or a single content set. If the
entry is an array, the content sets need not have the same subtype; the array may include both page sets and
image sets.

Name dictionary

URLS IDS

Page set

Name tree

Dictionary

Page Page Page

http://www.adobe.com/ 904B…1EA2

Document catalog

© Adobe Systems Incorporated 2008 – All rights reserved 619

PDF 32000-1:2008

Figure 85 – Complex Web Capture file structure

14.10.3.2 URL Strings

URLs associated with Web Capture content sets shall be reduced to a predictable, canonical form before being
used as keys in the URLS name tree. The following steps describe how to perform this reduction, using
terminology from Internet RFCs 1738, Uniform Resource Locators, and 1808, Relative Uniform Resource
Locators (see the Bibliography). This algorithm shall be applied for HTTP, FTP, and file URLs:

Algorithm: URL strings

a) If the URL is relative, it shall be converted into an absolute URL.

b) If the URL contains one or more NUMBER SIGN (02h3) characters, it shall be truncated before the first
NUMBER SIGN.

c) Any uppercase ASCII characters within the scheme section of the URL shall be replaced with the
corresponding lowercase ASCII characters.

d) If there is a host section, any uppercase ASCII characters therein shall be converted to lowercase ASCII.

Names dictionary

URLS IDS

Page Image XObject

Content set array

Document catalog

http://www.adobe.com/getacro.gif

Page set Image set

Dictionary

Array

Name tree

BF70…14D8

PDF 32000-1:2008

620 © Adobe Systems Incorporated 2008 – All rights reserved

e) If the scheme is file and the host is localhost, the host section shall be removed.

f) If there is a port section and the port is the default port for the given protocol (80 for HTTP or 21 for FTP),
the port section shall be removed.

g) If the path section contains PERIOD (2Eh) (.) or DOUBLE PERIOD (. .) subsequences, transform the path
as described in section 4 of RFC 1808.

NOTE Because the PERCENT SIGN (25h) is unsafe according to RFC 1738 and is also the escape character for
encoded characters, it is not possible in general to distinguish a URL with unencoded characters from one with
encoded characters. For example, it is impossible to decide whether the sequence %00 represents a single
encoded null character or a sequence of three unencoded characters. Hence, no number of encoding or
decoding passes on a URL can ever cause it to reach a stable state. Empirically, URLs embedded in HTML
files have unsafe characters encoded with one encoding pass, and Web servers perform one decoding pass
on received paths (though CGI scripts can make their own decisions).

Canonical URLs are thus assumed to have undergone one and only one encoding pass. A URL whose initial
encoding state is known can be safely transformed into a URL that has undergone only one encoding pass.

14.10.3.3 Digital Identifiers

Digital identifiers, used to associate source content resources with content sets by the IDS name tree, shall be
generated using the MD5 message-digest algorithm (Internet RFC 1321).

NOTE 1 The exact data passed to the algorithm depends on the type of content set and the nature of the identifier
being calculated.

For a page set, the source data shall be passed to the MD5 algorithm first, followed by strings representing the
digital identifiers of any auxiliary data files (such as images) referenced in the source data, in the order in which
they are first referenced. If an auxiliary file is referenced more than once, its identifier shall be passed only the
first time. The resulting string shall be used as the digital identifier for the source content resource.

NOTE 2 This sequence produces a composite identifier representing the visual appearance of the pages in the page
set.

NOTE 3 Two HTML source files that are identical, but for which the referenced images contain different data—for
example, if they have been generated by a script or are pointed to by relative URLs—do not produce the same
identifier.

When the source data is a PDF file, the identifier shall be generated solely from the contents of that file; there
shall be no auxiliary data.

A page set may also have a text identifier, calculated by applying the MD5 algorithm to just the text present in
the source data.

EXAMPLE 1 For an HTML file the text identifier is based solely on the text between markup tags; no images are used
in the calculation.

For an image set, the digital identifier shall be calculated by passing the source data for the original image to
the MD5 algorithm.

EXAMPLE 2 The identifier for an image set created from a GIF image is calculated from the contents of the GIF.

14.10.3.4 Unique Name Generation

In generating PDF pages from a data source, items such as hypertext links and HTML form fields are converted
into corresponding named destinations and interactive form fields. These items shall be given names that do
not conflict with those of other such items in the file.

NOTE As used here, the term name refers to a string, not a name object.

© Adobe Systems Incorporated 2008 – All rights reserved 621

PDF 32000-1:2008

Furthermore, when updating an existing file, a conforming processor shall ensure that each destination or field
is given a unique name that shall be derived from its original name but constructed so that it avoids conflicts
with similarly named items elsewhere.

The unique name shall be formed by appending an encoded form of the page set’s digital identifier string to the
original name of the destination or field. The identifier string shall be encoded to remove characters that have
special meaning in destinations and fields. The characters listed in the first column of Table 351 have special
meaning and shall be encoded using the corresponding byte values from second column of Table 351.

EXAMPLE Since the PERIOD character (2Eh) is used as the field separator in interactive form field names, it does
not appear in the identifier portion of the unique name.

If the name is used for an interactive form field, there is an additional encoding to ensure uniqueness and
compatibility with interactive forms. Each byte in the source string, encoded as described previously, shall be
replaced by two bytes in the destination string. The first byte in each pair is 65 (corresponding to the ASCII
character A) plus the high-order 4 bits of the source byte; the second byte is 65 plus the low-order 4 bits of the
source byte.

14.10.4 Content Sets

14.10.4.1 General

A Web Capture content set is a dictionary describing a set of PDF objects generated from the same source
data. It may include information common to all the objects in the set as well as about the set itself. Table 352
defines the contents of this type of dictionary.

14.10.4.2 Page Sets

A page set is a content set containing a group of PDF page objects generated from a common source, such as
an HTML file. The pages shall be listed in the O array of the page set dictionary (see Table 352) in the same
order in which they were initially added to the file. A single page object shall not belong to more than one page
set. Table 353 defines the content set dictionary entries specific to Page Sets.

The TID (text identifier) entry may be used to store an identifier generated from the text of the pages belonging
to the page set (see 14.10.3.3, “Digital Identifiers”). A text identifier may not be appropriate for some page sets
(such as those with no text) and may be omitted in these cases.

EXAMPLE This identifier may be used to determine whether the text of a document has changed.

Table 351 – Characters with special meaning in destinations and fields and their byte values

Character Byte value Escape sequence

(nul) 0x00 \0 (0x5c 0x30)

. (PERIOD) 0x2e \p (0x5c 0x70)

\ (backslash) 0x5c \\ (0x5c 0x5c)

Table 352 – Entries common to all Web Capture content sets

Key Type Value

Type name (Optional) The type of PDF object that this dictionary describes; if present, shall
be SpiderContentSet for a Web Capture content set.

S name (Required) The subtype of content set that this dictionary describes. The value
shall be one of:
SPS (“Spider page set”) A page set
SIS (“Spider image set”) An image set

PDF 32000-1:2008

622 © Adobe Systems Incorporated 2008 – All rights reserved

14.10.4.3 Image Sets

An image set is a content set containing a group of image XObjects generated from a common source, such as
multiple frames of an animated GIF image. A single XObject shall not belong to more than one image set.
Table 354 shows the content set dictionary entries specific to Image Sets.

Each image XObject in an image set has a reference count indicating the number of PDF pages referring to
that XObject. The reference count shall be incremented whenever Web Capture creates a new page referring
to the XObject (including copies of already existing pages) and decremented whenever such a page is
destroyed. The reference count shall be incremented or decremented only once per page, regardless of the
number of times the XObject may be referenced by that page. If the reference count reaches 0, it shall be

ID byte string (Required) The digital identifier of the content set (see 14.10.3.3, “Digital
Identifiers”).

O array (Required) An array of indirect references to the objects belonging to the
content set. The order of objects in the array is restricted when the content set
subtype (S entry) is SPS (see 14.10.4.2, “Page Sets”).

SI dictionary
or array

(Required) A source information dictionary (see 14.10.5, “Source Information”)
or an array of such dictionaries, describing the sources from which the objects
belonging to the content set were created.

CT ASCII string (Optional) The content type, an ASCII string characterizing the source from
which the objects belonging to the content set were created. The string shall
conform to the content type specification described in Internet RFC 2045,
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies (see the Bibliography).
EXAMPLE for a page set consisting of a group of PDF pages created

from an HTML file, the content type would be text / html.

TS date (Optional) A time stamp giving the date and time at which the content set was
created.

Table 353 – Additional entries specific to a Web Capture page set

Key Type Value

S name (Required) The subtype of content set that this dictionary describes; shall be
SPS.

T text string (Optional) The title of the page set, a human-readable text string.

TID byte string (Optional) A text identifier generated from the text of the page set, as described
in 14.10.3.3, “Digital Identifiers.”

Table 354 – Additional entries specific to a Web Capture image set

Key Type Value

S name (Required) The subtype of content set that this dictionary describes; shall be SIS.

R integer
or array

(Required) The reference counts for the image XObjects belonging to the image
set. For an image set containing a single XObject, the value shall be the integer
reference count for that XObject. For an image set containing multiple XObjects,
the value shall be an array of reference counts parallel to the O array (see
Table 352); that is, each element in the R array shall hold the reference count for
the image XObject at the corresponding position in the O array.

Table 352 – Entries common to all Web Capture content sets (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 623

PDF 32000-1:2008

assumed that there are no remaining pages referring to the XObject and that the XObject can be removed from
the image set’s O array. When removing an XObject from the O array of an image set, the corresponding entry
in the R array shall be removed also.

14.10.5 Source Information

14.10.5.1 General

The SI entry in a content set dictionary (see Table 352) shall contain one or more source information
dictionaries, each containing information about the locations from which the source data for the content set was
retrieved.

A content set's SI entry may contain a single source information dictionary. However, a PDF processor may
attempt to detect situations in which the same source data has been located via two or more distinct URLs. If a
processor detects such a situation, it may generate a single content set from the source data, containing a
single copy of the relevant PDF pages or image XObjects. In this case, the SI entry shall be an array containing
one source information dictionary for each distinct URL from which the original source content was found.

The determination that distinct URLs produce the same source data shall be made by comparing digital
identifiers for the source data.

A source information dictionary’s AU (aliased URLs) entry shall identify the URLs from which the source data
was retrieved. If there is only one such URL, the v value of this entry may be a string. If multiple URLs map to
the same location through redirection, the AU value shall be a URL alias dictionary (see 14.10.5.2, “URL Alias
Dictionaries”).

NOTE 1 For file size efficiency, the entire URL alias dictionary (excluding the URL strings) should be represented as a
direct object because its internal structure should never be shared or externally referenced.

Table 355 – Entries in a source information dictionary

Key Type Value

AU ASCII string
or
dictionary

(Required) An ASCII string or URL alias dictionary (see 14.10.5.2, “URL Alias
Dictionaries”) which shall identify the URLs from which the source data was
retrieved.

TS date (Optional) A time stamp which, if present, shall contain the most recent date
and time at which the content set’s contents were known to be up to date with
the source data.

E date (Optional) An expiration stamp which, if present, shall contain the date and time
at which the content set’s contents shall be considered out of date with the
source data.

S integer (Optional) A code which, if present, shall indicate the type of form submission, if
any, by which the source data was accessed (see 12.7.5.2, “Submit-Form
Action”). If present, the value of the S entry shall be 0, 1, or 2, in accordance
with the following meanings:
0 Not accessed by means of a form submission
1 Accessed by means of an HTTP GET request
2 Accessed by means of an HTTP POST request
This entry may be present only in source information dictionaries associated
with page sets. Default value: 0.

C dictionary (Optional; if present, shall be an indirect reference) A command dictionary (see
14.10.5.3, “Command Dictionaries”) describing the command that caused the
source data to be retrieved. This entry may be present only in source
information dictionaries associated with page sets.

PDF 32000-1:2008

624 © Adobe Systems Incorporated 2008 – All rights reserved

The TS (time stamp) entry allows each source location associated with a content set to have its own time
stamp.

NOTE 2 This is necessary because the time stamp in the content set dictionary (see Table 352) merely refers to the
creation date of the content set. A hypothetical “Update Content Set” command might reset the time stamp in
the source information dictionary to the current time if it found that the source data had not changed since the
time stamp was last set.

The E (expiration) entry specifies an expiration date for each source location associated with a content set. If
the current date and time are later than those specified, the contents of the content set shall be considered out
of date with respect to the original source.

14.10.5.2 URL Alias Dictionaries

When a URL is accessed via HTTP, a response header may be returned indicating that the requested data is at
a different URL. This redirection process may be repeated in turn at the new URL and can potentially continue
indefinitely. It is not uncommon to find multiple URLs that all lead eventually to the same destination through
one or more redirections. A URL alias dictionary represents such a set of URL chains leading to a common
destination. Table 356 shows the contents of this type of dictionary.

The C (chains) entry may be omitted if the URL alias dictionary contains only one URL. If C is present, its value
shall be an array of arrays, each representing a chain of URLs leading to the common destination. Within each
chain, the URLs shall be stored as ASCII strings in the order in which they occur in the redirection sequence.
The common destination (the last URL in a chain) may be omitted, since it is already identified by the U entry.

14.10.5.3 Command Dictionaries

A Web Capture command dictionary represents a command executed by Web Capture to retrieve one or more
pieces of source data that were used to create new pages or modify existing pages. The entries in this
dictionary represent parameters that were originally specified interactively by the user who requested that the
Web content be captured. This information is recorded so that the command can subsequently be repeated to
update the captured content. Table 357 shows the contents of this type of dictionary.

Table 356 – Entries in a URL alias dictionary

Key Type Value

U ASCII
string

(Required) The destination URL to which all of the chains specified by the C entry
lead.

C array (Optional) An array of one or more arrays of strings, each representing a chain of
URLs leading to the common destination specified by U.

Table 357 – Entries in a Web Capture command dictionary

Key Type Value

URL ASCII string (Required) The initial URL from which source data was requested.

L integer (Optional) The number of levels of pages retrieved from the initial URL.
Default value: 1.

F integer (Optional) A set of flags specifying various characteristics of the
command (see Table 357). Defaut value: 0.

P string or stream (Optional) Data that was posted to the URL.

CT ASCII string (Optional) A content type describing the data posted to the URL. Default
value: application / x-www-form-urlencoded.

H string (Optional) Additional HTTP request headers sent to the URL.

© Adobe Systems Incorporated 2008 – All rights reserved 625

PDF 32000-1:2008

The URL entry shall contain the initial URL for the retrieval command. The L (levels) entry shall contain the
number of levels of the hyperlinked URL hierarchy to follow from this URL, creating PDF pages from the
retrieved material. If the L entry is omitted, its value shall be assumed to be 1, denoting retrieval of the initial
URL only.

The value of the command dictionary’s F entry shall be an integer that shall be interpreted as an array of flags
specifying various characteristics of the command. The flags shall be interpreted as defined in Table 358. Only
those flags defined in Table 358 may be set to 1; all other flags shall be 0. Flags not defined in Table 358 are
reserved for future use, and shall not be used by a conforming reader.

NOTE 3 The low-order bit of the flags value is referred to as being at bit-position 1.

The SamePath flag shall be set if the retrieval of source content was restricted to source content in the same
path as specified in the initial URL. Source content shall be considered to be in the same path if its scheme and
network location components (as defined in Internet RFC 1808, Relative Uniform Resource Locators) match
those of the initial URL and its path component matches up to and including the last forward slash (/) character
in the initial URL.

EXAMPLE 1 the URL

http : / / www . adobe . com / fiddle / faddle / foo . html

is considered to be in the same path as the initial URL

http : / / www . adobe . com / fiddle / initial . html

The comparison shall be case-insensitive for the scheme and network location components and case-sensitive
for the path component.

The Submit flag shall be set when the command represents a form submission. If no P (posted data) entry is
present, the submitted data shall be encoded in the URL (an HTTP GET request). If P is present, the command
shall be an HTTP POST request. In this case, the value of the Submit flag shall be ignored.

NOTE 4 If the posted data is small enough, it may be represented by a string. For large amounts of data, a stream
should be used because it can be compressed.

The CT (content type) entry shall only be present for POST requests. It shall describe the content type of the
posted data, as described in Internet RFC 2045, Multipurpose Internet Mail Extensions (MIME), Part One:
Format of Internet Message Bodies (see the Bibliography).

S dictionary (Optional) A command settings dictionary containing settings used in the
conversion process (see 14.10.5.4, “Command Settings”).

Table 358 – Web Capture command flags

Bit position Name Meaning

1 SameSite If set, pages were retrieved only from the host specified in the initial
URL.

2 SamePath If set, pages were retrieved only from the path specified in the initial
URL.

3 Submit If set, the command represents a form submission.

Table 357 – Entries in a Web Capture command dictionary (continued)

Key Type Value

PDF 32000-1:2008

626 © Adobe Systems Incorporated 2008 – All rights reserved

The H (headers) entry, if present, shall specify additional HTTP request headers that were sent in the request
for the URL. Each header line in the string shall be terminated with a CARRIAGE RETURN and a LINE FEED,
as in this example:

EXAMPLE 2 (Referer : http : / / frumble . com \ 015 \ 012From : veeble @ frotz . com \ 015 \ 012)

The HTTP request header format is specified in Internet RFC 2616, Hypertext Transfer Protocol—HTTP/1.1
(see the Bibliography).

The S (settings) entry specifies a command settings dictionary (see 14.10.5.4, “Command Settings”). Holding
settings specific to the conversion engines.

14.10.5.4 Command Settings

The S (settings) entry in a command dictionary, if present, shall contain a command settings dictionary, which
holds settings for conversion engines that shall be used in converting the results of the command to PDF.
Table 359 shows the contents of this type of dictionary. If this entry is omitted, default values are assumed.
Command settings dictionaries may be shared by any command dictionaries that use the same settings.

Each key in the C dictionary represents the internal name of a conversion engine, which shall be a name object
of the following form:

/ company : product : version : contentType

where

company denotes the name (or abbreviation) of the company that created the conversion engine.

product denotes the name of the conversion engine. This field may be left blank, but the trailing COLON
character (3Ah) is still required.

version denotes the version of the conversion engine.

contentType denotes an identifier for the content type the associated settings. shall be used because some
converters may handle multiple content types.

EXAMPLE / ADBE : H2PDF : 1 . 0 : HTML

All fields in the internal name are case-sensitive. The company field shall conform to the naming guidelines
described in Annex E. The values of the other fields shall be unrestricted, except that they shall not contain a
COLON.

The directed graph of PDF objects rooted by the command settings dictionary shall be entirely self-contained;
that is, it shall not contain any object referred to from elsewhere in the PDF file.

NOTE This facilitates the operation of making a deep copy of a command settings dictionary without explicit
knowledge of the settings it may contain.

Table 359 – Entries in a Web Capture command settings dictionary

Key Type Value

G dictionary (Optional) A dictionary containing global conversion engine settings relevant to
all conversion engines. If this entry is absent, default settings shall be used.

C dictionary (Optional) Settings for specific conversion engines. Each key in this dictionary is
the internal name of a conversion engine. The associated value is a dictionary
containing the settings associated with that conversion engine. If the settings for
a particular conversion engine are not found in the dictionary, default settings
shall be used.

© Adobe Systems Incorporated 2008 – All rights reserved 627

PDF 32000-1:2008

14.10.6 Object Attributes Related to Web Capture

A given page object or image XObject may belong to at most one Web Capture content set, called its parent
content set. However, the object shall not have direct pointer to its parent content set. Such a pointer may
present problems for an application that traces all pointers from an object to determine what resources the
object depends on. Instead, the object’s ID entry (see Table 30 and Table 89) contains the digital identifier of
the parent content set, which shall be used to locate the parent content set via the IDS name tree in the
document’s name dictionary. (If the IDS entry for the identifier contains an array of content sets, the parent may
be found by searching the array for the content set whose O entry includes the child object.)

In the course of creating PDF pages from HTML files, Web Capture frequently scales the contents down to fit
on fixed-sized pages. The PZ (preferred zoom) entry in a page object (see 7.7.3.3, “Page Objects”) specifies a
magnification factor by which the page may be scaled to undo the downscaling and view the page at its original
size. That is, when the page is viewed at the preferred magnification factor, one unit in default user space
corresponds to one original source pixel.

14.11Prepress Support

14.11.1 General

This sub-clause describes features of PDF that support prepress production workflows:

• The specification of page boundaries governing various aspects of the prepress process, such as
cropping, bleed, and trimming (14.11.2, “Page Boundaries”)

• Facilities for including printer’s marks, such as registration targets, gray ramps, colour bars, and cut marks
to assist in the production process (14.11.3, “Printer’s Marks”)

• Information for generating colour separations for pages in a document (14.11.4, “Separation Dictionaries”)

• Output intents for matching the colour characteristics of a document with those of a target output device or
production environment in which it will be printed (14.11.5, “Output Intents”)

• Support for the generation of traps to minimize the visual effects of misregistration between multiple
colorants (14.11.6, “Trapping Support”)

• The Open Prepress Interface (OPI) for creating low-resolution proxies for high-resolution images (14.11.7,
“Open Prepress Interface (OPI)”)

14.11.2 Page Boundaries

14.11.2.1 General

A PDF page may be prepared either for a finished medium, such as a sheet of paper, or as part of a prepress
process in which the content of the page is placed on an intermediate medium, such as film or an imposed
reproduction plate. In the latter case, it is important to distinguish between the intermediate page and the
finished page. The intermediate page may often include additional production-related content, such as bleeds
or printer marks, that falls outside the boundaries of the finished page. To handle such cases, a PDF page may
define as many as five separate boundaries to control various aspects of the imaging process:

• The media box defines the boundaries of the physical medium on which the page is to be printed. It may
include any extended area surrounding the finished page for bleed, printing marks, or other such purposes.
It may also include areas close to the edges of the medium that cannot be marked because of physical
limitations of the output device. Content falling outside this boundary may safely be discarded without
affecting the meaning of the PDF file.

PDF 32000-1:2008

628 © Adobe Systems Incorporated 2008 – All rights reserved

• The crop box defines the region to which the contents of the page shall be clipped (cropped) when
displayed or printed. Unlike the other boxes, the crop box has no defined meaning in terms of physical
page geometry or intended use; it merely imposes clipping on the page contents. However, in the absence
of additional information (such as imposition instructions specified in a JDF or PJTF job ticket), the crop
box determines how the page’s contents shall be positioned on the output medium. The default value is the
page’s media box.

• The bleed box (PDF 1.3) defines the region to which the contents of the page shall be clipped when output
in a production environment. This may include any extra bleed area needed to accommodate the physical
limitations of cutting, folding, and trimming equipment. The actual printed page may include printing marks
that fall outside the bleed box. The default value is the page’s crop box.

• The trim box (PDF 1.3) defines the intended dimensions of the finished page after trimming. It may be
smaller than the media box to allow for production-related content, such as printing instructions, cut marks,
or colour bars. The default value is the page’s crop box.

• The art box (PDF 1.3) defines the extent of the page’s meaningful content (including potential white space)
as intended by the page’s creator. The default value is the page’s crop box.

The page object dictionary specifies these boundaries in the MediaBox, CropBox, BleedBox, TrimBox, and
ArtBox entries, respectively (see Table 30). All of them are rectangles expressed in default user space units.
The crop, bleed, trim, and art boxes shall not ordinarily extend beyond the boundaries of the media box. If they
do, they are effectively reduced to their intersection with the media box. Figure 86 illustrates the relationships
among these boundaries. (The crop box is not shown in the figure because it has no defined relationship with
any of the other boundaries.)

© Adobe Systems Incorporated 2008 – All rights reserved 629

PDF 32000-1:2008

Figure 86 – Page boundaries

NOTE 1 How the various boundaries are used depends on the purpose to which the page is being put. The following
are typical purposes:

Placing the content of a page in another application. The art box determines the boundary of the content that is
to be placed in the application. Depending on the applicable usage conventions, the placed content may be
clipped to either the art box or the bleed box. For example, a quarter-page advertisement to be placed on a
magazine page might be clipped to the art box on the two sides of the ad that face into the middle of the page
and to the bleed box on the two sides that bleed over the edge of the page. The media box and trim box are
ignored.

Printing a finished page. This case is typical of desktop or shared page printers, in which the page content is
positioned directly on the final output medium. The art box and bleed box are ignored. The media box may be
used as advice for selecting media of the appropriate size. The crop box and trim box, if present, should be the
same as the media box.

Printing an intermediate page for use in a prepress process. The art box is ignored. The bleed box defines the
boundary of the content to be imaged. The trim box specifies the positioning of the content on the medium; it
may also be used to generate cut or fold marks outside the bleed box. Content falling within the media box but
outside the bleed box may or may not be imaged, depending on the specific production process being used.

This might be a caption

Bleed box

Media box

Art box

Trim box

Bleed: 10.75x8.25

Trim: 10.5x8

Printer’s marks

Headline

PDF 32000-1:2008

630 © Adobe Systems Incorporated 2008 – All rights reserved

Building an imposition of multiple pages on a press sheet. The art box is ignored. The bleed box defines the
clipping boundary of the content to be imaged; content outside the bleed box is ignored. The trim box specifies
the positioning of the page’s content within the imposition. Cut and fold marks are typically generated for the
imposition as a whole.

NOTE 2 In the preceding scenarios, an application that interprets the bleed, trim, and art boxes for some purpose
typically alters the crop box so as to impose the clipping that those boxes prescribe.

14.11.2.2 Display of Page Boundaries

Conforming readers may offer the ability to display guidelines on the screen for the various page boundaries.
The optional BoxColorInfo entry in a page object (see 7.7.3.3, “Page Objects”) holds a box colour information
dictionary (PDF 1.4) specifying the colours and other visual characteristics to be used for such display.
Conforming readers typically provide a user interface to allow the user to set these characteristics interactively.

NOTE This information is page-specific and may vary from one page to another.

As shown in Table 360, the box colour information dictionary contains an optional entry for each of the possible
page boundaries other than the media box. The value of each entry is a box style dictionary, whose contents
are shown in Table 361. If a given entry is absent, the conforming reader shall use its own current default
settings instead.

14.11.3 Printer’s Marks

Printer’s marks are graphic symbols or text added to a page to assist production personnel in identifying
components of a multiple-plate job and maintaining consistent output during production. Examples commonly
used in the printing industry include:

• Registration targets for aligning plates

• Gray ramps and colour bars for measuring colours and ink densities

• Cut marks showing where the output medium is to be trimmed

Although conforming writers traditionally include such marks in the content stream of a document, they are
logically separate from the content of the page itself and typically appear outside the boundaries (the crop box,
trim box, and art box) defining the extent of that content (see 14.11.2, “Page Boundaries”).

Printer’s mark annotations (PDF 1.4) provide a mechanism for incorporating printer’s marks into the PDF
representation of a page, while keeping them separate from the actual page content. Each page in a PDF
document may contain any number of such annotations, each of which represents a single printer’s mark.

NOTE 1 Because printer’s marks typically fall outside the page’s content boundaries, each mark is represented as a
separate annotation. Otherwise—if, for example, the cut marks at the four corners of the page were defined in
a single annotation—the annotation rectangle would encompass the entire contents of the page and could
interfere with the user’s ability to select content or interact with other annotations on the page. Defining
printer’s marks in separate annotations also facilitates the implementation of a drag-and-drop user interface for
specifying them.

Table 360 – Entries in a box colour information dictionary

Key Type Value

CropBox dictionary (Optional) A box style dictionary (see Table 361) specifying the visual
characteristics for displaying guidelines for the page’s crop box. This entry
shall be ignored if no crop box is defined in the page object.

BleedBox dictionary (Optional) A box style dictionary (see Table 361) specifying the visual
characteristics for displaying guidelines for the page’s bleed box. This entry
shall be ignored if no bleed box is defined in the page object.

© Adobe Systems Incorporated 2008 – All rights reserved 631

PDF 32000-1:2008

The visual presentation of a printer’s mark shall be defined by a form XObject specified as an appearance
stream in the N (normal) entry of the printer’s mark annotation’s appearance dictionary (see 12.5.5,
“Appearance Streams”). More than one appearance may be defined for the same printer’s mark to meet the
requirements of different regions or production facilities. In this case, the appearance dictionary’s N entry holds
a subdictionary containing the alternate appearances, each identified by an arbitrary key. The AS (appearance
state) entry in the annotation dictionary designates one of them to be displayed or printed.

NOTE 2 The printer’s mark annotation’s appearance dictionary may include R (rollover) or D (down) entries, but
appearances defined in either of these entries are never displayed or printed.

Like all annotations, a printer’s mark annotation shall be defined by an annotation dictionary (see 12.5.2,
“Annotation Dictionaries”); its annotation type is PrinterMark. The AP (appearances) and F (flags) entries
(which ordinarily are optional) shall be present, as shall the AS (appearance state) entry if the appearance
dictionary AP contains more than one appearance stream. The Print and ReadOnly flags in the F entry shall be
set and all others clear (see 12.5.3, “Annotation Flags”). Table 362 shows an additional annotation dictionary
entry specific to this type of annotation.

TrimBox dictionary (Optional) A box style dictionary (see Table 361) specifying the visual
characteristics for displaying guidelines for the page’s trim box. This entry
shall be ignored if no trim box is defined in the page object.

ArtBox dictionary (Optional) A box style dictionary (see Table 361) specifying the visual
characteristics for displaying guidelines for the page’s art box. This entry
shall be ignored if no art box is defined in the page object.

Table 361 – Entries in a box style dictionary

Key Type Value

C array (Optional) An array of three numbers in the range 0.0 to 1.0, representing the
components in the DeviceRGB colour space of the colour to be used for
displaying the guidelines. Default value: [0.0 0.0 0.0].

W number (Optional) The guideline width in default user space units. Default value: 1.

S name (Optional) The guideline style:
S (Solid) A solid rectangle.
D (Dashed) A dashed rectangle. The dash pattern shall be specified by the

D entry.
Other guideline styles may be defined in the future. Default value: S.

D array (Optional) A dash array defining a pattern of dashes and gaps to be used in
drawing dashed guidelines (guideline style D). The dash array shall be
specified in default user space units, in the same format as in the line dash
pattern parameter of the graphics state (see 8.4.3.6, “Line Dash Pattern”).
The dash phase shall not be specified and shall be assumed to be 0.
EXAMPLE A D entry of [3 2] specifies guidelines drawn with 3-point

dashes alternating with 2-point gaps.

Default value: [3].

Table 360 – Entries in a box colour information dictionary (continued)

Key Type Value

PDF 32000-1:2008

632 © Adobe Systems Incorporated 2008 – All rights reserved

The form dictionary defining a printer’s mark may contain the optional entries shown in Table 363 in addition to
the standard ones common to all form dictionaries (see 8.10.2, “Form Dictionaries”).

14.11.4 Separation Dictionaries

In high-end printing workflows, pages are ultimately produced as sets of separations, one per colorant (see
8.6.6.4, “Separation Colour Spaces”). Ordinarily, each page in a PDF file shall be treated as a composite page
that paints graphics objects using all the process colorants and perhaps some spot colorants as well. In other
words, all separations for a page shall be generated from a single PDF description of that page.

In some workflows, however, pages are preseparated before generating the PDF file. In a preseparated PDF
file, the separations for a page shall be described as separate page objects, each painting only a single
colorant (usually specified in the DeviceGray colour space). In this case, additional information is needed to
identify the actual colorant associated with each separation and to group together the page objects
representing all the separations for a given page. This information shall be contained in a separation dictionary
(PDF 1.3) in the SeparationInfo entry of each page object (see 7.7.3.3, “Page Objects”). Table 364 shows the
contents of this type of dictionary.

Table 362 – Additional entries specific to a printer’s mark annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall be
PrinterMark for a printer’s mark annotation.

MN name (Optional) An arbitrary name identifying the type of printer’s mark, such as
ColorBar or RegistrationTarget.

Table 363 – Additional entries specific to a printer’s mark form dictionary

Key Type Value

MarkStyle text string (Optional; PDF 1.4) A text string representing the printer’s mark in
human-readable form and suitable for presentation to the user.

Colorants dictionary (Optional; PDF 1.4) A dictionary identifying the individual colorants
associated with a printer’s mark, such as a colour bar. For each
entry in this dictionary, the key is a colorant name and the value is an
array defining a Separation colour space for that colorant (see
8.6.6.4, “Separation Colour Spaces”). The key shall match the
colorant name given in that colour space.

Table 364 – Entries in a separation dictionary

Key Type Value

Pages array (Required) An array of indirect references to page objects representing
separations of the same document page. One of the page objects in the
array shall be the one with which this separation dictionary is associated,
and all of them shall have separation dictionaries (SeparationInfo
entries) containing Pages arrays identical to this one.

DeviceColorant name or
string

(Required) The name of the device colorant to be used in rendering this
separation, such as Cyan or PANTONE 35 CV.

© Adobe Systems Incorporated 2008 – All rights reserved 633

PDF 32000-1:2008

14.11.5 Output Intents

Output intents (PDF 1.4) provide a means for matching the colour characteristics of a PDF document with
those of a target output device or production environment in which the document will be printed. The optional
OutputIntents entry in the document catalogue (see 7.7.2, “Document Catalog”) holds an array of output intent
dictionaries, each describing the colour reproduction characteristics of a possible output device or production
condition. The contents of these dictionaries may vary for different devices and conditions. The dictionary’s S
entry specifies an output intent subtype that determines the format and meaning of the remaining entries.

NOTE 1 This use of multiple output intents allows the production process to be customized to the expected workflow
and the specific tools available. For example, one production facility might process files conforming to a
recognized standard such as PDF/X-1, while another uses the PDF/A standard to produce RGB output for
document distribution on the Web. Each of these workflows would require different sets of output intent
information. Multiple output intents also allow the same PDF file to be distributed unmodified to multiple
production facilities. The choice of which output intent to use in a given production environment is a matter for
agreement between the purchaser and provider of production services. PDF intentionally does not include a
selector for choosing a particular output intent from within the PDF file.

At the time of publication, three output intent subtypes have been defined: GTS_PDFX corresponding to the
PDF/X format standard specified in ISO 15930, GTS_PDFA1 corresponding to the PDF/A standard as defined
by ISO 19005, and ISO_PDFE1 corresponding to the PDF/E standard as defined by ISO 24517. Table 365
shows the contents of this type of output intent dictionary. Other subtypes may be added in the future; the
names of any such additional subtypes shall conform to the naming guidelines described in Annex E.

ColorSpace array (Optional) An array defining a Separation or DeviceN colour space (see
8.6.6.4, “Separation Colour Spaces” and 8.6.6.5, “DeviceN Colour
Spaces”). It provides additional information about the colour specified by
DeviceColorant—in particular, the alternate colour space and tint
transformation function that shall be used to represent the colorant as a
process colour. This information enables a conforming reader to preview
the separation in a colour that approximates the device colorant.
The value of DeviceColorant shall match the space’s colorant name (if it
is a Separation space) or be one of the space’s colorant names (if it is a
DeviceN space).

Table 365 – Entries in an output intent dictionary

Key Type Value

Type name (Optional) The type of PDF object that this dictionary
describes; if present, shall be OutputIntent for an output
intent dictionary.

S name (Required) The output intent subtype; shall be either one
of GTS_PDFX, GTS_PDFA1, ISO_PDFE1 or a key
defined by an ISO 32000 extension.

OutputCondition text string (Optional) A text string concisely identifying the intended
output device or production condition in human-readable
form. This is the preferred method of defining such a string
for presentation to the user.

Table 364 – Entries in a separation dictionary (continued)

Key Type Value

PDF 32000-1:2008

634 © Adobe Systems Incorporated 2008 – All rights reserved

NOTE 2 PDF/X is actually a family of standards representing varying levels of conformance. The standard for a given
conformance level may prescribe further restrictions on the usage and meaning of entries in the output intent
dictionary. Any such restrictions take precedence over the descriptions given in Table 364.

The ICC profile information in an output intent dictionary supplements rather than replaces that in an
ICCBased or default colour space (see 8.6.5.5, “ICCBased Colour Spaces,” and 8.6.5.6, “Default Colour
Spaces”). Those mechanisms are specifically intended for describing the characteristics of source colour
component values. An output intent can be used in conjunction with them to convert source colours to those
required for a specific production condition or to enable the display or proofing of the intended output.

The data in an output intent dictionary shall be provided for informational purposes only, and conforming
readers are free to disregard it. In particular, there is no expectation that PDF production tools automatically
convert colours expressed in the same source colour space to the specified target space before generating
output. (In some workflows, such conversion may, in fact, be undesirable).

OutputConditionIdentifier text string (Required) A text string identifying the intended output
device or production condition in human- or machine-
readable form. If human-readable, this string may be used
in lieu of an OutputCondition string for presentation to
the user.
A typical value for this entry may be the name of a
production condition maintained in an industry-standard
registry such as the ICC Characterization Data Registry
(see the Bibliography). If the designated condition
matches that in effect at production time, the production
software is responsible for providing the corresponding
ICC profile as defined in the registry.
If the intended production condition is not a recognized
standard, the value of this entry may be Custom or an
application-specific, machine-readable name. The
DestOutputProfile entry defines the ICC profile, and the
Info entry shall be used for further human-readable
identification.

RegistryName text string (Optional) An text string (conventionally a uniform
resource identifier, or URI) identifying the registry in which
the condition designated by OutputConditionIdentifier is
defined.

Info text string (Required if OutputConditionIdentifier does not specify
a standard production condition; optional otherwise) A
human-readable text string containing additional
information or comments about the intended target device
or production condition.

DestOutputProfile stream (Required if OutputConditionIdentifier does not specify
a standard production condition; optional otherwise) An
ICC profile stream defining the transformation from the
PDF document’s source colours to output device
colorants.
The format of the profile stream is the same as that used
in specifying an ICCBased colour space (see 8.6.5.5,
“ICCBased Colour Spaces”). The output transformation
uses the profile’s “from CIE” information (BToA in ICC
terminology); the “to CIE” (AToB) information may
optionally be used to remap source colour values to some
other destination colour space, such as for screen preview
or hardcopy proofing.

Table 365 – Entries in an output intent dictionary (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 635

PDF 32000-1:2008

NOTE When working with CMYK source colours tagged with a source ICC profile solely for purposes of
characterization, converting such colours from four components to three and back is unnecessary and will
result in a loss of fidelity in the values of the black component; see 8.6.5.7, “Implicit Conversion of CIE-Based
Colour Spaces” for further discussion.) On the other hand, when source colours are expressed in different
base colour spaces—for example, when combining separately generated images on the same PDF page—it is
possible (though not required) to use the destination profile specified in the output intent dictionary to convert
source colours to the same target colour space.

EXAMPLE 1 This Example shows a PDF/X output intent dictionary based on an industry-standard production condition
(CGATS TR 001) from the ICC Characterization Data Registry. Example 2 shows one for a custom
production condition.

<< /Type /OutputIntent % Output intent dictionary
 /S /GTS_PDFX
 /OutputCondition (CGATS TR 001 (SWOP))
 /OutputConditionIdentifier (CGATS TR 001)
 /RegistryName (http : / / www . color . org)
 /DestOutputProfile 100 0 R
>>

100 0 obj % ICC profile stream

<< /N 4
 /Length 1605
 /Filter /ASCIIHexDecode
>>

stream
00 00 02 0C 61 70 … >
endstream
endobj

EXAMPLE 2 << /Type /OutputIntent % Output intent dictionary
 /S /GTS_PDFX
 /OutputCondition (Coated)
 /OutputConditionIdentifier (Custom)
 /Info (Coated 150lpi)
 /DestOutputProfile 100 0 R
>>

100 0 obj % ICC profile stream

<< /N 4
 /Length 1605
 /Filter /ASCIIHexDecode
>>

stream
00 00 02 0C 61 70 … >
endstream
endobj

14.11.6 Trapping Support

14.11.6.1 General

On devices such as offset printing presses, which mark multiple colorants on a single sheet of physical
medium, mechanical limitations of the device can cause imprecise alignment, or misregistration, between
colorants. This can produce unwanted visual artifacts such as brightly coloured gaps or bands around the
edges of printed objects. In high-quality reproduction of colour documents, such artifacts are commonly
avoided by creating an overlap, called a trap, between areas of adjacent colour.

NOTE Figure 87 shows an example of trapping. The light and medium grays represent two different colorants, which
are used to paint the background and the glyph denoting the letter A. The first figure shows the intended result,
with the two colorants properly registered. The second figure shows what happens when the colorants are

PDF 32000-1:2008

636 © Adobe Systems Incorporated 2008 – All rights reserved

misregistered. In the third figure, traps have been overprinted along the boundaries, obscuring the artifacts
caused by the misregistration. (For emphasis, the traps are shown here in dark gray; in actual practice, their
colour will be similar to one of the adjoining colours.)

Figure 87 – Trapping example

Trapping may be implemented by the application generating a PDF file, by some intermediate application that
adds traps to a PDF document, or by the raster image processor (RIP) that produces final output. In the last
two cases, the trapping process is controlled by a set of trapping instructions, which define two kinds of
information:

• Trapping zones within which traps should be created

• Trapping parameters specifying the nature of the traps within each zone

Trapping zones and trapping parameters are discussed fully in Sections 6.3.2 and 6.3.3, respectively, of the
PostScript Language Reference, Third Edition. Trapping instructions are not directly specified in a PDF file (as
they are in a PostScript file). Instead, they shall be specified in a job ticket that accompanies the PDF file or is
embedded within it. Various standards exist for the format of job tickets; two of them, JDF (Job Definition
Format) and PJTF (Portable Job Ticket Format), are described in the CIP4 document JDF Specification and in
Adobe Technical Note #5620, Portable Job Ticket Format (see the Bibliography).

When trapping is performed before the production of final output, the resulting traps shall be placed in the PDF
file for subsequent use. The traps themselves shall be described as a content stream in a trap network
annotation (see 14.11.6.2, “Trap Network Annotations”). The stream dictionary may include additional entries
describing the method that was used to produce the traps and other information about their appearance.

14.11.6.2 Trap Network Annotations

A complete set of traps generated for a given page under a specified set of trapping instructions is called a trap
network (PDF 1.3). It is a form XObject containing graphics objects for painting the required traps on the page.
A page may have more than one trap network based on different trapping instructions, presumably intended for
different output devices. All of the trap networks for a given page shall be contained in a single trap network
annotation (see 12.5, “Annotations”). There may be at most one trap network annotation per page, which shall
be the last element in the page’s Annots array (see 7.7.3.3, “Page Objects”). This ensures that the trap
network shall be printed after all of the page’s other contents.

The form XObject defining a trap network shall be specified as an appearance stream in the N (normal) entry of
the trap network annotation’s appearance dictionary (see 12.5.5, “Appearance Streams”). If more than one trap
network is defined for the same page, the N entry holds a subdictionary containing the alternate trap networks,
each identified by an arbitrary key. The AS (appearance state) entry in the annotation dictionary designates
one of them as the current trap network to be displayed or printed.

NOTE 1 The trap network annotation’s appearance dictionary may include R (rollover) or D (down) entries, but
appearances defined in either of these entries are never printed.

Intended result Misregistration
with no trap

Misregistration
with trap

© Adobe Systems Incorporated 2008 – All rights reserved 637

PDF 32000-1:2008

Like all annotations, a trap network annotation shall be defined by an annotation dictionary (see 12.5.2,
“Annotation Dictionaries”); its annotation type is TrapNet. The AP (appearances), AS (appearance state), and
F (flags) entries (which ordinarily are optional) shall be present, with the Print and ReadOnly flags set and all
others clear (see 12.5.3, “Annotation Flags”). Table 366 shows the additional annotation dictionary entries
specific to this type of annotation.

The Version and AnnotStates entries, if present, shall be used to detect changes in the content of a page that
might require regenerating its trap networks. The Version array identifies elements of the page’s content that
might be changed by an editing application and thus invalidate its trap networks. Because there is at most one
Version array per trap network annotation (and thus per page), any conforming writer that generates a new
trap network shall also verify the validity of existing trap networks by enumerating the objects identified in the
array and verifying that the results exactly match the array’s current contents. Any trap networks found to be
invalid shall be regenerated.

The LastModified entry may be used in place of the Version array to track changes to a page’s trap network.
(The trap network annotation shall include either a LastModified entry or the combination of Version and
AnnotStates, but not all three.) If the modification date in the LastModified entry of the page object (see
7.7.3.3, “Page Objects”) is more recent than the one in the trap network annotation dictionary, the page’s trap
networks are invalid and shall be regenerated.

NOTE 2 Not all editing applications correctly maintain these modification dates.

This method of tracking trap network modifications may be used reliably only in a controlled workflow
environment where the integrity of the modification dates is assured.

Table 366 – Additional entries specific to a trap network annotation

Key Type Value

Subtype name (Required) The type of annotation that this dictionary describes; shall
be TrapNet for a trap network annotation.

LastModified date (Required if Version and AnnotStates are absent; shall be absent if
Version and AnnotStates are present; PDF 1.4) The date and time
(see 7.9.4, “Dates”) when the trap network was most recently
modified.

Version array (Required if AnnotStates is present; shall be absent if LastModified
is present) An unordered array of all objects present in the page
description at the time the trap networks were generated and that, if
changed, could affect the appearance of the page. If present, the array
shall include the following objects:
• All content streams identified in the page object’s Contents entry

(see 7.7.3.3, “Page Objects”)

• All resource objects (other than procedure sets) in the page’s
resource dictionary (see 7.8.3, “Resource Dictionaries”)

• All resource objects (other than procedure sets) in the resource
dictionaries of any form XObjects on the page (see 8.10, “Form
XObjects”)

• All OPI dictionaries associated with XObjects on the page (see
14.11.7, “Open Prepress Interface (OPI)”)

AnnotStates array (Required if Version is present; shall be absent if LastModified is
present) An array of name objects representing the appearance states
(value of the AS entry) for annotations associated with the page. The
appearance states shall be listed in the same order as the annotations
in the page’s Annots array (see 7.7.3.3, “Page Objects”). For an
annotation with no AS entry, the corresponding array element should
be null. No appearance state shall be included for the trap network
annotation itself.

PDF 32000-1:2008

638 © Adobe Systems Incorporated 2008 – All rights reserved

14.11.6.3 Trap Network Appearances

Each entry in the N (normal) subdictionary of a trap network annotation’s appearance dictionary holds an
appearance stream defining a trap network associated with the given page. Like all appearances, a trap
network is a stream object defining a form XObject (see 8.10, “Form XObjects”). The body of the stream
contains the graphics objects needed to paint the traps making up the trap network. Its dictionary entries
include, besides the standard entries for a form dictionary, the additional entries shown in Table 367.

NOTE Preseparated PDF files (see 14.11.4, “Separation Dictionaries”) may not be trapped because traps are defined
along the borders between different colours and a preseparated file uses only one colour. Therefore,
preseparation shall occur after trapping, not before. An conforming writer that preseparates a trapped PDF file
is responsible for calculating new Version arrays for the separated trap networks.

14.11.7 Open Prepress Interface (OPI)

The workflow in a prepress environment often involves multiple applications in areas such as graphic design,
page layout, word processing, photo manipulation, and document construction. As pieces of the final document
are moved from one application to another, it is useful to separate the data of high-resolution images, which
can be quite large—in some cases, many times the size of the rest of the document combined—from that of the
document itself. The Open Prepress Interface (OPI) is a mechanism, originally developed by Aldus
Corporation, for creating low-resolution placeholders, or proxies, for such high-resolution images. The proxy

FontFauxing array (Optional) An array of font dictionaries representing fonts that were
fauxed (replaced by substitute fonts) during the generation of trap
networks for the page.

Table 367 – Additional entries specific to a trap network appearance stream

Key Type Value

PCM name (Required) The name of the process colour model that was
assumed when this trap network was created; equivalent to the
PostScript page device parameter ProcessColorModel (see
Section 6.2.5 of the PostScript Language Reference, Third
Edition). Valid values are DeviceGray, DeviceRGB,
DeviceCMYK, DeviceCMY, DeviceRGBK, and DeviceN.

SeparationColorNames array (Optional) An array of names identifying the colorants that were
assumed when this network was created; equivalent to the
PostScript page device parameter of the same name (see Section
6.2.5 of the PostScript Language Reference, Third Edition).
Colourants implied by the process colour model PCM are available
automatically and need not be explicitly declared. If this entry is
absent, the colorants implied by PCM shall be assumed.

TrapRegions array (Optional) An array of indirect references to TrapRegion objects
defining the page’s trapping zones and the associated trapping
parameters, as described in Adobe Technical Note #5620,
Portable Job Ticket Format. These references refer to objects
comprising portions of a PJTF job ticket that shall be embedded in
the PDF file. When the trapping zones and parameters are defined
by an external job ticket (or by some other means, such as JDF),
this entry shall be absent.

TrapStyles text string (Optional) A human-readable text string that applications may use
to describe this trap network to the user.
EXAMPLE To allow switching between trap networks).

Table 366 – Additional entries specific to a trap network annotation (continued)

Key Type Value

© Adobe Systems Incorporated 2008 – All rights reserved 639

PDF 32000-1:2008

typically consists of a downsampled version of the full-resolution image, to be used for screen display and
proofing. Before the document is printed, it passes through a filter known as an OPI server, which replaces the
proxies with the original full-resolution images.

NOTE 1 In PostScript programs, OPI proxies are defined by PostScript code surrounded by special OPI comments,
which specify such information as the placement and cropping of the image and adjustments to its size,
rotation, colour, and other attributes.

In PDF, proxies shall be embedded in a document as image or form XObjects with an associated OPI dictionary
(PDF 1.2). This dictionary contains the same information that the OPI comments convey in PostScript. Two
versions of OPI shall be supported, versions 1.3 and 2.0. In OPI 1.3, a proxy consisting of a single image, with
no changes in the graphics state, may be represented as an image XObject; otherwise it shall be a form
XObject. In OPI 2.0, the proxy always entails changes in the graphics state and hence shall be represented as
a form XObject.

An XObject representing an OPI proxy shall contain an OPI entry in its image or form dictionary (see Table 89
and Table 95). The value of this entry is an OPI version dictionary (Table 368) identifying the version of OPI to
which the proxy corresponds. This dictionary consists of a single entry, whose key is the name 1.3 or 2.0 and
whose value is the OPI dictionary defining the proxy’s OPI attributes.

NOTE 2 As in any other PDF dictionary, the key in an OPI version dictionary is a name object. The OPI version
dictionary would thus be written in the PDF file in either the form

<< /1 . 3 d 0 R >>% OPI 1 . 3 dictionary

or

<< /2 . 0 d 0 R >>% OPI 2 . 0 dictionary

where d is the object number of the corresponding OPI dictionary.

Table 369 and Table 370 describe the contents of the OPI dictionaries for OPI 1.3 and OPI 2.0, respectively,
along with the corresponding PostScript OPI comments. The dictionary entries shall be listed in the order in
which the corresponding OPI comments appear in a PostScript program. Complete details on the meanings of
these entries and their effects on OPI servers can be found in OPI: Open Prepress Interface Specification 1.3
and Adobe Technical Note #5660, Open Prepress Interface (OPI) Specification, Version 2.0.

Table 368 – Entry in an OPI version dictionary

Key Type Value

version
number

dictionary (Required; PDF 1.2) An OPI dictionary specifying the attributes of this
proxy (see Tables 369 and 370). The key for this entry shall be the
name 1.3 or 2.0, identifying the version of OPI to which the proxy
corresponds.

Table 369 – Entries in a version 1.3 OPI dictionary

Key Type OPI Comment Value

Type name (Optional) The type of PDF object that this
dictionary describes; if present, shall be OPI
for an OPI dictionary.

Version number (Required) The version of OPI to which this
dictionary refers; shall be the number 1.3 (not
the name 1.3, as in an OPI version
dictionary).

F file specification %ALDImageFilename (Required) The external file containing the
image corresponding to this proxy.

PDF 32000-1:2008

640 © Adobe Systems Incorporated 2008 – All rights reserved

ID byte string %ALDImageID (Optional) An identifying string denoting the
image.

Comments text string %ALDObjectComments (Optional) A human-readable comment,
typically containing instructions or
suggestions to the operator of the OPI server
on how to handle the image.

Size array %ALDImageDimensions (Required) An array of two integers of the
form
[pixelsWide pixelsHigh]
specifying the dimensions of the image in
pixels.

CropRect rectangle %ALDImageCropRect (Required) An array of four integers of the
form
[left top right bottom]
specifying the portion of the image to be used.

CropFixed array %ALDImageCropFixed (Optional) An array with the same form and
meaning as CropRect, but expressed in real
numbers instead of integers. Default value:
the value of CropRect.

Position array %ALDImagePosition (Required) An array of eight numbers of the
form
[llx lly ulx uly urx ury lrx lry]

specifying the location on the page of the
cropped image, where (llx , lly) are the user
space coordinates of the lower-left corner,
(ulx , uly) are those of the upper-left corner,
(urx , ury) are those of the upper-right corner,
and (lrx , lry) are those of the lower-right
corner. The specified coordinates shall define
a parallelogram; that is, they shall satisfy the
conditions
ulx − llx = urx − lrx
and
uly − lly = ury − lry
The combination of Position and CropRect
determines the image’s scaling, rotation,
reflection, and skew.

Resolution array %ALDImageResolution (Optional) An array of two numbers of the
form
[horizRes vertRes]
specifying the resolution of the image in
samples per inch.

ColorType name %ALDImageColorType (Optional) The type of colour specified by the
Color entry. Valid values are Process, Spot,
and Separation. Default value: Spot.

Table 369 – Entries in a version 1.3 OPI dictionary (continued)

Key Type OPI Comment Value

© Adobe Systems Incorporated 2008 – All rights reserved 641

PDF 32000-1:2008

Color array %ALDImageColor (Optional) An array of four numbers and a
byte string of the form
[C M Y K colorName]
specifying the value and name of the colour in
which the image is to be rendered. The values
of C, M, Y, and K shall all be in the range 0.0
to 1.0. Default value:
[0.0 0.0 0.0 1.0 (Black)].

Tint number %ALDImageTint (Optional) A number in the range 0.0 to 1.0
specifying the concentration of the colour
specified by Color in which the image is to be
rendered. Default value: 1.0.

Overprint boolean %ALDImageOverprint (Optional) A flag specifying whether the
image is to overprint (true) or knock out
(false) underlying marks on other
separations. Default value: false.

ImageType array %ALDImageType (Optional) An array of two integers of the form
[samples bits]
specifying the number of samples per pixel
and bits per sample in the image.

GrayMap array %ALDImageGrayMap (Optional) An array of 2n integers in the range
0 to 65,535 (where n is the number of bits per
sample) recording changes made to the
brightness or contrast of the image.

Transparency boolean %ALDImageTransparency (Optional) A flag specifying whether white
pixels in the image shall be treated as
transparent. Default value: true.

Tags array %ALDImageAsciiTag< NNN > (Optional) An array of pairs of the form
[tagNum1 tagText1 … tagNumn tagTextn]
where each tagNum is an integer
representing a TIFF tag number and each
tagText is an ASCII string representing the
corresponding ASCII tag value.

Table 370 – Entries in a version 2.0 OPI dictionary

Key Type OPI Comment Value

Type name (Optional) The type of PDF object that this
dictionary describes; if present, shall be OPI
for an OPI dictionary.

Version number (Required) The version of OPI to which this
dictionary refers; shall be the number 2 or 2.0
(not the name 2.0, as in an OPI version
dictionary).

F file specification %%ImageFilename (Required) The external file containing the
low- resolution proxy image.

MainImage byte string %%MainImage (Optional) The pathname of the file containing
the full-resolution image corresponding to this
proxy, or any other identifying string that
uniquely identifies the full-resolution image.

Table 369 – Entries in a version 1.3 OPI dictionary (continued)

Key Type OPI Comment Value

PDF 32000-1:2008

642 © Adobe Systems Incorporated 2008 – All rights reserved

Tags array %%TIFFASCIITag (Optional) An array of pairs of the form
[tagNum1 tagText1 … tagNumn tagTextn]
where each tagNum is an integer representing
a TIFF tag number and each tagText is an
ASCII string or an array of ASCII strings
representing the corresponding ASCII tag
value.

Size array %%ImageDimensions (Optional) An array of two numbers of the form
[width height]
specifying the dimensions of the image in
pixels.

CropRect rectangle %%ImageCropRect (Optional) An array of four numbers of the
form
[left top right bottom]
specifying the portion of the image to be used.
The Size and CropRect entries shall either
both be present or both be absent. If present,
they shall satisfy the conditions
0 ≤ left < right ≤ width
and
0 ≤ top < bottom ≤ height
In this coordinate space, the positive y axis
extends vertically downward; hence, the
requirement that top < bottom.

Overprint boolean %%ImageOverprint (Optional) A flag specifying whether the image
is to overprint (true) or knock out (false)
underlying marks on other separations.
Default value: false.

Inks name or array %%ImageInks (Optional) A name object or array specifying
the colorants to be applied to the image. The
value may be the name full_color or
registration or an array of the form
[/monochrome name1 tint1 … namen tintn]
where each name is a string representing the
name of a colorant and each tint is a real
number in the range 0.0 to 1.0 specifying the
concentration of that colorant to be applied.

IncludedImageDimensions

 array %%IncludedImageDimensions (Optional) An array of two integers of the form
[pixelsWide pixelsHigh]
specifying the dimensions of the included
image in pixels.

IncludedImageQuality

 number %%IncludedImageQuality (Optional) A number indicating the quality of
the included image. Valid values are 1, 2, and
3.

Table 370 – Entries in a version 2.0 OPI dictionary (continued)

Key Type OPI Comment Value

© Adobe Systems Incorporated 2008 – All rights reserved 643

PDF 32000-1:2008

Annex A
(informative)

Operator Summary

A.1 General

This annex lists, in alphabetical order, all the operators that may be used in PDF content streams.

A.2 PDF Content Stream Operators

Table A.1 lists each operator, its corresponding PostScript language operators (when it is an exact or near-
exact equivalent of the PDF operator), a description of the operator, and references to the table and page
where each operator is introduced.

Table A.1 – PDF content stream operators

Operator PostScript Equivalent Description Table

b closepath, fill, stroke Close, fill, and stroke path using nonzero winding
number rule

60

B fill, stroke Fill and stroke path using nonzero winding number rule 60

b* closepath, eofill, stroke Close, fill, and stroke path using even-odd rule 60

B* eofill, stroke Fill and stroke path using even-odd rule 60

BDC (PDF 1.2) Begin marked-content sequence with property
list

320

BI Begin inline image object 92

BMC (PDF 1.2) Begin marked-content sequence 320

BT Begin text object 107

BX (PDF 1.1) Begin compatibility section 32

c curveto Append curved segment to path (three control points) 59

cm concat Concatenate matrix to current transformation matrix 57

CS setcolorspace (PDF 1.1) Set color space for stroking operations 74

cs setcolorspace (PDF 1.1) Set color space for nonstroking operations 74

d setdash Set line dash pattern 57

d0 setcharwidth Set glyph width in Type 3 font 113

d1 setcachedevice Set glyph width and bounding box in Type 3 font 113

Do Invoke named XObject 87

DP (PDF 1.2) Define marked-content point with property list 320

EI End inline image object 92

EMC (PDF 1.2) End marked-content sequence 320

PDF 32000-1:2008

644 © Adobe Systems Incorporated 2008 – All rights reserved

ET End text object 107

EX (PDF 1.1) End compatibility section 32

f fill Fill path using nonzero winding number rule 60

F fill Fill path using nonzero winding number rule (obsolete) 60

f* eofill Fill path using even-odd rule 60

G setgray Set gray level for stroking operations 74

g setgray Set gray level for nonstroking operations 74

gs (PDF 1.2) Set parameters from graphics state parameter
dictionary

57

h closepath Close subpath 59

i setflat Set flatness tolerance 57

ID Begin inline image data 92

j setlinejoin Set line join style 57

J setlinecap Set line cap style 57

K setcmykcolor Set CMYK color for stroking operations 74

k setcmykcolor Set CMYK color for nonstroking operations 74

l lineto Append straight line segment to path 59

m moveto Begin new subpath 59

M setmiterlimit Set miter limit 57

MP (PDF 1.2) Define marked-content point 320

n End path without filling or stroking 60

q gsave Save graphics state 57

Q grestore Restore graphics state 57

re Append rectangle to path 59

RG setrgbcolor Set RGB color for stroking operations 74

rg setrgbcolor Set RGB color for nonstroking operations 74

ri Set color rendering intent 57

s closepath, stroke Close and stroke path 60

S stroke Stroke path 60

SC setcolor (PDF 1.1) Set color for stroking operations 74

sc setcolor (PDF 1.1) Set color for nonstroking operations 74

SCN setcolor (PDF 1.2) Set color for stroking operations (ICCBased
and special colour spaces)

74

scn setcolor (PDF 1.2) Set color for nonstroking operations
(ICCBased and special colour spaces)

74

Table A.1 – PDF content stream operators (continued)

Operator PostScript Equivalent Description Table

© Adobe Systems Incorporated 2008 – All rights reserved 645

PDF 32000-1:2008

sh shfill (PDF 1.3) Paint area defined by shading pattern 77

T* Move to start of next text line 108

Tc Set character spacing

Td Move text position 108

TD Move text position and set leading 108

Tf selectfont Set text font and size

Tj show Show text 109

TJ Show text, allowing individual glyph positioning 109

TL Set text leading

Tm Set text matrix and text line matrix 108

Tr Set text rendering mode

Ts Set text rise

Tw Set word spacing

Tz Set horizontal text scaling

v curveto Append curved segment to path (initial point replicated) 59

w setlinewidth Set line width 57

W clip Set clipping path using nonzero winding number rule 61

W* eoclip Set clipping path using even-odd rule 61

y curveto Append curved segment to path (final point replicated) 59

' Move to next line and show text 109

" Set word and character spacing, move to next line, and
show text

109

Table A.1 – PDF content stream operators (continued)

Operator PostScript Equivalent Description Table

PDF 32000-1:2008

646 © Adobe Systems Incorporated 2008 – All rights reserved

THIS PAGE BLANK

© Adobe Systems Incorporated 2008 – All rights reserved 647

PDF 32000-1:2008

Annex B
(normative)

Operators in Type 4 Functions

B.1 General

This annex summarizes the PostScript operators that may appear in a type 4 function, as discussed in 7.10.5,
"Type 4 (PostScript Calculator) Functions". For details on these operators, see the PostScript Language
Reference, Third Edition.

B.2 Arithmetic Operators

num1 num2 add sum Return num1 plus num2
num1 num2 sub difference Return num1 minus num2
num1 num2 mul product Return num1 times num2
num1 num2 div quotient Return num1 divided by num2
int1 int2 idiv quotient Return int1 divided by int2 as an integer
int1 int2 mod remainder Return remainder after dividing int1 by int2
num1 neg num2 Return negative of num1
num1 abs num2 Return absolute value of num1
num1 ceiling num2 Return ceiling of num1
num1 floor num2 Return floor of num1
num1 round num2 Round num1 to nearest integer
num1 truncate num2 Remove fractional part of num1
num sqrt real Return square root of num
angle sin real Return sine of angle degrees
angle cos real Return cosine of angle degrees
num den atan angle Return arc tangent of num/den in degrees
base exponent exp real Raise base to exponent power
num ln real Return natural logarithm (base e)
num log real Return common logarithm (base 10)
num cvi int Convert to integer
num cvr real Convert to real

B.3 Relational, Boolean, and Bitwise Operators

any1 any2 eq bool Test equal
any1 any2 ne bool Test not equal
num1 num2 gt bool Test greater than
num1 num2 ge bool Test greater than or equal
num1 num2 lt bool Test less than
num1 num2 le bool Test less than or equal
bool1 | int1 bool2 | int2 and bool3 | int3 Perform logical | bitwise and
bool1 | int1 bool2 | int2 or bool3 | int3 Perform logical | bitwise inclusive or
bool1 | int1 bool2 | int2 xor bool3 | int3 Perform logical | bitwise exclusive or
bool1 | int1 not bool2 | int2 Perform logical | bitwise not

PDF 32000-1:2008

648 © Adobe Systems Incorporated 2008 – All rights reserved

int1 shift bitshift int2 Perform bitwise shift of int1 (positive is left)
– true true Return boolean value true
– false false Return boolean value false

B.4 Conditional Operators

bool { expr } if – Execute expr if bool is true
bool { expr1 } { expr2 } ifelse – Execute expr1 if bool is true, expr2 if false

B.5 Stack Operators

any pop – Discard top element
any1 any2 exch any2 any1 Exchange top two elements
any dup any any Duplicate top element
any1 … anyn n copy any1 … anyn any1 … anyn Duplicate top n elements
anyn … any0 n index anyn… any0 anyn Duplicate arbitrary element
anyn-1 … any0 n j roll any(j-1) mod n … any0 anyn-1 … anyj mod n Roll n elements up j times

© Adobe Systems Incorporated 2008 – All rights reserved 649

PDF 32000-1:2008

Annex C
(normative)

Implementation Limits

C.1 General

In general, PDF does not restrict the size or quantity of things described in the file format, such as numbers,
arrays, images, and so on. However, a conforming reader running on a particular processor and in a particular
operating environment does have such limits. If a conforming reader encounters a PDF construct that exceeds
one of these limits or performs a computation whose intermediate results exceed a limit, an error occurs.

NOTE PostScript interpreters also have implementation limits, listed in Appendix B of the PostScript Language
Reference, Third Edition. It is possible to construct a PDF file that does not violate PDF implementation limits
but fails to print on a PostScript printer. Keep in mind that these limits vary according to the PostScript
LanguageLevel, interpreter version, and the amount of memory available to the interpreter.

This annex describes typical limits for a conforming PDF application (readers and writers). These limits fall into
two main classes:

• Architectural limits. The hardware on which a conforming reader executes imposes certain constraints. For
example, an integer is usually represented in 32 bits, limiting the range of allowed integers. In addition, the
design of the software imposes other constraints, such as a limit to the number of elements in an array or
string.

• Memory limits. The amount of memory available to a conforming reader limits the number of memory-
consuming objects that can be held simultaneously.

C.2 Architectural limits

PDF itself has one architectural limit: Because a cross-reference table (see 7.5.4, "Cross-Reference Table")
allocates ten digits to represent byte offsets, the size of a file shall be limited to 1010 bytes (approximately 10
gigabytes). This limit does not apply in a PDF file that uses a cross-reference stream (see 7.5.8, "Cross-
Reference Streams") instead of a cross reference table.

Table C.1 describes the minimum architectural limits that should be accommodated by conforming readers
running on 32-bit machines. Because conforming readers may be subject to these limits, conforming writers
producing PDF files should remain within them.

NOTE Memory limits are often exceeded before architectural limits (such as the limit on the number of indirect
objects) are reached.

Table C.1 – Architectural limits

Quantity Limit Description

integer 2,147,483,647 Largest integer value; equal to 231 − 1.

-2,147,483,648 Smallest integer value; equal to −231.

real ± 3.403 × 1038 Largest and smallest real values (approximate).

 ± 1.175 × 10-38 Nonzero real values closest to 0 (approximate). Values closer
than these are automatically converted to 0.

PDF 32000-1:2008

650 © Adobe Systems Incorporated 2008 – All rights reserved

Additionally, conforming writers should adhere to the following constraints, and conforming readers should
accommodate PDF files that obey the constraints.

• Thumbnail images should be no larger than 106 by 106 samples, and should be created at one-eighth
scale for 8.5-by-11-inch and A4-size pages.

• The minimum page size should be 3 by 3 units in default user space; the maximum should be 14,400 by
14,400 units. In versions of PDF earlier than 1.6, the size of the default user space unit was fixed at 1 ⁄ 72
inch, yielding a minimum of approximately 0.04 by 0.04 inch and a maximum of 200 by 200 inches.
Beginning with PDF 1.6, the size of the unit may be set on a page-by-page basis; the default remains at 1/
72 inch.

• The magnification factor of a view should be constrained to be between approximately 8 percent and 6400
percent.

• When a conforming reader reads a PDF file with a damaged or missing cross-reference table, it may
attempt to rebuild the table by scanning all the objects in the file. However, the generation numbers of
deleted entries are lost if the cross-reference table is missing or severely damaged. To facilitate such
reconstruction, object identifiers, the endobj keyword, and the endstream keyword should appear at the
start of a line. Also, the data within a stream should not contain a line beginning with the word endstream,
aside from the required endstream that delimits the end of the stream.

C.3 Memory limits

Memory limits cannot be characterized as precisely as architectural limits because the amount of available
memory and the ways in which it is allocated vary from one conforming product to another.

NOTE Memory is automatically reallocated from one use to another when necessary: when more memory is needed
for a particular purpose, it can be taken from memory allocated to another purpose if that memory is currently
unused or its use is nonessential (a cache, for example). Also, data is often saved to a temporary file when
memory is limited. Because of this behaviour, it is not possible to state limits for such items as the number of
pages in a document, number of text annotations or hypertext links on a page, number of graphics objects on a
page, or number of fonts on a page or in a document.

5 Number of significant decimal digits of precision in fractional part
(approximate).

string (in content
stream)

32,767 Maximum length of a string, in bytes.
This restriction applies only to strings in content streams. There
is no effective restriction on other strings in PDF files.

name 127 Maximum length of a name, in bytes.

indirect object 8,388,607 Maximum number of indirect objects in a PDF file.

q/Q nesting 28 NOTE Maximum depth of graphics state nesting by q and
Q operators. This is not a limit as such, but arises
from the fact that q and Q are implemented by the
PostScript gsave and grestore operators when
generating PostScript output.

DeviceN components 32 Maximum number of colorants or tint components in a DeviceN
colour space.

CID 65,535 Maximum value of a CID (character identifier).

Table C.1 – Architectural limits (continued)

Quantity Limit Description

© Adobe Systems Incorporated 2008 – All rights reserved 651

PDF 32000-1:2008

Annex D
(normative)

Character Sets and Encodings

D.1 General

This annex lists the character sets and encodings that shall be predefined in any conforming reader. Simple
fonts, encompassing Latin text and some symbols, are described here. See 9.7.5.2, "Predefined CMaps" for a
list of predefined CMaps for CID-keyed fonts.

D.2, "Latin Character Set and Encodings", describes the entire character set for the Adobe standard Latin-text
fonts. This character set shall be supported by the Times, Helvetica, and Courier font families, which are
among the standard 14 predefined fonts; see 9.6.2.2, "Standard Type 1 Fonts (Standard 14 Fonts)". For each
named character, an octal character code is defined for four different encodings: StandardEncoding,
MacRomanEncoding, WinAnsiEncoding, and PDFDocEncoding (see Table D.1). Unencoded characters
are indicated by a dash (—).

D.3, "PDFDocEncoding Character Set", describes the entire set of characters that can be represented using
PDFDocEncoding. It presents these characters in numerical order and it describes the Unicode representation
of each character. This table overlaps the information presented in D.2, "Latin Character Set and Encodings",
with respect to the presented octal character codes.

D.4, "Expert Set and MacExpertEncoding", describes the “expert” character set, which contains additional
characters useful for sophisticated typography, such as small capitals, ligatures, and fractions. For each named
character, an octal character code is given in MacExpertEncoding.

NOTE The built-in encoding in an expert font program may be different from MacExpertEncoding.

D.5, "Symbol Set and Encoding", and D.6, "ZapfDingbats Set and Encoding", describe the character sets and
built-in encodings for the Symbol and ZapfDingbats (ITC Zapf Dingbats) font programs, which shall be among
the standard 14 predefined fonts. These fonts have built-in encodings that are unique to each font. The
characters for ZapfDingbats are ordered by code instead of by name, since the names in that font are
meaningless.

Table D.1 – Latin-text encodings

Encoding Description

StandardEncoding Adobe standard Latin-text encoding. This is the built-in encoding defined
in Type 1 Latin-text font programs (but generally not in TrueType font
programs). Conforming readers shall not have a predefined encoding
named StandardEncoding. However, it is necessary to describe this
encoding, since a font’s built-in encoding can be used as the base
encoding from which differences may be specified in an encoding
dictionary.

MacRomanEncoding Mac OS standard encoding for Latin text in Western writing systems.
Conforming readers shall have a predefined encoding named
MacRomanEncoding that may be used with both Type 1 and TrueType
fonts.

WinAnsiEncoding Windows Code Page 1252, often called the “Windows ANSI” encoding.
This is the standard Windows encoding for Latin text in Western writing
systems. Conforming readers shall have a predefined encoding named
WinAnsiEncoding that may be used with both Type 1 and TrueType
fonts.

PDF 32000-1:2008

652 © Adobe Systems Incorporated 2008 – All rights reserved

PDFDocEncoding Encoding for text strings in a PDF document outside the document’s
content streams. This is one of two encodings (the other being Unicode)
that may be used to represent text strings; see 7.9.2.2, "Text String
Type". PDF does not have a predefined encoding named
PDFDocEncoding; it is not customary to use this encoding to show text
from fonts.

MacExpertEncoding An encoding for use with expert fonts—ones containing the expert
character set. Conforming readers shall have a predefined encoding
named MacExpertEncoding. Despite its name, it is not a platform-
specific encoding; however, only certain fonts have the appropriate
character set for use with this encoding. No such fonts are among the
standard 14 predefined fonts.

Table D.1 – Latin-text encodings (continued)

Encoding Description

© Adobe Systems Incorporated 2008 – All rights reserved 653

PDF 32000-1:2008

D.2 Latin Character Set and Encodings

CHAR CODE (OCTAL) CHAR CODE (OCTAL)
CHAR NAME STD MAC WIN PDF CHAR NAME STD MAC WIN PDF

A A 101 101 101 101
Æ AE 341 256 306 306
Á Aacute — 347 301 301
Â Acircumflex — 345 302 302
Ä Adieresis — 200 304 304
À Agrave — 313 300 300
Å Aring — 201 305 305
Ã Atilde — 314 303 303
B B 102 102 102 102
C C 103 103 103 103
Ç Ccedilla — 202 307 307
D D 104 104 104 104
E E 105 105 105 105
É Eacute — 203 311 311
Ê Ecircumflex — 346 312 312
Ë Edieresis — 350 313 313
È Egrave — 351 310 310
Ð Eth — — 320 320
€ Euro1 — — 200 240
F F 106 106 106 106
G G 107 107 107 107
H H 110 110 110 110
I I 111 111 111 111
Í Iacute — 352 315 315
Î Icircumflex — 353 316 316
Ï Idieresis — 354 317 317
Ì Igrave — 355 314 314
J J 112 112 112 112
K K 113 113 113 113
L L 114 114 114 114
Ł Lslash 350 — — 225
M M 115 115 115 115
N N 116 116 116 116
Ñ Ntilde — 204 321 321
O O 117 117 117 117

Œ OE 352 316 214 226
Ó Oacute — 356 323 323
Ô Ocircumflex — 357 324 324
Ö Odieresis — 205 326 326
Ò Ograve — 361 322 322
Ø Oslash 351 257 330 330
Õ Otilde — 315 325 325
P P 120 120 120 120
Q Q 121 121 121 121
R R 122 122 122 122
S S 123 123 123 123
Š Scaron — — 212 227
T T 124 124 124 124
Þ Thorn — — 336 336
U U 125 125 125 125
Ú Uacute — 362 332 332
Û Ucircumflex — 363 333 333
Ü Udieresis — 206 334 334
Ù Ugrave — 364 331 331
V V 126 126 126 126
W W 127 127 127 127
X X 130 130 130 130
Y Y 131 131 131 131
Ý Yacute — — 335 335
Ÿ Ydieresis — 331 237 230
Z Z 132 132 132 132
Ž Zcaron2 — — 216 231
a a 141 141 141 141
á aacute — 207 341 341
â acircumflex — 211 342 342
´ acute 302 253 264 264
ä adieresis — 212 344 344
æ ae 361 276 346 346
à agrave — 210 340 340
& ampersand 046 046 046 046

PDF 32000-1:2008

654 © Adobe Systems Incorporated 2008 – All rights reserved

CHAR CODE (OCTAL) CHAR CODE (OCTAL)
CHAR NAME STD MAC WIN PDF CHAR NAME STD MAC WIN PDF

å aring — 214 345 345
^ asciicircum 136 136 136 136
~ asciitilde 176 176 176 176
* asterisk 052 052 052 052
@ at 100 100 100 100
ã atilde — 213 343 343
b b 142 142 142 142
\ backslash 134 134 134 134
| bar 174 174 174 174
{ braceleft 173 173 173 173
} braceright 175 175 175 175
[bracketleft 133 133 133 133
] bracketright 135 135 135 135
˘ breve 306 371 — 030
¦ brokenbar — — 246 246
• bullet3 267 245 225 200
c c 143 143 143 143
ˇ caron 317 377 — 031
ç ccedilla — 215 347 347
¸ cedilla 313 374 270 270
¢ cent 242 242 242 242
ˆ circumflex 303 366 210 032
: colon 072 072 072 072
, comma 054 054 054 054
© copyright — 251 251 251
¤ currency1 250 333 244 244
d d 144 144 144 144
† dagger 262 240 206 201
‡ daggerdbl 263 340 207 202
° degree — 241 260 260
¨ dieresis 310 254 250 250
÷ divide — 326 367 367
$ dollar 044 044 044 044
˙ dotaccent 307 372 — 033
ı dotlessi 365 365 — 232
e e 145 145 145 145
é eacute — 216 351 351

ê ecircumflex — 220 352 352
ë edieresis — 221 353 353
è egrave — 217 350 350
8 eight 070 070 070 070
… ellipsis 274 311 205 203
— emdash 320 321 227 204
– endash 261 320 226 205
= equal 075 075 075 075
ð eth — — 360 360
! exclam 041 041 041 041
¡ exclamdown 241 301 241 241
f f 146 146 146 146
fi fi 256 336 — 223
5 five 065 065 065 065
fl fl 257 337 — 224
ƒ florin 246 304 203 206
4 four 064 064 064 064
⁄ fraction 244 332 — 207
g g 147 147 147 147
ß germandbls 373 247 337 337
` grave 301 140 140 140
> greater 076 076 076 076
« guillemotleft4 253 307 253 253
» guillemotright4 273 310 273 273
‹ guilsinglleft 254 334 213 210
› guilsinglright 255 335 233 211
h h 150 150 150 150
˝ hungarumlaut 315 375 — 034
- hyphen5 055 055 055 055
i i 151 151 151 151
í iacute — 222 355 355
î icircumflex — 224 356 356
ï idieresis — 225 357 357
ì igrave — 223 354 354
j j 152 152 152 152
k k 153 153 153 153
l l 154 154 154 154

© Adobe Systems Incorporated 2008 – All rights reserved 655

PDF 32000-1:2008

CHAR CODE (OCTAL) CHAR CODE (OCTAL)
CHAR NAME STD MAC WIN PDF CHAR NAME STD MAC WIN PDF

< less 074 074 074 074
¬ logicalnot — 302 254 254
ł lslash 370 — — 233
m m 155 155 155 155
¯ macron 305 370 257 257
− minus — — — 212
μ mu — 265 265 265
× multiply — — 327 327
n n 156 156 156 156
9 nine 071 071 071 071
ñ ntilde — 226 361 361
numbersign 043 043 043 043
o o 157 157 157 157
ó oacute — 227 363 363
ô ocircumflex — 231 364 364
ö odieresis — 232 366 366
œ oe 372 317 234 234
˛ ogonek 316 376 — 035
ò ograve — 230 362 362
1 one 061 061 061 061
½ onehalf — — 275 275
¼ onequarter — — 274 274
¹ onesuperior — — 271 271
ª ordfeminine 343 273 252 252
º ordmasculine 353 274 272 272
ø oslash 371 277 370 370
õ otilde — 233 365 365
p p 160 160 160 160
¶ paragraph 266 246 266 266
(parenleft 050 050 050 050
) parenright 051 051 051 051
% percent 045 045 045 045
. period 056 056 056 056
· periodcentered 264 341 267 267
‰ perthousand 275 344 211 213
+ plus 053 053 053 053
± plusminus — 261 261 261

q q 161 161 161 161
? question 077 077 077 077
¿ questiondown 277 300 277 277
" quotedbl 042 042 042 042
„ quotedblbase 271 343 204 214
“ quotedblleft 252 322 223 215
” quotedblright 272 323 224 216
‘ quoteleft 140 324 221 217
’ quoteright 047 325 222 220
‚ quotesinglbase 270 342 202 221
' quotesingle 251 047 047 047
r r 162 162 162 162
® registered — 250 256 256
˚ ring 312 373 — 036
s s 163 163 163 163
š scaron — — 232 235
§ section 247 244 247 247
; semicolon 073 073 073 073
7 seven 067 067 067 067
6 six 066 066 066 066
/ slash 057 057 057 057
 space6 040 040 040 040
£ sterling 243 243 243 243
t t 164 164 164 164
þ thorn — — 376 376
3 three 063 063 063 063
¾ threequarters — — 276 276
³ threesuperior — — 263 263
˜ tilde 304 367 230 037
™ trademark — 252 231 222
2 two 062 062 062 062
² twosuperior — — 262 262
u u 165 165 165 165
ú uacute — 234 372 372
û ucircumflex — 236 373 373
ü udieresis — 237 374 374
ù ugrave — 235 371 371

PDF 32000-1:2008

656 © Adobe Systems Incorporated 2008 – All rights reserved

1. In PDF 1.3, the euro character was added to the Adobe standard Latin character set. It shall be en-
coded as 200 in WinAnsiEncoding and 240 in PDFDocEncoding, assigning codes that were pre-
viously unused. Apple changed the Mac OS Latin-text encoding for code 333 from the currency
character to the euro character. However, this incompatible change has not been reflected in PDF’s
MacRomanEncoding, which shall continue to map code 333 to currency. If the euro character is
desired, an encoding dictionary may be used to specify this single difference from MacRomanEn-
coding.

2. In PDF 1.3, the existing Zcaron and zcaron characters were added to WinAnsiEncoding as the
previously unused codes 216 and 236.

3. In WinAnsiEncoding, all unused codes greater than 40 map to the bullet character. However, only
code 225 shall be specifically assigned to the bullet character; other codes are subject to future re-
assignment.

4. The character names guillemotleft and guillemotright are misspelled. The correct spelling for this
punctuation character is guillemet. However, the misspelled names are the ones actually used in
the fonts and encodings containing these characters.

5. The hyphen character is also encoded as 255 in WinAnsiEncoding. The meaning of this duplicate
code shall be “soft hyphen,” but it shall be typographically the same as hyphen.

6. The SPACE character shall also be encoded as 312 in MacRomanEncoding and as 240 in
WinAnsiEncoding. This duplicate code shall signify a nonbreaking space; it shall be typographi-
cally the same as (U+003A) SPACE.

D.3 PDFDocEncoding Character Set

The column titled Notes uses the following abbreviations:

U Undefined code point in PDFDocEncoding

SR Unicode codepoint that may require special representation in XML in some con-
texts.

Table D.2 – PDFDocEncoding Character Set

Character Dec Hex Octal Unicode Unicode character name or
(alternative alias)

Notes

^@ 0 0x00 0000 U+0000 (NULL) U

^A 1 0x01 0001 U+0001 (START OF HEADING) U

^B 2 0x02 0002 U+0002 (START OF TEXT) U

^C 3 0x03 0003 U+0003 (END OF TEXT) U

^D 4 0x04 0004 U+0004 (END OF TEXT) U

^E 5 0x05 0005 U+0005 (END OF TRANSMISSION) U

CHAR CODE (OCTAL) CHAR CODE (OCTAL)
CHAR NAME STD MAC WIN PDF CHAR NAME STD MAC WIN PDF

_ underscore 137 137 137 137
v v 166 166 166 166
w w 167 167 167 167
x x 170 170 170 170
y y 171 171 171 171
ý yacute — — 375 375

ÿ ydieresis — 330 377 377
¥ yen 245 264 245 245
z z 172 172 172 172
ž zcaron2 — — 236 236
0 zero 060 060 060 060

© Adobe Systems Incorporated 2008 – All rights reserved 657

PDF 32000-1:2008

^F 6 0x06 0006 U+0006 (ACKNOWLEDGE) U

^G 7 0x07 0007 U+0007 (BELL) U

^H 8 0x08 0010 U+0008 (BACKSPACE) U

^I 9 0x09 0011 U+0009 (CHARACTER TABULATION) SR

^J 10 0x0a 0012 U+000A (LINE FEED) SR

^K 11 0x0b 0013 U+000B (LINE TABULATION) U

^L 12 0x0c 0014 U+000C (FORM FEED) U

^M 13 0x0d 0015 U+000D (CARRIAGE RETURN) SR

^N 14 0x0e 0016 U+000E (SHIFT OUT) U

^O 15 0x0f 0017 U+000F (SHIFT IN) U

^P 16 0x10 0020 U+0010 (DATA LINK ESCAPE) U

^Q 17 0x11 0021 U+0011 (DEVICE CONTROL ONE) U

^R 18 0x12 0022 U+0012 (DEVICE CONTROL TWO) U

^S 19 0x13 0023 U+0013 (DEVICE CONTROL THREE) U

^T 20 0x14 0024 U+0014 (DEVICE CONTROL FOUR) U

^U 21 0x15 0025 U+0015 (NEGATIVE ACKNOWLEDGE) U

^V 22 0x16 0026 U+0017 (SYNCRONOUS IDLE) U

^W 23 0x17 0027 U+0017 (END OF TRANSMISSION BLOCK) U

u 24 0x18 0030 U+02D8 BREVE

v 25 0x19 0031 U+02C7 CARON

^ 26 0x1a 0032 U+02C6 MODIFIER LETTER CIRCUMFLEX
ACCENT

· 27 0x1b 0033 U+02D9 DOT ABOVE

” 28 0x1c 0034 U+02DD DOUBLE ACUTE ACCENT

, 29 0x1d 0035 U+02DB OGONEK

° 30 0x1e 0036 U+02DA RING ABOVE

~ 31 0x1f 0037 U+02DC SMALL TILDE

32 0x20 0040 U+0020 SPACE ()

! 33 0x21 0041 U+0021 EXCLAMATION MARK SR

" 34 0x22 0042 U+0022 QUOTATION MARK (") SR

35 0x23 0043 U+0023 NUMBER SIGN

$ 36 0x24 0044 U+0024 DOLLAR SIGN

% 37 0x25 0045 U+0025 PERCENT SIGN

& 38 0x26 0046 U+0026 AMPERSAND (&)

Table D.2 – PDFDocEncoding Character Set (continued)

Character Dec Hex Octal Unicode Unicode character name or
(alternative alias)

Notes

PDF 32000-1:2008

658 © Adobe Systems Incorporated 2008 – All rights reserved

' 39 0x27 0047 U+0027 APOSTROPHE (')

(40 0x28 0050 U+0028 LEFT PARENTHESIS

) 41 0x29 0051 U+0029 RIGHT PARENTHESIS

* 42 0x2a 0052 U+002A ASTERISK

+ 43 0x2b 0053 U+002B PLUS SIGN

, 44 0x2c 0054 U+002C COMMA

- 45 0x2d 0055 U+002D HYPHEN-MINUS

. 46 0x2e 0056 U+002E FULL STOP (PERIOD)

/ 47 0x2f 0057 U+002F SOLIDUS (slash)

0 48 0x30 0060 U+0030 DIGIT ZERO

1 49 0x31 0061 U+0031 DIGIT ONE

2 50 0x32 0062 U+0032 DIGIT TWO

3 51 0x33 0063 U+0033 DIGIT THREE

4 52 0x34 0064 U+0034 DIGIT FOUR

5 53 0x35 0065 U+0035 DIGIT FIVE

6 54 0x36 0066 U+0036 DIGIT SIX

7 55 0x37 0067 U+0037 DIGIT SEVEN

8 56 0x38 0070 U+0038 DIGIT EIGJT

9 57 0x39 0071 U+0039 DIGIT NINE

: 58 0x3a 0072 U+003A COLON

; 59 0x3b 0073 U+003B SEMICOLON

< 60 0x3c 0074 U+003C LESS THAN SIGN (<) SR

= 61 0x3d 0075 U+003D EQUALS SIGN

> 62 0x3e 0076 U+003E GREATER THAN SIGN (>)

? 63 0x3f 0077 U+003F QUESTION MARK

@ 64 0x40 0100 U+0040 COMMERCIAL AT

A 65 0x41 0101 U+0041

B 66 0x42 0102 U+0042

C 67 0x43 0103 U+0043

D 68 0x44 0104 U+0044

E 69 0x45 0105 U+0045

F 70 0x46 0106 U+0046

G 71 0x47 0107 U+0047

Table D.2 – PDFDocEncoding Character Set (continued)

Character Dec Hex Octal Unicode Unicode character name or
(alternative alias)

Notes

© Adobe Systems Incorporated 2008 – All rights reserved 659

PDF 32000-1:2008

H 72 0x48 0110 U+0048

I 73 0x49 0111 U+0049

J 74 0x4a 0112 U+004A

K 75 0x4b 0113 U+004B

L 76 0x4c 0114 U+004C

M 77 0x4d 0115 U+004D

N 78 0x4e 0116 U+004E

O 79 0x4f 0117 U+004F

P 80 0x50 0120 U+0050

Q 81 0x51 0121 U+0051

R 82 0x52 0122 U+0052

S 83 0x53 0123 U+0053

T 84 0x54 0124 U+0054

U 85 0x55 0125 U+0055

V 86 0x56 0126 U+0056

W 87 0x57 0127 U+0057

X 88 0x58 0130 U+0058

Y 89 0x59 0131 U+0059

Z 90 0x5a 0132 U+005A

[91 0x5b 0133 U+005B LEFT SQUARE BRACKET

\ 92 0x5c 0134 U+005C REVERSE SOLIDUS (backslash)

] 93 0x5d 0135 U+005D RIGHT SQUARE BRACKET

^ 94 0x5e 0136 U+005E CIRCUMFLEX ACCENT (hat)

_ 95 0x5f 0137 U+005F LOW LINE (SPACING UNDERSCORE)

` 96 0x60 0140 U+0060 GRAVE ACCENT

a 97 0x61 0141 U+0061

b 98 0x62 0142 U+0062

c 99 0x63 0143 U+0063

d 100 0x64 0144 U+0064

e 101 0x65 0145 U+0065

f 102 0x66 0146 U+0066

g 103 0x67 0147 U+0067

h 104 0x68 0150 U+0068

Table D.2 – PDFDocEncoding Character Set (continued)

Character Dec Hex Octal Unicode Unicode character name or
(alternative alias)

Notes

PDF 32000-1:2008

660 © Adobe Systems Incorporated 2008 – All rights reserved

i 105 0x69 0151 U+0069

j 106 0x6a 0152 U+006A

k 107 0x6b 0153 U+006B

l 108 0x6c 0154 U+006C

m 109 0x6d 0155 U+006D

n 110 0x6e 0156 U+006E

o 111 0x6f 0157 U+006F

p 112 0x70 0160 U+0070

q 113 0x71 0161 U+0071

r 114 0x72 0162 U+0072

s 115 0x73 0163 U+0073

t 116 0x74 0164 U+0074

u 117 0x75 0165 U+0075

v 118 0x76 0166 U+0076

w 119 0x77 0167 U+0077

x 120 0x78 0170 U+0078

y 121 0x79 0171 U+0079

z 122 0x7a 0172 U+007A

{ 123 0x7b 0173 U+007B LEFT CURLY BRACKET

| 124 0x7c 0174 U+007C VERTICAL LINE

} 125 0x7d 0175 U+007D RIGHT CURLY BRACKET

~ 126 0x7e 0176 U+007E TILDE

127 0x7f 0177 Undefined U

• 128 0x80 0200 U+2022 BULLET

† 129 0x81 0201 U+2020 DAGGER

‡ 130 0x82 0202 U+2021 DOUBLE DAGGER

… 131 0x83 0203 U+2026 HORIZONTAL ELLIPSIS

— 132 0x84 0204 U+2014 EM DASH

– 133 0x85 0205 U+2013 EN DASH

ƒ 134 0x86 0206 U+0192

135 0x87 0207 U+2044 FRACTION SLASH (solidus)

‹ 136 0x88 0210 U+2039 SINGLE LEFT-POINTING ANGLE
QUOTATION MARK

Table D.2 – PDFDocEncoding Character Set (continued)

Character Dec Hex Octal Unicode Unicode character name or
(alternative alias)

Notes

© Adobe Systems Incorporated 2008 – All rights reserved 661

PDF 32000-1:2008

› 137 0x89 0211 U+203A SINGLE RIGHT-POINTING ANGLE
QUOTATION MARK

Š 138 0x8a 0212 U+2212

‰ 139 0x8b 0213 U+2030 PER MILLE SIGN

„ 140 0x8c 0214 U+201E DOUBLE LOW-9 QUOTATION MARK
(quotedblbase)

“ 141 0x8d 0215 U+201C LEFT DOUBLE QUOTATION MARK (double
quote left)

” 142 0x8e 0216 U+201D RIGHT DOUBLE QUOTATION MARK
(quotedblright)

‘ 143 0x8f 0217 U+2018 LEFT SINGLE QUOTATION MARK
(quoteleft)

’ 144 0x90 0220 U+2019 RIGHT SINGLE QUOTATION MARK
(quoteright)

‚ 145 0x91 0221 U+201A SINGLE LOW-9 QUOTATION MARK
(quotesinglbase)

™ 146 0x92 0222 U+2122 TRADE MARK SIGN

fi 147 0x93 0223 U+FB01 LATIN SMALL LIGATURE FI

fl 148 0x94 0224 U+FB02 LATIN SMALL LIGATURE FL

149 0x95 0225 U+0141 LATIN CAPITAL LETTER L WITH STROKE

OE 150 0x96 0226 U+0152 LATIN CAPITAL LIGATURE OE

Š 151 0x97 0227 U+0160 LATIN CAPITAL LETTER S WITH CARON

Ÿ 152 0x98 0230 U+0178 LATIN CAPITAL LETTER Y WITH
DIAERESIS

Z hat 153 0x99 0231 U+017D LATIN CAPITAL LETTER Z WITH CARON

i 154 0x9a 0232 U+0131 LATIN SMALL LETTER DOTLESS I

l/ 155 0x9b 0233 U+0142 LATIN SMALL LETTER L WITH STROKE

œ 156 0x9c 0234 U+0153 LATIN SMALL LIGATURE OE

š 157 0x9d 0235 U+0161 LATIN SMALL LETTER S WITH CARON

ž 158 0x9e 0236 U+017E LATIN SMALL LETTER Z WITH CARON

159 0x9f 0237 Undefined U

€ 160 0xa0 0240 U+20AC EURO SIGN

¡ 161 0xa1 0241 U+00A1 INVERTED EXCLAMATION MARK

¢ 162 0xa2 0242 U+00A2 CENT SIGN

£ 163 0xa3 0243 U+00A3 POUND SIGN (sterling)

¤ 164 0xa4 0244 U+00A4 CURRENCY SIGN

¥ 165 0xa5 0245 U+00A5 YEN SIGN

Table D.2 – PDFDocEncoding Character Set (continued)

Character Dec Hex Octal Unicode Unicode character name or
(alternative alias)

Notes

PDF 32000-1:2008

662 © Adobe Systems Incorporated 2008 – All rights reserved

¦ 166 0xa6 0246 U+00A6 BROKEN BAR

§ 167 0xa7 0247 U+00A7 SECTION SIGN

¨ 168 0xa8 0250 U+00A8 DIAERESIS

© 169 0xa9 0251 U+00A9 COPYRIGHT SIGN

ª 170 0xaa 0252 U+00AA FEMININE ORDINAL INDICATOR

« 171 0xab 0253 U+00AB LEFT-POINTING DOUBLE ANGLE
QUOTATION MARK

¬ 172 0xac 0254 U+00AC NOT SIGN

173 0xad 0255 Undefined U

® 174 0xae 0256 U+00AE REGISTERED SIGN

¯ 175 0xaf 0257 U+00AF MACRON

° 176 0xb0 0260 U+00B0 DEGREE SIGN

± 177 0xb1 0261 U+00B1 PLUS-MINUS SIGN

² 178 0xb2 0262 U+00B2 SUPERSCRIPT TWO

³ 179 0xb3 0263 U+00B3 SUPERSCRIPT THREE

´ 180 0xb4 0264 U+00B4 ACUTE ACCENT

µ 181 0xb5 0265 U+00B5 MICRO SIGN

¶ 182 0xb6 0266 U+00B6 PILCROW SIGN

· 183 0xb7 0267 U+00B7 MIDDLE DOT

¸ 184 0xb8 0270 U+00B8 CEDILLA

¹ 185 0xb9 0271 U+00B9 SUPERSCRIPT ONE

º 186 0xba 0272 U+00BA MASCULINE ORDINAL INDICATOR

» 187 0xbb 0273 U+00BB RIGHT-POINTING DOUBLE ANGLE
QUOTATION MARK

¼ 188 0xbc 0274 U+00BC VULGAR FRACTION ONE QUARTER

½ 189 0xbd 0275 U+00BD VULGAR FRACTION ONE HALF

¾ 190 0xbe 0276 U+00BE VULGAR FRACTION THREE QUARTERS

¿ 191 0xbf 0277 U+00BF INVERTED QUESTION MARK

À 192 0xc0 0300 U+00C0

Á 193 0xc1 0301 U+00C1

Â 194 0xc2 0302 U+00C2

Ã 195 0xc3 0303 U+00C3

Ä 196 0xc4 0304 U+00C4

Å 197 0xc5 0305 U+00C5

Table D.2 – PDFDocEncoding Character Set (continued)

Character Dec Hex Octal Unicode Unicode character name or
(alternative alias)

Notes

© Adobe Systems Incorporated 2008 – All rights reserved 663

PDF 32000-1:2008

Æ 198 0xc6 0306 U+00C6

Ç 199 0xc7 0307 U+00C7

È 200 0xc8 0310 U+00C8

É 201 0xc9 0311 U+00C9

Ê 202 0xca 0312 U+00CA

Ë 203 0xcb 0313 U+00CB

Ì 204 0xcc 0314 U+00CC

Í 205 0xcd 0315 U+00CD

Î 206 0xce 0316 U+00CE

Ï 207 0xcf 0317 U+00CF

Ð 208 0xd0 0320 U+00D0

Ñ 209 0xd1 0321 U+00D1

Ò 210 0xd2 0322 U+00D2

Ó 211 0xd3 0323 U+00D3

Ô 212 0xd4 0324 U+00D4

Õ 213 0xd5 0325 U+00D5

Ö 214 0xd6 0326 U+00D6

× 215 0xd7 0327 U+00D7

Ø 216 0xd8 0330 U+00D8

Ù 217 0xd9 0331 U+00D9

Ú 218 0xda 0332 U+00DA

Û 219 0xdb 0333 U+00DB

Ü 220 0xdc 0334 U+00DC

Ý 221 0xdd 0335 U+00DD

Þ 222 0xde 0336 U+00DE

ß 223 0xdf 0337 U+00DF

à 224 0xe0 0340 U+00E0

á 225 0xe1 0341 U+00E1

â 226 0xe2 0342 U+00E2

ã 227 0xe3 0343 U+00E3

ä 228 0xe4 0344 U+00E4

å 229 0xe5 0345 U+00E5

æ 230 0xe6 0346 U+00E6

Table D.2 – PDFDocEncoding Character Set (continued)

Character Dec Hex Octal Unicode Unicode character name or
(alternative alias)

Notes

PDF 32000-1:2008

664 © Adobe Systems Incorporated 2008 – All rights reserved

ç 231 0xe7 0347 U+00E7

è 232 0xe8 0350 U+00E8

é 233 0xe9 0351 U+00E9

ê 234 0xea 0352 U+00EA

ë 235 0xeb 0353 U+00EB

ì 236 0xec 0354 U+00EC

í 237 0xed 0355 U+00ED

î 238 0xee 0356 U+00EE

ï 239 0xef 0357 U+00EF

ð 240 0xf0 0360 U+00F0

ñ 241 0xf1 0361 U+00F1

ò 242 0xf2 0362 U+00F2

ó 243 0xf3 0363 U+00F3

ô 244 0xf4 0364 U+00F4

õ 245 0xf5 0365 U+00F5

ö 246 0xf6 0366 U+00F6

÷ 247 0xf7 0367 U+00F7

ø 248 0xf8 0370 U+00F8

ù 249 0xf9 0371 U+00F9

ú 250 0xfa 0372 U+00FA

û 251 0xfb 0373 U+00FB

ü 252 0xfc 0374 U+00FC

ý 253 0xfd 0375 U+00FD

þ 254 0xfe 0376 U+00FE

ÿ 255 0xff 0377 U+00FF

Table D.2 – PDFDocEncoding Character Set (continued)

Character Dec Hex Octal Unicode Unicode character name or
(alternative alias)

Notes

© Adobe Systems Incorporated 2008 – All rights reserved 665

PDF 32000-1:2008

D.4 Expert Set and MacExpertEncoding

p p g

CHAR NAME CODE CHAR NAME CODE

æ AEsmall 276
á Aacutesmall 207
â Acircumflexsmall 211
´ Acutesmall 047
ä Adieresissmall 212
à Agravesmall 210
å Aringsmall 214
a Asmall 141
ã Atildesmall 213
˘ Brevesmall 363
b Bsmall 142
ˇ Caronsmall 256
ç Ccedillasmall 215
¸ Cedillasmall 311
ˆ Circumflexsmall 136
c Csmall 143
¨ Dieresissmall 254
˙ Dotaccentsmall 372
d Dsmall 144
é Eacutesmall 216
ê Ecircumflexsmall 220
ë Edieresissmall 221
è Egravesmall 217
e Esmall 145
ð Ethsmall 104
f Fsmall 146
` Gravesmall 140
g Gsmall 147
h Hsmall 150
˝ Hungarumlautsmall 042
í Iacutesmall 222
î Icircumflexsmall 224
ï Idieresissmall 225
ì Igravesmall 223
i Ismall 151

j Jsmall 152
k Ksmall 153
ł Lslashsmall 302
l Lsmall 154
¯ Macronsmall 364
m Msmall 155
n Nsmall 156
ñ Ntildesmall 226
œ OEsmall 317
ó Oacutesmall 227
ô Ocircumflexsmall 231
ö Odieresissmall 232
˛ Ogoneksmall 362
ò Ogravesmall 230
ø Oslashsmall 277
o Osmall 157
õ Otildesmall 233
p Psmall 160
q Qsmall 161
˚ Ringsmall 373
r Rsmall 162
š Scaronsmall 247
s Ssmall 163
þ Thornsmall 271
˜ Tildesmall 176
t Tsmall 164
ú Uacutesmall 234
û Ucircumflexsmall 236
ü Udieresissmall 237
ù Ugravesmall 235
u Usmall 165
v Vsmall 166
w Wsmall 167
x Xsmall 170
ý Yacutesmall 264

PDF 32000-1:2008

666 © Adobe Systems Incorporated 2008 – All rights reserved

CHAR NAME CODE CHAR NAME CODE

ÿ Ydieresissmall 330
y Ysmall 171
ž Zcaronsmall 275
z Zsmall 172
& ampersandsmall 046
a asuperior 201
b bsuperior 365
¢ centinferior 251
¢ centoldstyle 043
¢ centsuperior 202
: colon 072
₡ colonmonetary 173
, comma 054
, commainferior 262
, commasuperior 370
$ dollarinferior 266
$ dollaroldstyle 044
$ dollarsuperior 045
d dsuperior 353
₈ eightinferior 245
8 eightoldstyle 070
⁸ eightsuperior 241
e esuperior 344
¡ exclamdownsmall 326
! exclamsmall 041
ff ff 126
ffi ffi 131
ffl ffl 132
fi fi 127
‒ figuredash 320
⅝ fiveeighths 114
₅ fiveinferior 260
5 fiveoldstyle 065
⁵ fivesuperior 336
fl fl 130
₄ fourinferior 242

4 fouroldstyle 064
⁴ foursuperior 335
⁄ fraction 057
- hyphen 055
- hypheninferior 137
- hyphensuperior 321
i isuperior 351
l lsuperior 361
m msuperior 367
₉ nineinferior 273
9 nineoldstyle 071
⁹ ninesuperior 341
ⁿ nsuperior 366
․ onedotenleader 053
⅛ oneeighth 112
1 onefitted 174
½ onehalf 110
₁ oneinferior 301
1 oneoldstyle 061
¼ onequarter 107
¹ onesuperior 332
⅓ onethird 116
o osuperior 257
₍ parenleftinferior 133
⁽ parenleftsuperior 050
₎ parenrightinferior 135
⁾ parenrightsuperior 051
. period 056
. periodinferior 263
. periodsuperior 371
¿ questiondownsmall 300
? questionsmall 077
r rsuperior 345
Rp rupiah 175
; semicolon 073
⅞ seveneighths 115

© Adobe Systems Incorporated 2008 – All rights reserved 667

PDF 32000-1:2008

CHAR NAME CODE CHAR NAME CODE

₇ seveninferior 246
7 sevenoldstyle 067
⁷ sevensuperior 340
₆ sixinferior 244
6 sixoldstyle 066
⁶ sixsuperior 337
 space 040
s ssuperior 352
⅜ threeeighths 113
₃ threeinferior 243
3 threeoldstyle 063
¾ threequarters 111

— threequartersemdash 075
³ threesuperior 334
t tsuperior 346
‥ twodotenleader 052
₂ twoinferior 252
2 twooldstyle 062
² twosuperior 333
⅔ twothirds 117
₀ zeroinferior 274
0 zerooldstyle 060
⁰ zerosuperior 342

PDF 32000-1:2008

668 © Adobe Systems Incorporated 2008 – All rights reserved

D.5 Symbol Set and Encoding

CHAR NAME CODE CHAR NAME CODE

� Alpha 101
� Beta 102
� Chi 103
� Delta 104
� Epsilon 105
� Eta 110
€ Euro 240
� Gamma 107
	 Ifraktur 301

 Iota 111
� Kappa 113
� Lambda 114
 Mu 115
� Nu 116
� Omega 127
� Omicron 117
� Phi 106
� Pi 120
� Psi 131
� Rfraktur 302
� Rho 122
� Sigma 123
� Tau 124
� Theta 121
� Upsilon 125
� Upsilon1 241
� Xi 130
� Zeta 132
� aleph 300
� alpha 141
& ampersand 046
� angle 320
 angleleft 341
! angleright 361
" approxequal 273

arrowboth 253
$ arrowdblboth 333
% arrowdbldown 337
' arrowdblleft 334
(arrowdblright 336
) arrowdblup 335
* arrowdown 257
+ arrowhorizex 276
, arrowleft 254
- arrowright 256
. arrowup 255
/ arrowvertex 275
0 asteriskmath 052
| bar 174
1 beta 142
{ braceleft 173
} braceright 175
2 bracelefttp 354
4 braceleftmid 355
5 braceleftbt 356
6 bracerighttp 374
7 bracerightmid 375
8 bracerightbt 376
9 braceex 357
[bracketleft 133
] bracketright 135
: bracketlefttp 351
; bracketleftex 352
< bracketleftbt 353
= bracketrighttp 371
> bracketrightex 372
? bracketrightbt 373
• bullet 267
@ carriagereturn 277
A chi 143

© Adobe Systems Incorporated 2008 – All rights reserved 669

PDF 32000-1:2008

CHAR NAME CODE CHAR NAME CODE

B circlemultiply 304
C circleplus 305
D club 247
: colon 072
, comma 054
G congruent 100
© copyrightsans 343
H copyrightserif 323
° degree 260
I delta 144
J diamond 250
÷ divide 270
K dotmath 327
8 eight 070
M element 316
… ellipsis 274
N emptyset 306
O epsilon 145
= equal 075
Q equivalence 272
R eta 150
! exclam 041
T existential 044
5 five 065
ƒ florin 246
4 four 064
W fraction 244
X gamma 147
Y gradient 321
> greater 076
\ greaterequal 263
^ heart 251
_ infinity 245
` integral 362
a integraltp 363
b integralex 364

c integralbt 365
d intersection 307
e iota 151
f kappa 153
g lambda 154
< less 074
i lessequal 243
j logicaland 331
¬ logicalnot 330
k logicalor 332
l lozenge 340
m minus 055
n minute 242
μ mu 155
× multiply 264
9 nine 071
p notelement 317
q notequal 271
r notsubset 313
s nu 156
numbersign 043
u omega 167
v omega1 166
w omicron 157
1 one 061
(parenleft 050
) parenright 051
~ parenlefttp 346
� parenleftex 347
� parenleftbt 350
� parenrighttp 366
� parenrightex 367
� parenrightbt 370
� partialdiff 266
% percent 045
. period 056

PDF 32000-1:2008

670 © Adobe Systems Incorporated 2008 – All rights reserved

CHAR NAME CODE CHAR NAME CODE

� perpendicular 136
� phi 146
� phi1 152
� pi 160
+ plus 053
± plusminus 261
� product 325
� propersubset 314
� propersuperset 311
� proportional 265
� psi 171
? question 077
� radical 326
� radicalex 140
� reflexsubset 315
� reflexsuperset 312
® registersans 342
� registerserif 322
� rho 162
� second 262
; semicolon 073
7 seven 067
� sigma 163
� sigma1 126

 similar 176
6 six 066
/ slash 057
 space 040
¤ spade 252
¥ suchthat 047
¦ summation 345
§ tau 164
¨ therefore 134
ª theta 161
« theta1 112
3 three 063
™ trademarksans 344
¯ trademarkserif 324
2 two 062
_ underscore 137
´ union 310
¶ universal 042
· upsilon 165
¸ weierstrass 303
¹ xi 170
0 zero 060
» zeta 172

© Adobe Systems Incorporated 2008 – All rights reserved 671

PDF 32000-1:2008

D.6 ZapfDingbats Set and Encoding

CHAR NAME CODE CHAR NAME CODE CHAR NAME CODE CHAR NAME CODE

 space 040
✁ a1 041
✂ a2 042
✃ a202 043
✄ a3 044
☎ a4 045
✆ a5 046
✇ a119 047
✈ a118 050
✉ a117 051
☛ a11 052
☞ a12 053
✌ a13 054
✍ a14 055
✎ a15 056
✏ a16 057
✐ a105 060
✑ a17 061
✒ a18 062
✓ a19 063
✔ a20 064
✕ a21 065
✖ a22 066
✗ a23 067
✘ a24 070
✙ a25 071
✚ a26 072
✛ a27 073
✜ a28 074
✝ a6 075
✞ a7 076
✟ a8 077
✠ a9 100
✡ a10 101
✢ a29 102

✣ a30 103
✤ a31 104
✥ a32 105
✦ a33 106
✧ a34 107
★ a35 110
✩ a36 111
✪ a37 112
✫ a38 113
✬ a39 114
✭ a40 115
✮ a41 116
✯ a42 117
✰ a43 120
✱ a44 121
✲ a45 122
✳ a46 123
✴ a47 124
✵ a48 125
✶ a49 126
✷ a50 127
✸ a51 130
✹ a52 131
✺ a53 132
✻ a54 133
✼ a55 134
✽ a56 135
✾ a57 136
✿ a58 137
❀ a59 140
❁ a60 141
❂ a61 142
❃ a62 143
❄ a63 144
❅ a64 145

❆ a65 146
❇ a66 147
❈ a67 150
❉ a68 151
❊ a69 152
❋ a70 153
● a71 154
❍ a72 155
■ a73 156
❏ a74 157
❐ a203 160
❑ a75 161
❒ a204 162
▲ a76 163
▼ a77 164
◆ a78 165
❖ a79 166
◗ a81 167
❘ a82 170
❙ a83 171
❚ a84 172
❛ a97 173
❜ a98 174
❝ a99 175
❞ a100 176
❡ a101 241
❢ a102 242
❣ a103 243
❤ a104 244
❥ a106 245
❦ a107 246
❧ a108 247
♣ a112 250
♦ a111 251
♥ a110 252

♠ a109 253
① a120 254
② a121 255
③ a122 256
④ a123 257
⑤ a124 260
⑥ a125 261
⑦ a126 262
⑧ a127 263
⑨ a128 264
⑩ a129 265
❶ a130 266
❷ a131 267
❸ a132 270
❹ a133 271
❺ a134 272
❻ a135 273
❼ a136 274
❽ a137 275
❾ a138 276
❿ a139 277
➀ a140 300
➁ a141 301
➂ a142 302
➃ a143 303
➄ a144 304
➅ a145 305
➆ a146 306
➇ a147 307
➈ a148 310
➉ a149 311
➊ a150 312
➋ a151 313
➌ a152 314
➍ a153 315

PDF 32000-1:2008

672 © Adobe Systems Incorporated 2008 – All rights reserved

CHAR NAME CODE CHAR NAME CODE CHAR NAME CODE CHAR NAME CODE

➎ a154 316
➏ a155 317
➐ a156 320
➑ a157 321
➒ a158 322
➓ a159 323
➔ a160 324
→ a161 325
↔ a163 326
↕ a164 327
➘ a196 330
➙ a165 331

➚ a192 332
➛ a166 333
➜ a167 334
➝ a168 335
➞ a169 336
➟ a170 337
➠ a171 340
➡ a172 341
➢ a173 342
➣ a162 343
➤ a174 344
➥ a175 345

➦ a176 346
➧ a177 347
➨ a178 350
➩ a179 351
➪ a193 352
➫ a180 353
➬ a199 354
➭ a181 355
➮ a200 356
➯ a182 357
➱ a201 361
➲ a183 362

➳ a184 363
➴ a197 364
➵ a185 365
➶ a194 366
➷ a198 367
➸ a186 370
➹ a195 371
➺ a187 372
➻ a188 373
➼ a189 374
➽ a190 375
➾ a191 376

© Adobe Systems Incorporated 2008 – All rights reserved 673

PDF 32000-1:2008

Annex E
(normative)

PDF Name Registry

E.1 General

This annex discusses a registry for developers, controlled by ISO and currently provided by Adobe on behalf of
ISO. The registry contains private names and formats that may be used by conforming writers. Developer
prefixes shall be used to identify extensions to PDF that use First Class names (see below) and that are
intended for public use. (See 7.12.2, “Developer Extensions Dictionary.) “Developers” means any entity
including individuals, companies, non-profits, standards bodies, open source groups, etc., who are developing
standards or software to use and extend ISO 32000-1.

Private data may be added to PDF documents that enable conforming reader’s to change behavior based on
this data. At the same time, users have certain expectations when opening a PDF document, no matter which
conforming reader is being used. PDF enforces certain restrictions on private data in order to meet these
expectations.

A conforming writer or conforming reader may define new types of actions, destinations, annotations, security,
and file system handlers. If a user opens a PDF document using a conforming reader for which the new type of
object is not supported, the conforming reader shall behave as described in Annex I.

A conforming writer may also add keys to any PDF object that is implemented as a dictionary, except the file
trailer dictionary (see 7.5.5, "File Trailer"). In addition, a conforming writer may create tags that indicate the role
of marked-content operators (PDF 1.2), as described in 14.6, "Marked Content".

E.2 Name Registry

To avoid conflicts with third-party names and with future versions of PDF, ISO maintains a registry for certain
private names and formats. Developers shall only add private data that conforms to the registry rules. The
registry includes three classes:

• First class. Names and data formats that are of value to a wide range of developers. All names defined in
this ISO 32000 specification are first-class names. Conforming readers that are publicly available shall use
first-class names for their private data. First-class names and data formats shall be registered with ISO and
shall be made available for all developers to use. To submit a private name and format for consideration as
first-class, see the link on registering a private PDF extension, at the following Web page:

< http://adobe.com/go/ISO32000Registry>

Data format descriptions shall follow the style of ISO 32000-1 and give a complete specification of the
intended function of the extended information.

• Second class. Names that are applicable to a specific developer. ISO does not register second-class data
formats.) ISO distributes second-class names by registering developer-specific 4-byte prefixes. Those
bytes followed by a LOW LINE (5Fh) shall be used as the first characters in the names of all private data
added by the developer. ISO shall not register the same prefix to two different developers, thereby
ensuring that different developers’ second-class names shall not conflict. It is the responsibility of the
developer not to use the same name in conflicting ways. To register a developer-specific prefix, use the
following Web page:

< http://adobe.com/go/ISO32000Registry>

http://adobe.com/go/acrobat_developer
http://adobe.com/go/acrobat_developer
http://adobe.com/go/acrobat_developer
http://adobe.com/go/acrobat_developer
http://adobe.com/go/acrobat_developer

PDF 32000-1:2008

674 © Adobe Systems Incorporated 2008 – All rights reserved

• Third class. Names that may be used only in PDF files that other third parties will never see because they
can conflict with third-class names defined by others. Third-class names shall all begin with a specific
prefix reserved for private extensions. This prefix, which is XX, shall be used as the first characters in the
names of all private data added by the developer. It is not necessary to contact ISO to register third-class
names.

New keys for the document information dictionary (see 14.3.3, "Document Information Dictionary") or a thread
information dictionary (in the I entry of a thread dictionary; see Section 12.4.3, “Articles”) shall not be
registered.

More information about developer prefixes, handlers and extensions to ISO 32000-1 can be obtained at http://
www.aiim.org/ISO32000Registry.

© Adobe Systems Incorporated 2008 – All rights reserved 675

PDF 32000-1:2008

Annex F
(normative)

Linearized PDF

F.1 General

Linearization of PDF is an optional feature available beginning in PDF 1.2 that enables efficient incremental
access of the file in a network environment. A conforming reader that does not support this optional feature can
still successfully process linearized files although not as efficiently. Enhanced conforming readers can
recognize that a PDF file has been linearized and may take advantage of that organization (as well as added
hint information) to enhance viewing performance.

The primary goal for a linearized PDF file is to achieve the following behaviour for documents of arbitrary size
and so that the total number of pages in the document should have little or no effect on the user-perceived
performance of viewing any particular page:

• When a document is opened, display the first page as quickly as possible. The first page to be viewed may
be an arbitrary page of the document, not necessarily page 0 (though opening at page 0 is most common).

• When the user requests another page of an open document (for example, by going to the next page or by
following a link to an arbitrary page), display that page as quickly as possible.

• When data for a page is delivered over a slow channel, display the page incrementally as it arrives. To the
extent possible, display the most useful data first.

• Permit user interaction, such as following a link, to be performed even before the entire page has been
received and displayed.

NOTE A linearized PDF is optimized for viewing of read-only PDF documents. A linearized PDF should be generated
once and read many times.

Incremental update shall still be permitted, but the resulting PDF is no longer linearized and subsequently shall
be treated as ordinary PDF. Linearizing it again may require reprocessing the entire file; see G.7, "Accessing an
Updated File" for details.

Linearized PDF requires two additions to the PDF specification:

• Rules for the ordering of objects in the PDF file

• Additional optional data structures, called hint tables, that enable efficient navigation within the document

Both of these additions are relatively simple to describe; however, using them effectively requires a deeper
understanding of their purpose. Consequently, this annex goes considerably beyond a simple specification of
these PDF extensions to include background, motivation, and strategies.

• F.2, "Background and Assumptions," provides background information about the properties of the Web that
are relevant to the design of Linearized PDF.

• F.3, "Linearized PDF Document Structure," specifies the file format and object-ordering requirements of
Linearized PDF.

• F.4, "Hint Tables," specifies the detailed representation of the hint tables.

PDF 32000-1:2008

676 © Adobe Systems Incorporated 2008 – All rights reserved

• Annex G, outlines strategies for accessing Linearized PDF over a network, which in turn determine the
optimal way to organize the PDF file.

The reader is assumed to be familiar with the basic architecture of the Web, including terms such as URL,
HTTP, and MIME.

F.2 Background and Assumptions

NOTE 1 The principal problem addressed by the Linearized PDF design is the access of PDF documents through the
Web. This environment has the following important properties:

• The access protocol (HTTP) is a transaction consisting of a request and a response. The conforming
reader presents a request in the form of a URL, and the server sends a response consisting of one or
more MIME-tagged data blocks.

• After a transaction has completed, obtaining more data requires a new request-response transaction. The
connection between conforming reader and server does not ordinarily persist beyond the end of a
transaction, although some implementations may attempt to cache the open connection to expedite
subsequent transactions with the same server.

• Round-trip delay can be significant. A request-response transaction can take up to several seconds,
independent of the amount of data requested.

• The data rate may be limited. A typical bottleneck is a slow link between the conforming reader and the
Internet service provider.

These properties are generally shared by other wide-area network architectures besides the Web.
Also, CD-ROMs share some of these properties, since they have relatively slow seek times and lim-
ited data rates compared to magnetic media. The remainder of this annex focuses on the Web.

Some additional properties of the HTTP protocol are relevant to the problem of accessing PDF files
efficiently. These properties may not all be shared by other protocols or network environments.

• When a PDF file is initially accessed (such as by following a URL hyperlink from some other document),
the file type is not known to the conforming reader. Therefore, the conforming reader initiates a transaction
to retrieve the entire document and then inspects the MIME tag of the response as it arrives. Only at that
point is the document known to be PDF. Additionally, with a properly configured server environment, the
length of the document becomes known at that time.

• The conforming reader may abort a response while the transaction is still in progress if it decides that the
remainder of the data is not of immediate interest. In HTTP, aborting the transaction requires closing the
connection, which interferes with the strategy of caching the open connection between transactions.

• The conforming reader may request retrieval of portions of a document by specifying one or more byte
ranges (by offset and count) in the HTTP request headers. Each range can be relative to either the
beginning or the end of the file. The conforming reader may specify as many ranges as it wants in the
request, and the response consists of multiple blocks, each properly tagged.

• The conforming reader may initiate multiple concurrent transactions in an attempt to obtain multiple
responses in parallel. This is commonly done, for instance, to retrieve inline images referenced from an
HTML document. This strategy is not always reliable and may backfire if the transactions interfere with
each other by competing for scarce resources in the server or the communication channel.

NOTE 2 Extensive experimentation has determined that having multiple concurrent transactions does not work very
well for PDF in some important environments. Therefore, Linearized PDF is designed to enable good
performance to be achieved using only one transaction at a time. In particular, this means that the conforming
reader needs to have sufficient information to determine the byte ranges for all the objects required to display
a given page of the PDF file so that it can specify all those byte ranges in a single request.

NOTE 3 The following additional assumptions are made about the conforming reader and its local environment:

• The conforming reader has plenty of local temporary storage available. It should rarely need to retrieve a
given portion of a PDF document more than once from the server.

© Adobe Systems Incorporated 2008 – All rights reserved 677

PDF 32000-1:2008

• The conforming reader is able to display PDF data quickly once it has been received. The performance
bottleneck is assumed to be in the transport system (throughput or round-trip delay), not in the processing
of data after it arrives.

The consequence of these assumptions is that it may be advantageous for the conforming reader to
do considerable extra work to minimize delays due to communications.

Such work includes maintaining local caches and reordering actions according to when the needed data
becomes available.

F.3 Linearized PDF Document Structure

F.3.1 General

Except as noted below, all elements of a Linearized PDF file shall be as specified in 7.5, "File Structure", and all
indirect objects in the file shall be shall be divided into two groups.

• The first group shall consist of the document catalogue, other document-level objects, and all objects
belonging to the first page of the document. These objects shall be numbered sequentially, starting at the
first object number after the last number of the second group. (The stream containing the hint tables, called
a hint stream, may be numbered out of sequence; see F.3.6, "Hint Streams (Parts 5 and 10)".

• The second group shall consist of all remaining objects in the document, including all pages after the first,
all shared objects (objects referenced from more than one page, not counting objects referenced from the
first page), and so forth. These objects shall be numbered sequentially starting at 1.

These groups of objects shall be indexed by exactly two cross-reference table sections. For pedagogical
reasons the linearized PDF is considered to be composed from 11 parts, in order, and the composition of these
groups is discussed in more detail in the sections that follow. All objects shall have a generation number of 0.

Beginning with PDF 1.5, PDF files may contain object streams (see 7.5.7, "Object Streams"). In linearized files
containing object streams, the following conditions shall apply:

• These additional objects may not be contained in an object stream: the linearization dictionary, the
document catalogue, and page objects.

• Objects stored within object streams shall be given the highest range of object numbers within the main
and first-page cross-reference sections.

• For files containing object streams, hint data may specify the location and size of the object streams only
(or uncompressed objects), not the individual compressed objects. Similarly, shared object references
shall be made to the object stream containing a compressed object, not to the compressed object itself.

• Cross-reference streams (7.5.8, "Cross-Reference Streams") may be used in place of traditional cross-
reference tables. The logic described in this sub-clause shall still apply, with the appropriate syntactic
changes.

EXAMPLE 1 Part 1: Header
% PDF-1 . 1 % … Binary characters …

EXAMPLE 2 Part 2: Linearization parameter dictionary
43 0 obj

<< /Linearized 1.0 % Version
 /L 54567 % File length
 /H [475 598] % Primary hint stream offset and length (part 5)
 /O 45 % Object number of first page’s page object (part 6)
 /E 5437 % Offset of end of first page
 /N 11 % Number of pages in document

PDF 32000-1:2008

678 © Adobe Systems Incorporated 2008 – All rights reserved

 /T 52786 % Offset of first entry in main cross-reference table (part 11)
>>

endobj

EXAMPLE 3 Part 3: First-page cross-reference table and trailer
xref
43 14
0000000052 00000 n
0000000392 00000 n
0000001073 00000 n
… Cross-reference entries for remaining objects in the first page …
0000000475 00000 n
trailer

<< /Size 57 % Total number of cross-reference table entries in document
 /Prev 52776 % Offset of main cross-reference table (part 11)
 /Root 44 0 R % Indirect reference to catalogue (part 4)
 … Any other entries, such as Info and Encrypt … % (part 9)

>>
% Dummy cross-reference table offset
startxref
0
% % EOF

EXAMPLE 4 Part 4: Document catalogue and other required document-level objects
44 0 obj

<< /Type /Catalog
 /Pages 42 0 R

>>
endobj
… Other objects …

EXAMPLE 5 Part 5: Primary hint stream (may precede or follow part 6)
56 0 obj

<< /Length 457
 … Possibly other stream attributes, such as Filter …
 /S 221 % Position of shared object hint table
 … Possibly entries for other hint tables …

>>
stream

… Page offset hint table …
… Shared object hint table …
… Possibly other hint tables …

endstream
endobj

EXAMPLE 6 Part 6: First-page section (may precede or follow part 5)
45 0 obj

<< /Type /Page
…

>>
endobj

… Outline hierarchy (if the PageMode value in the document catalog is UseOutlines) …

… Objects for first page, including both shared and nonshared objects …

EXAMPLE 7 Part 7: Remaining pages
1 0 obj

<< /Type /Page

© Adobe Systems Incorporated 2008 – All rights reserved 679

PDF 32000-1:2008

 … Other page attributes, such as MediaBox, Parent, and Contents …
>>

endobj

… Nonshared objects for this page …

… Each successive page followed by its nonshared objects …

… Last page followed by its nonshared objects …

EXAMPLE 8 Part 8: Shared objects for all pages except the first
… Shared objects …

EXAMPLE 9 Part 9: Objects not associated with pages, if any
… Other objects …

EXAMPLE 10 Part 10: Overflow hint stream (optional)
… Overflow hint stream …

EXAMPLE 11 Part 11: Main cross-reference table and trailer
xref
0 43
0000000000 65535 f
… Cross-reference entries for all except first page’s objects …
trailer

<< /Size 43 >> % Trailer need not contain other entries; in particular,
% it should not have a Prev entry

% Offset of first-page cross-reference table (part 3)
startxref
257
% % EOF

F.3.2 Header (Part 1)

The Linearized PDF file shall begin with the standard header line (see 7.5.2, "File Header"). Linearization is
independent of PDF version number and may be applied to any PDF file of version 1.1 or greater.

The binary characters following the PERCENT SIGN (25h) on the second line are characters with codes 128 or
greater, as recommended in 7.5.2, "File Header".

F.3.3 Linearization Parameter Dictionary (Part 2)

Following the header, the first object in the body of the file (part 2) shall be an indirect dictionary object, the
linearization parameter dictionary, which shall contain the parameters listed in Table F.1. All values in this
dictionary shall be direct objects. There shall be no references to this dictionary anywhere in the document;
however, the first-page cross-reference table (part 3) shall contain a normal entry for it.

The linearization parameter dictionary shall be entirely contained within the first 1024 bytes of the PDF file. This
limits the amount of data a conforming reader must read before deciding whether the file is linearized.

PDF 32000-1:2008

680 © Adobe Systems Incorporated 2008 – All rights reserved

F.3.4 First-Page Cross-Reference Table and Trailer (Part 3)

Part 3 shall contain the cross-reference table for objects belonging to the first page (discussed in F.3.4, "First-
Page Cross-Reference Table and Trailer (Part 3)") as well as for the document catalogue and document-level
objects appearing before the first page (discussed in F.3.5, "Document Catalogue and Document-Level Objects
(Part 4)"). Additionally, this cross-reference table shall contain entries for the linearization parameter dictionary
(at the beginning) and the primary hint stream (at the end). This table shall be a valid cross-reference table as
defined in 7.5.4, "Cross-Reference Table", although its position in the file shall not be at the end of the file. It
shall consist of a single cross-reference subsection that has no free entries.

In PDF 1.5 and later, cross-reference streams (see 7.5.8, "Cross-Reference Streams") may be used in
linearized files in place of traditional cross-reference tables. The logic described in this section, along with the
appropriate syntactic changes for cross-reference streams shall still apply.

Table F.1 – Entries in the linearization parameter dictionary

Parameter Type Value

Linearized number (Required) A version identification for the linearized format.

L integer (Required) The length of the entire file in bytes. It shall be exactly
equal to the actual length of the PDF file. A mismatch indicates that
the file is not linearized and shall be treated as ordinary PDF, ignoring
linearization information. (If the mismatch resulted from appending an
update, the linearization information may still be correct but requires
validation; see G.7, "Accessing an Updated File" for details.)

H array (Required) An array of two or four integers, [offset1 length1] or
[offset1 length1 offset2 length2]. offset1 shall be the offset of the
primary hint stream from the beginning of the file. (This is the
beginning of the stream object, not the beginning of the stream data.)
length1 shall be the length of this stream, including stream object
overhead.
If the value of the primary hint stream dictionary’s Length entry is an
indirect reference, the object it refers to shall immediately follow the
stream object, and length1 also shall include the length of the indirect
length object, including object overhead.
If there is an overflow hint stream, offset2 and length2 shall specify its
offset and length.

O integer (Required) The object number of the first page’s page object.

E integer (Required) The offset of the end of the first page (the end of EXAMPLE
6 in F.3.1, "General"), relative to the beginning of the file.

N integer (Required) The number of pages in the document.

T integer (Required) In documents that use standard main cross-reference
tables (including hybrid-reference files; see 7.5.8.4, "Compatibility with
Applications That Do Not Support Compressed Reference Streams"),
this entry shall represent the offset of the white-space character
preceding the first entry of the main cross-reference table (the entry for
object number 0), relative to the beginning of the file. Note that this
differs from the Prev entry in the first-page trailer, which gives the
location of the xref line that precedes the table.
(PDF 1.5) Documents that use cross-reference streams exclusively
(see 7.5.8, "Cross-Reference Streams"), this entry shall represent the
offset of the main cross-reference stream object.

P integer (Optional) The page number of the first page; see F.3.4, "First-Page
Cross-Reference Table and Trailer (Part 3)". Default value: 0.

© Adobe Systems Incorporated 2008 – All rights reserved 681

PDF 32000-1:2008

Below the table shall be the first-page trailer. The trailer’s Prev entry shall give the offset of the main cross-
reference table near the end of the file. A conforming reader that does not support the linearized feature shall
process this correctly even though the trailers are linked in an unusual order. It interprets the first-page cross-
reference table as an update to an original document that is indexed by the main cross-reference table.

The first-page trailer shall contain valid Size and Root entries, as well as any other entries needed to display
the document. The Size value shall be the combined number of entries in both the first-page cross-reference
table and the main cross-reference table.

The first-page trailer may optionally end with startxref, an integer, and %%EOF, just as in an ordinary trailer.
This information shall be ignored.

F.3.5 Document Catalogue and Document-Level Objects (Part 4)

Following the first-page cross-reference table and trailer are the catalogue dictionary and other objects that are
required present when the document is opened. These additional objects (constituting part 4) shall include the
values of the following entries if they are present and are indirect objects:

• The conforming reader Preferences entry in the catalogue.

• The PageMode entry in the catalogue. Note that if the value of PageMode is UseOutlines, the outline
hierarchy shall be located in part 6; otherwise, the outline hierarchy, if any, shall be located in part 9. See
F.3.10, "Other Objects (Part 9)" for details.

• The Threads entry in the catalogue, along with all thread dictionaries it refers to. This does not include the
threads’ information dictionaries or the individual bead dictionaries belonging to the threads.

• The OpenAction entry in the catalogue.

• The AcroForm entry in the catalogue. Only the top-level interactive form dictionary shall be present, not
the objects that it refers to.

• The Encrypt entry in the first-page trailer dictionary. All values in the encryption dictionary shall also be
located here.

All other objects shall not be located here but instead shall be at the end of the file; see F.3.10, "Other Objects
(Part 9)". This includes objects such as page tree nodes, the document information dictionary, and the
definitions for named destinations.

NOTE The objects located here are indexed by the first-page cross-reference table, even though they are not logically
part of the first page.

F.3.6 Hint Streams (Parts 5 and 10)

The core of the linearization information shall be stored in data structures known as hint tables, whose format is
described in F.4, "Hint Tables." They shall provide indexing information that enables the conforming reader to
construct a single request for all the objects that are needed to display any page of the document or to retrieve
other information efficiently. The hint tables may contain additional information to optimize access by
conforming writer extensions to application-specific data.

The hint tables shall not be logically part of the information content of the document; they shall be derived from
the document. Any action that changes the document—for instance, appending an incremental
update—invalidates the hint tables. The document remains a valid PDF file but is no longer linearized; see G.7,
"Accessing an Updated File" for details.

The hint tables are binary data structures that shall be enclosed in a stream object. Syntactically, this stream
shall be a PDF indirect object. However, there shall be no references to the stream anywhere in the document.

PDF 32000-1:2008

682 © Adobe Systems Incorporated 2008 – All rights reserved

Therefore, it is not logically part of the document, and an operation that regenerates the document may remove
the stream.

Usually, all the hint tables shall be contained in a single stream, known as the primary hint stream. Optionally,
there may be an additional stream containing more hints, known as the overflow hint stream. The contents of
the two hint streams shall be concatenated and treated as if they were a single unbroken stream.

The primary hint stream, which shall be required, is shown as part 5 in Example 5. The order of this part and
the first-page section, shown as part 6, may be reversed; see Annex G for considerations on the choice of
placement. The overflow hint stream, part 10, is optional.

The location and length of the primary hint stream, and of the overflow hint stream if present, shall be given in
the linearization parameter dictionary at the beginning of the file.

The hint streams shall be assigned the last object numbers in the file—that is, after the object number for the
last object in the first page. Their cross-reference table entries shall be at the end of the first-page cross-
reference table. This object number assignment shall be independent of the physical locations of the hint
streams in the file.

NOTE This convention keeps their object numbers from conflicting with the numbering of the linearized objects.

With one exception, the values of all entries in the hint streams’ dictionaries shall be direct objects and may
contain no indirect object references. The exception is the stream dictionary’s Length entry (see the discussion
of the H entry in Table F.1).

In addition to the standard stream attributes, the dictionary of the primary hint stream shall contain entries
giving the position of the beginning of each hint table in the stream. These positions shall be counted in bytes
relative to the beginning of the stream data (after decoding filters, if any, are applied) and with the overflow hint
stream concatenated if present. The dictionary of the overflow hint stream shall not contain these entries. The
keys designating the standard hint tables in the primary hint stream’s dictionary are listed in Table F.2; F.4, "Hint
Tables," documents the format of these hint tables. Additionally, there is a required page offset hint table, which
shall be the first table in the stream and shall start at offset 0.

Table F.2 – Standard hint tables

Key Hint table

S (Required) Shared object hint table (see F.4.2, “Shared Object Hint
Table”)

T (Present only if thumbnail images exist) Thumbnail hint table (see F.4.3,
"Thumbnail Hint Table")

O (Present only if a document outline exists) Outline hint table (see F.4.4,
“Generic Hint Tables”)

A (Present only if article threads exist) Thread information hint table (see
F.4.4, “Generic Hint Tables”)

E (Present only if named destinations exist) Named destination hint table
(see F.4.4, “Generic Hint Tables”)

V (Present only if an interactive form dictionary exists) Interactive form hint
table (see F.4.5, “Extended Generic Hint Tables”)

I (Present only if a document information dictionary exists) Information
dictionary hint table (see F.4.4, “Generic Hint Tables”)

C (Present only if a logical structure hierarchy exists; PDF 1.3) Logical
structure hint table (see F.4.5, “Extended Generic Hint Tables”)

L (PDF 1.3) Page label hint table (see F.4.4, “Generic Hint Tables”)

© Adobe Systems Incorporated 2008 – All rights reserved 683

PDF 32000-1:2008

New keys may be registered for additional hint tables required application-specific data accessed by
conforming writer extensions. See Annex E for further information.

F.3.7 First-Page Section (Part 6)

This part of the file contains all the objects needed to display the first page of the document. Ordinarily, the first
page is page 0—that is, the leftmost leaf page node in the page tree. However, if the document catalogue
contains an OpenAction entry that specifies opening at some page other than page 0, that page shall be
considered the first page and shall be located here. The page number of the first page is given in the P entry of
the linearization parameter dictionary.

NOTE As mentioned earlier, the section containing objects belonging to the first page of the document may either
precede or follow the primary hint stream. The starting file offset and length of this section can be determined
from the hint tables. In addition, the E entry in the linearization parameter dictionary specifies the end of the
first page (as an offset relative to the beginning of the file), and the O entry gives the object number of the first
page’s page object.

The following objects shall be contained in the first-page section:

• The page object for the first page. This object shall be the first one in this part of the file. Its object number
is given in the linearization parameter dictionary. This page object shall explicitly specify all required
attributes, such as Resources and MediaBox; the attributes may not be inherited from ancestor page tree
nodes.

• The entire outline hierarchy, if the value of the PageMode entry in the catalogue is UseOutlines. If the
PageMode entry is omitted or has some other value and the document has an outline hierarchy, the
outline hierarchy shall appear in part 9; see F.3.10, "Other Objects (Part 9)" for details.

• All objects that the page object refers to, to an arbitrary depth, except page tree nodes or other page
objects. This shall include objects referred to by its Contents, Resources, Annots, and B entries, but not
the Thumb entry.

The order of objects referenced from the page object should facilitate early user interaction and incremental
display of the page data as it arrives. The following order should be used:

a) The Annots array and all annotation dictionaries, to a depth sufficient for those annotations to be
activated. Information required to draw the annotation may be deferred until later since annotations are
always drawn on top of (hence after) the contents.

b) The B (beads) array and all bead dictionaries, if any, for this page. If any beads exist for this page, the B
array shall be present in the page dictionary. Additionally, each bead in the thread (not just the first bead)
shall contain a T entry referring to the associated thread dictionary.

c) The resource dictionary, but not the resource objects contained in the dictionary.

d) Resource objects, other than the types listed below, in the order that they are first referenced (directly or
indirectly) from the content stream. If the contents are represented as an array of streams, each resource
object shall precede the stream in which it is first referenced. Note that Font, FontDescriptor, and
Encoding resources shall be included here, but not substitutable font files referenced from font descriptors
(see item (g) below).

R (Present only if a renditions name tree exists; PDF 1.5) Renditions
name tree hint table (see F.4.5, “Extended Generic Hint Tables”)

B (Present only if embedded file streams exist; PDF 1.5) Embedded file
stream hint table (see F.4.6, “Embedded File Stream Hint Tables”)

Table F.2 – Standard hint tables (continued)

Key Hint table

PDF 32000-1:2008

684 © Adobe Systems Incorporated 2008 – All rights reserved

e) The page contents (Contents). If large, this should be represented as an array of indirect references to
content streams, which in turn shall be interleaved with the resources they require. If small, the entire
contents should be a single content stream preceding the resources.

f) Image XObjects, in the order that they are first referenced. Images can be assumed to be large and slow to
transfer; therefore, the conforming reader should defer rendering images until all the other contents have
been displayed.

g) FontFile streams, which contain the actual definitions of embedded fonts. These can be assumed to be
large and slow to transfer; therefore, the conforming reader should use substitute fonts until the real ones
have arrived. Only those fonts for which substitution is possible may be deferred in this way. (Currently, this
includes any Type 1 or TrueType font that has a font descriptor with the Nonsymbolic flag set, indicating
the Adobe standard Latin character set).

See Annex G for additional discussion about object order and incremental drawing strategies.

F.3.8 Remaining Pages (Part 7)

Part 7 of the Linearized PDF file shall contain the page objects and nonshared objects for all remaining pages
of the file, with the objects for each page grouped together. The pages shall be contiguous and shall be ordered
by page number. If the first page of the file is not page 0, this section shall start with page 0 and shall skip over
the first page when its position in the sequence is reached.

For each page, the objects required to display that page shall be grouped together, except for resources and
other objects that are shared with other pages. Shared objects shall be located in the shared objects section
(part 8). The starting file offset and length of any page can be determined from the hint tables.

The recommended order of objects within a page is essentially the same as in the first page. In particular, the
page object shall be the first object in each section.

In most cases, unlike for the first page, little benefit is gained from interleaving contents with resources because
most resources other than images—fonts in particular—are shared among multiple pages and therefore reside
in the shared objects section. Image XObjects usually are not shared, but they should appear at the end of the
page’s section of the file, since rendering of images is deferred.

F.3.9 Shared Objects (Part 8)

Part 8 of the file contains objects, primarily named resources, that are referenced from more than one page but
that are not referenced (directly or indirectly) from the first page. The hint tables contain an index of these
objects. For more information on named resources, see 7.8.3, "Resource Dictionaries".

The order of these objects shall be arbitrary. However, wherever a resource consists of a multiple-level
structure, all components of the structure shall be grouped together. If only the top-level object is referenced
from outside the group, the entire group may be described by a single entry in the shared object hint table. This
helps to minimize the size of the shared object hint table and the number of individual references from entries in
the page offset hint table.

F.3.10 Other Objects (Part 9)

Following the shared objects are any other objects that are part of the document but are not required for
displaying pages. These objects shall be divided into functional categories. Objects within each of these
categories should be grouped together; the relative order of the categories is unimportant.

• The page tree. This object can be located in this section because the conforming reader never needs to
consult it. Note that all Resources attributes and other inheritable attributes of the page objects shall be
pushed down and replicated in each of the leaf page objects (but they may contain indirect references to
shared objects).

© Adobe Systems Incorporated 2008 – All rights reserved 685

PDF 32000-1:2008

• Thumbnail images. These objects shall simply be ordered by page number. (The thumbnail image for page
0 shall be first, even if the first page of the document is some page other than 0.) Each thumbnail image
consists of one or more objects, which may refer to objects in the thumbnail shared objects section (see
the next item).

• Thumbnail shared objects. These are objects that shall be shared among some or all thumbnail images
and shall not be referenced from any other objects.

• The outline hierarchy, if not located in part 6. The order of objects shall be the same as the order in which
they shall be displayed by the conforming reader. This is a preorder traversal of the outline tree, skipping
over any subtree that is closed (that is, whose parent’s Count value is negative). Following that shall be
the subtrees that were skipped over, in the order in which they would have appeared if they were all open.

• Thread information dictionaries, referenced from the I entries of thread dictionaries. Note that the thread
dictionaries themselves shall be located with the document catalogue and the bead dictionaries with the
individual pages.

• Named destinations. These objects include the value of the Dests or Names entry in the document
catalogue and all the destination objects that it refers to; see G.3, "Opening at an Arbitrary Page".

• The document information dictionary and the objects contained within it.

• The interactive form field hierarchy. This group of objects shall not include the top-level interactive form
dictionary, which is located with the document catalogue.

• Other entries in the document catalogue that are not referenced from any page.

• (PDF 1.3) The logical structure hierarchy.

• (PDF 1.5) The renditions name tree hierarchy.

• (PDF 1.5) Embedded file streams.

F.3.11 Main Cross-Reference and Trailer (Part 11)

Part 11 is the cross-reference table for all objects in the PDF file except those listed in the first-page cross-
reference table (part 3). As indicated earlier, this cross-reference table shall play the role of the original cross-
reference table for the file (before any updates are appended) and shall conform to the following rules:

• It consists of a single cross-reference subsection, beginning at object number 0.

• The first entry (for object number 0) shall be a free entry.

• The remaining entries are for in-use objects, which shall be numbered consecutively, starting at 1.

The startxref line shall give the offset of the first-page cross-reference table. The Prev entry of the first-page
trailer shall give the offset of the main cross-reference table. The main trailer has no Prev entry and shall not
contain any entries other than Size.

In PDF 1.5 and later, cross-reference streams (see 7.5.8, "Cross-Reference Streams") may be used in
linearized files in place of traditional cross-reference tables. The logic described in this sub-clause, along with
the appropriate syntactic changes for cross-reference streams, still applies.

PDF 32000-1:2008

686 © Adobe Systems Incorporated 2008 – All rights reserved

F.4 Hint Tables

The core of the linearization information shall be stored in two or more hint tables, as indicated by the attributes
of the primary hint stream; see F.3.6, "Hint Streams (Parts 5 and 10)". The format of the standard hint tables is
described in this section.

A conforming writer may add additional hint tables for conforming reader-specific data. A generic format for
such hint tables is defined; see F.4.4, "Generic Hint Tables." Alternatively, the format of a hint table can be
private to the conforming reader; see Annex E for further information.

Each hint table shall consist of a portion of the stream, beginning at the position in the stream indicated by the
corresponding stream attribute. Additionally, a conforming writer shall include a page offset hint table, which
shall be the first table in the stream and shall start at offset 0. If there is an overflow hint stream, its contents
shall be appended seamlessly to the primary hint stream.

NOTE 1 Hint table positions are relative to the beginning of this combined stream.

In general, this byte stream shall be treated as a bit stream, high-order bit first, which shall then subdivided into
fields of arbitrary width without regard to byte boundaries. However, each hint table shall begin at a byte
boundary.

NOTE 2 The hint tables are designed to encode the required information as compactly as possible. Interpreting the hint
tables requires reading them sequentially; they are not designed for random access.

The conforming reader shall be expected to read and decode the tables once and retain the information for as
long as the document remains open.

NOTE 3 A hint table encodes the positions of various objects in the file. The representation is either explicit (an offset
from the beginning of the file) or implicit (accumulated lengths of preceding objects).

Regardless of the representation, the resulting positions shall be interpreted as if the primary hint stream itself
were not present. That is, a position greater than the hint stream offset shall have the hint stream length added
to it to determine the actual offset relative to the beginning of the file.

NOTE 4 The hint stream offset and hint stream length are the values offset1 and length1 in the H array in the
linearization parameter dictionary at the beginning of the file.

The reason for this rule is that the length of the primary hint stream depends on the information contained
within the hint tables, which is not known until after they have been generated. Any information contained in
the hint tables shall not depend on knowing the primary hint stream’s length in advance.

Note that this rule applies only to offsets given in the hint tables and not to offsets given in the cross-reference
tables or linearization parameter dictionary. Also, the offset and length of the overflow hint stream, if present,
does not be taken into account, since this object follows all other objects in the file.

In linearized files that use object streams (7.5.7, "Object Streams"), the position specified in a hint table for a
compressed object is to be interpreted as a byte range in which the object can be found, not as a precise
offset. conforming readers should locate the object via a cross-reference stream, as it would if the hint table
were not present.

F.4.1 Page Offset Hint Table

The page offset hint table provides information required for locating each page. Additionally, for each page
except the first, it also enumerates all shared objects that the page references, directly or indirectly.

This table shall begin with a header section, described in Table F.3, followed by one or more per-page entries,
described in Table F.4.

NOTE The items making up each per-page entry are not contiguous; they are broken up with items from entries for
other pages.

© Adobe Systems Incorporated 2008 – All rights reserved 687

PDF 32000-1:2008

The order of items making up the per-page entries shall be as follows:

a) Item 1 for all pages, in page order starting with the first page

b) Item 2 for all pages, in page order starting with the first page

c) Item 3 for all pages, in page order starting with the first page

d) Item 4 for all shared objects in the second page, followed by item 4 for all shared objects in the third page,
and so on

e) Item 5 for all shared objects in the second page, followed by item 5 for all shared objects in the third page,
and so on

f) Item 6 for all pages, in page order starting with the first page

g) Item 7 for all pages, in page order starting with the first page

All the items in Table F.3 that specify a number of bits needed, such as item 3, have values in the range 0
through 32. Although that range requires only 6 bits, 16-bit numbers shall be used.

Table F.3 – Page offset hint table, header section

Item Size (bits) Description

1 32 The least number of objects in a page (including the page object itself).

2 32 The location of the first page’s page object.

3 16 The number of bits needed to represent the difference between the
greatest and least number of objects in a page.

4 32 The least length of a page in bytes. This shall be the least length from
the beginning of a page object to the last byte of the last object used
by that page.

5 16 The number of bits needed to represent the difference between the
greatest and least length of a page, in bytes.

6 32 The least offset of the start of any content stream, relative to the
beginning of its page.

7 16 The number of bits needed to represent the difference between the
greatest and least offset to the start of the content stream.

8 32 The least content stream length.

9 16 The number of bits needed to represent the difference between the
greatest and least content stream length.

10 16 The number of bits needed to represent the greatest number of shared
object references.

11 16 The number of bits needed to represent the numerically greatest
shared object identifier used by the pages (discussed further in
Table F.4, item 4).

PDF 32000-1:2008

688 © Adobe Systems Incorporated 2008 – All rights reserved

12 16 The number of bits needed to represent the numerator of the fractional
position for each shared object reference. For each shared object
referenced from a page, there shall be an indication of where in the
page’s content stream the object is first referenced. That position shall
be given as the numerator of a fraction, whose denominator is
specified once for the entire document (in the next item in this table).
The fraction is explained in more detail in Table F.4, item 5.

13 16 The denominator of the fractional position for each shared object
reference.

Table F.4 – Page offset hint table, per-page entry

Item Size (bits) Description

1 See Table F.3, item 3 A number that, when added to the least number of objects in a page
(Table F.3, item 1), shall give the number of objects in the page. The
first object of the first page shall have an object number that is the
value of the O entry in the linearization parameter dictionary at the
beginning of the file. The first object of the second page shall have an
object number of 1. Object numbers for subsequent pages shall be
determined by accumulating the number of objects in all previous
pages.

2 See Table F.3, item 5 A number that, when added to the least page length (Table F.3, item
4), shall give the length of the page in bytes. The location of the first
object of the first page may be determined from its object number (the
O entry in the linearization parameter dictionary) and the cross-
reference table entry for that object; see F.3.4, "First-Page Cross-
Reference Table and Trailer (Part 3)". The locations of subsequent
pages shall be determined by accumulating the lengths of all previous
pages. A conforming product shall skip over the primary hint stream,
wherever it is located.

3 See Table F.3, item 10 The number of shared objects referenced from the page. For the first
page, this number shall be 0; the next two items start with the second
page.

4 See Table F.3, item 11 (One item for each shared object referenced from the page) A shared
object identifier—that is, an index into the shared object hint table
(described in F.4.2, “Shared Object Hint Table”). A single entry in the
shared object hint table may designate a group of shared objects, but
only one of which shall be referenced from outside the group. That is,
shared object identifiers shall not be directly related to object numbers.
This identifier combines with the numerators provided in item 5 to form
a shared object reference.

Table F.3 – Page offset hint table, header section (continued)

Item Size (bits) Description

© Adobe Systems Incorporated 2008 – All rights reserved 689

PDF 32000-1:2008

F.4.2 Shared Object Hint Table

The shared object hint table gives information required to locate shared objects; see F.3.9, "Shared Objects
(Part 8)". Shared objects may be physically located in either of two places: objects that are referenced from the
first page shall be located with the first-page objects (part 6); all other shared objects shall be located in the
shared objects section (part 8).

A single entry in the shared object hint table may describe a group of adjacent objects under the following
condition: Only the first object in the group is referenced from outside the group; the remaining objects in the
group are referenced only from other objects in the same group. The objects in a group shall have adjacent
object numbers.

The page offset hint table, interactive form hint table, and logical structure hint table shall refer to an entry in the
shared object hint table by a simple index that is its sequential position in the table, counting from 0.

The shared object hint table shall consist of a header section (Table F.5) followed by one or more shared object
group entries (Table F.6). There shall be two sequences of shared object group entries: the ones for objects
located in the first page, followed by the ones for objects located in the shared objects section. The entries shall
have the same format in both cases. Note that the items making up each shared object group entry need not be

5 See Table F.3, item 12 (One item for each shared object referenced from the page) The
numerator of the fractional position for each shared object reference,
which shall be in the same order as the preceding item. The fraction
shall indicate where in the page’s content stream the shared object is
first referenced. This item shall be interpreted as the numerator of a
fraction whose denominator is specified once for the entire document
(Table F.3, item 13).
EXAMPLE If the denominator is d, a numerator ranging from 0

to d - 1 indicates the corresponding portion of the
page’s content stream. For example, if the
denominator is 4, a numerator of 0, 1, 2, or 3
indicates that the first reference lies in the first,
second, third, or fourth quarter of the content
stream, respectively.

There are two (or more) other possible values for the numerator, which
shall indicate that the shared object is not referenced from the content
stream but instead is needed by annotations or other objects that are
drawn after the contents. The value d shall indicate that the shared
object is needed before image XObjects and other nonshared objects
that are at the end of the page. A value of d + 1 or greater shall
indicate that the shared object is needed after those objects.
NOTE This method of dividing the page into fractions is only

approximate. Determining the first reference to a shared
object entails inspecting the unencoded content stream.
The relationship between positions in the unencoded and
encoded streams is not necessarily linear.

6 See Table F.3, item 7 A number that, when added to the least offset to the start of the
content stream (Table F.3, item 6), shall give the offset in bytes of the
start of the page’s content stream (the stream object, not the stream
data), relative to the beginning of the page.

7 See Table F.3, item 9 A number that, when added to the least content stream length
(Table F.3, item 8), shall give the length of the page’s content stream in
bytes. This length shall include object overhead preceding and
following the stream data.

Table F.4 – Page offset hint table, per-page entry (continued)

Item Size (bits) Description

PDF 32000-1:2008

690 © Adobe Systems Incorporated 2008 – All rights reserved

contiguous; they may be broken up with items from entries for other shared object groups. The order of items in
each sequence shall be as follows:

a) Item 1 for the first group, item 1 for the second group, and so on

b) Item 2 for the first group, item 2 for the second group, and so on

c) Item 3 for the first group, item 3 for the second group, and so on

d) Item 4 for the first group, item 4 for the second group, and so on

All objects associated with the first page (part 6) shall have entries in the shared object hint table, regardless of
whether they are actually shared. The first entry shall refer to the beginning of the first page and shall be have
an object count and length that shall span all the initial nonshared objects. The next entry shall refer to a group
of shared objects. Subsequent entries shall span additional groups of either shared or nonshared objects
consecutively until all shared objects in the first page have been enumerated. (There shall not be any entries
that refer to nonshared objects.)

Table F.5 – Shared object hint table, header section

item Size (bits) Description

1 32 The object number of the first object in the shared objects section (part
8).

2 32 The location of the first object in the shared objects section.

3 32 The number of shared object entries for the first page (including
nonshared objects, as noted above).

4 32 The number of shared object entries for the shared objects section,
including the number of shared object entries for the first page (that is,
the value of item 3).

5 16 The number of bits needed to represent the greatest number of objects
in a shared object group.

6 32 The least length of a shared object group in bytes.

7 16 The number of bits needed to represent the difference between the
greatest and least length of a shared object group, in bytes.

Table F.6 – Shared object hint table, shared object group entry

Item Size (bits) Description

1 See Table F.5, item 7 A number that, when added to the least shared object group length
(Table F.5, item 6), gives the length of the object group in bytes. The
location of the first object of the first page shall be given in the page
offset hint table, header section (Table F.3, item 4). The locations of
subsequent object groups can be determined by accumulating the
lengths of all previous object groups until all shared objects in the first
page have been enumerated. Following that, the location of the first
object in the shared objects section can be obtained from the header
section of the shared object hint table (Table F.5, item 2).

2 1 A flag indicating whether the shared object signature (item 3) is
present; its value shall be 1 if the signature is present and 0 if it is
absent.

© Adobe Systems Incorporated 2008 – All rights reserved 691

PDF 32000-1:2008

NOTE In a document consisting of only one page, all of that page’s objects shall be treated as if they were shared; the
shared object hint table reflects this.

F.4.3 Thumbnail Hint Table

The thumbnail hint table shall consist of a header section (Table F.7) followed by the thumbnails section, which
shall include one or more per-page entries (Table F.8), each of which describes the thumbnail image for a
single page. The entries shall be in page number order starting with page 0, even if the document catalogue
contains an OpenAction entry that specifies opening at some page other than page 0. Thumbnail images may
exist for some pages and not for others.

3 128 (Only if item 2 is 1) The shared object signature, a 16-byte MD5 hash
that uniquely identifies the resource that the group of objects
represents.
NOTE It enables the conforming reader to substitute a locally

cached copy of the resource instead of reading it from the
PDF file. Note that this signature is unrelated to signature
fields in interactive forms, as defined in 12.7.4.5,
"Signature Fields".

4 See Table F.5, item 5 A number equal to 1 less than the number of objects in the group. The
first object of the first page shall be the one whose object number is
given by the O entry in the linearization parameter dictionary at the
beginning of the file. Object numbers for subsequent entries can be
determined by accumulating the number of objects in all previous
entries until all shared objects in the first page have been enumerated.
Following that, the first object in the shared objects section has a
number that can be obtained from the header section of the shared
object hint table (Table F.5, item 1).

Table F.7 – Thumbnail hint table, header section

Item Size (bits) Description

1 32 The object number of the first thumbnail image (that is, the thumbnail
image that is described by the first entry in the thumbnails section).

2 32 The location of the first thumbnail image.

3 32 The number of pages that have thumbnail images.

4 16 The number of bits needed to represent the greatest number of
consecutive pages that do not have a thumbnail image.

5 32 The least length of a thumbnail image in bytes.

6 16 The number of bits needed to represent the difference between the
greatest and least length of a thumbnail image.

7 32 The least number of objects in a thumbnail image.

8 16 The number of bits needed to represent the difference between the
greatest and least number of objects in a thumbnail image.

9 32 The object number of the first object in the thumbnail shared objects
section (a subsection of part 9). This section includes objects (colour
spaces, for example) that shall be referenced from some or all
thumbnail objects and are not referenced from any other objects. The
thumbnail shared objects shall be undifferentiated; there is no
indication of which shared objects shall be referenced from any given
page’s thumbnail image.

Table F.6 – Shared object hint table, shared object group entry (continued)

Item Size (bits) Description

PDF 32000-1:2008

692 © Adobe Systems Incorporated 2008 – All rights reserved

The order of items in Table F.8 is as follows:

a) Item 1 for all pages, in page order starting with the first page

b) Item 2 for all pages, in page order starting with the first page

c) Item 3 for all pages, in page order starting with the first page

F.4.4 Generic Hint Tables

Categories of objects are associated with the document as a whole rather than with individual pages (see
F.3.10, "Other Objects (Part 9)"), and hints should be provided for accessing those objects efficiently. For each
category of hints, there shall be a separate entry in the primary hint stream giving the starting position of the
table within the stream; see F.3.6, "Hint Streams (Parts 5 and 10)".

Such hints shall be represented by a generic hint table, which describes a single group of objects that are
located together in the PDF file. The entries in this table are listed in Table F.9. This representation shall be
used for the following hint tables, if needed:

• Outline hint table

• Thread information hint table

• Named destination hint table

• Information dictionary hint table

• Page label hint table

Generic hint tables may be used for product-specific objects accessed by conforming readers.

NOTE It is considerably more convenient for a conforming reader to use the generic hint representation than to
specify custom hints.

10 32 The location of the first object in the thumbnail shared objects section.

11 32 The number of thumbnail shared objects.

12 32 The length of the thumbnail shared objects section in bytes.

Table F.8 – Thumbnail hint table, per-page entry

Item Size (bits) Description

1 See Table F.7, item 4 (Optional) The number of preceding pages lacking a thumbnail image.
This number indicates how many pages without a thumbnail image lie
between the previous entry’s page and this page.

2 See Table F.7, item 8 A number that, when added to the least number of objects in a
thumbnail image (Table F.7, item 7), gives the number of objects in this
page’s thumbnail image.

3 See Table F.7, item 6 A number that, when added to the least length of a thumbnail image
(Table F.7, item 5), gives the length of this page’s thumbnail image in
bytes.

Table F.7 – Thumbnail hint table, header section (continued)

Item Size (bits) Description

© Adobe Systems Incorporated 2008 – All rights reserved 693

PDF 32000-1:2008

F.4.5 Extended Generic Hint Tables

An extended generic hint table shall begin with the same entries as in a generic hint table, and shall be followed
by three additional entries, as shown in Table F.10. This table provides hints for accessing objects that
reference shared objects. As of PDF 1.5, the following hint tables, if needed, shall use the extended generic
format:

• Interactive form hint table

• Logical structure hint table

• Renditions name tree hint table

Embedded file streams shall not be referred to by this hint table, even if they are reachable from nodes in the
renditions name tree; instead they shall use the hint table described in F.4.6, "Embedded File Stream Hint
Tables."

F.4.6 Embedded File Stream Hint Tables

The embedded file streams hint table allows a conforming reader to locate all byte ranges of a PDF file needed
to access its embedded file streams. An embedded file stream may be grouped with other objects that it
references; all objects in such a group shall have adjacent object numbers. (A group shall contain no objects at
all if it contains shared object references.)

This hint table shall have a header section (see Table F.11), which shall have general information about the
embedded file stream groups. The header section shall be followed by the entries in Table F.12. Each of the
items in Table F.12 shall be repeated for each embedded file stream group (the number of groups being
represented by item 3 in Table F.11). That is, the order of items in Table F.12 shall be item 1 for the first group,
item 1 for the second group, and so on; item 2 for the first group, item 2 for the second group, and so on;
repeated for the 5 items.

Table F.9 – Generic hint table

item Size (bits) Description

1 32 The object number of the first object in the group.

2 32 The location of the first object in the group.

3 32 The number of objects in the group.

4 32 The length of the object group in bytes.

Table F.10 – Extended generic hint table

Item Size (bits) Description

1 32 The object number of the first object in the group.

2 32 The location of the first object in the group.

3 32 The number of objects in the group.

4 32 The length of the object group in bytes.

5 32 The number of shared object references.

6 16 The number of bits needed to represent the numerically greatest
shared object identifier used by the objects in the group.

7 … See Table F.3, item 11 Starting with item 7, each of the remaining items in this table shall be a
shared object identifier—that is, an index into the shared object hint
table (described in F.4.2, “Shared Object Hint Table”).

PDF 32000-1:2008

694 © Adobe Systems Incorporated 2008 – All rights reserved

Table F.11 – Embedded file stream hint table, header section

Item Size (bits) Description

1 32 The object number of the first object in the first embedded file stream group.

2 32 The location of the first object in the first embedded file stream group.

3 32 The number of embedded file stream groups referenced by this hint table.

4 16 The number of bits needed to represent the highest object number
corresponding to an embedded file stream object.

5 16 The number of bits needed to represent the greatest number of objects in an
embedded file stream group.

6 16 The number of bits needed to represent the greatest length of an embedded file
stream group, in bytes.

7 16 The number of bits needed to represent the greatest number of shared object
references in any embedded file stream group.

Table F.12 – Embedded file stream hint table, per-embedded file stream group entries

Item Size (bits) Description

1 See Table F.11, item 4 The object number of the embedded file stream that this entry is
associated with.

2 See Table F.11, item 5 The number of objects in this embedded file streams group. This item
may be 0, meaning that there are only shared object references. In this
case, item 4 for this group shall be greater than zero and item 3 shall
be zero.

3 See Table F.11, item 6 The length of this embedded file stream group, in bytes. This item may
be 0, which shall mean that there are only shared object references. In
this case, item 4 for this group shall be greater than zero and item 2
shall be zero.

4 See Table F.11, item 7 The number of shared objects referenced by this embedded file
stream group.

5 See Table F.3, item 11 A bit-packed list of shared object identifiers; that is, indices into the
shared object hint table (see F.4.2, “Shared Object Hint Table”). Item 4
for this group shall specify how many shared object identifiers shall be
associated with the group.

© Adobe Systems Incorporated 2008 – All rights reserved 695

PDF 32000-1:2008

Annex G
(informative)

Linearized PDF Access Strategies

G.1 General

This section outlines how the conforming reader can take advantage of the structure of a Linearized PDF file to
retrieve and display it efficiently. This material may help explain the rationale for the organization.

G.2 Opening at the First Page

As described earlier, when a document is initially accessed, a request is issued to retrieve the entire file,
starting at the beginning. Consequently, Linearized PDF is organized so that all the data required to display the
first page is at the beginning of the file. This includes all resources that are referenced from the first page,
regardless of whether they are also referenced from other pages.

The first page is usually but not necessarily page 0. If the document catalogue contains an OpenAction entry
that specifies opening at some page other than page 0, that page is the one physically located at the beginning
of the document. Thus, opening a document at the default place (rather than a specific destination) requires
simply waiting for the first-page data to arrive; no additional transactions are required.

In an ordinary conforming reader, opening a document requires first positioning to the end to obtain the
startxref line. Since a Linearized PDF file has the first page’s cross-reference table at the beginning, reading
the startxref line is not necessary. All that is required is to verify that the file length given in the linearization
parameter dictionary at the beginning of the file matches the actual length of the file, indicating that no updates
have been appended to the PDF file.

The primary hint stream is located either before or after the first-page section, which means that it is also
retrieved as part of the initial sequential read of the file. The conforming reader is expected to interpret and
retain all the information in the hint tables. The tables are reasonably compact and are not designed to be
obtained from the file in random pieces.

The conforming reader must now decide whether to continue reading the remainder of the document
sequentially or to abort the initial transaction and access subsequent pages by using separate transactions
requesting byte ranges. This decision is a function of the size of the file, the data rate of the channel, and the
overhead cost of a transaction.

G.3 Opening at an Arbitrary Page

The conforming reader may be requested to open a PDF file at an arbitrary page. The page can be specified in
one of three ways:

• By page number (remote go-to action, integer page specifier)

• By named destination (remote go-to action, name or string page specifier)

• By article thread (thread action)

Additionally, an indexed search results in opening a document by page number. Handling this case efficiently is
especially important.

PDF 32000-1:2008

696 © Adobe Systems Incorporated 2008 – All rights reserved

As indicated above, when the document is initially opened, it is retrieved sequentially starting at the beginning.
As soon as the hint tables have been received, the conforming reader has sufficient information to request
retrieval of any page of the document given its page number. Therefore, the conforming reader can abort the
initial transaction and issue a new transaction for the target page, as described in G.4, "Going to Another Page
of an Open Document".

The position of the primary hint stream (part 5 in F.3.1, "General") with respect to the first-page section (part 6
in F.3.1, "General") determines how quickly this can be done. If the primary hint stream precedes the first-page
section, the initial transaction can be aborted very quickly; however, this is at the cost of increased delay when
opening the document at the first page. On the other hand, if the primary hint stream follows the first-page
section, displaying the first page is quicker (since the hint tables are not needed for that), but opening at an
arbitrary page is delayed by the time required to receive the first page. The decision whether to favour opening
at the first page or opening at an arbitrary page must be made at the time a PDF file is linearized.

If an overflow hint stream exists, obtaining it requires issuing an additional transaction. For this reason,
inclusion of an overflow hint stream in Linearized PDF, although permitted, is not recommended. The feature
exists to allow the linearizer to write the PDF file with space reserved for a primary hint stream of an estimated
size and then go back and fill in the hint tables. If the estimate is too small, the linearizer can append an
overflow stream containing the remaining hint table data. Thus, the PDF file can be written in one pass, which
may be an advantage if the performance of writing PDF is considered important.

Opening at a named destination requires the conforming reader first to read the entire Dests or Names
dictionary, for which a hint is present. Using this information, it is possible to determine the page containing the
specific destination identified by the name.

Opening to an article requires the conforming reader first to read the entire Threads array, which is located with
the document catalogue at the beginning of the document. Using this information, it is possible to determine the
page containing the first bead of any thread. Opening at other than the first bead of a thread requires chaining
through all the beads until the desired one is reached; there are no hints to accelerate this.

G.4 Going to Another Page of an Open Document

Given a page number and the information in the hint tables, it is now straightforward for the conforming reader
to construct a single request to retrieve any arbitrary page of the document. The request should include the
following items:

• The objects of the page itself, whose byte range can be determined from the entry in the page offset hint
table.

• The portion of the main cross-reference table referring to those objects. This can be computed from main
cross-reference table location (the T entry in the linearization parameter dictionary) and the cumulative
object number in the page offset hint table.

• The shared objects referenced from the page, whose byte ranges can be determined from information in
the shared object hint table.

• The portion or portions of the main cross-reference table referring to those objects, as described above.

The purpose of the fractions in the page offset hint table is to enable the conforming reader to schedule
retrieval of the page in a way that allows incremental display of the data as it arrives. It accomplishes this by
constructing a request that interleaves pieces of the page contents with the shared resources that the contents
refer to. This serves much the same purpose as the physical interleaving that is done for the first page.

© Adobe Systems Incorporated 2008 – All rights reserved 697

PDF 32000-1:2008

G.5 Drawing a Page Incrementally

The ordering of objects in pages and the organization of the hint tables are intended to allow progressive
update of the display and early opportunities for user interaction when the data is arriving slowly. The
conforming reader must recognize instances in which the targets of indirect object references have not yet
arrived and, where possible, rearrange the order in which it acts on the objects in the page.

The following sequence of actions is recommended:

a) Activate the annotations, but do not draw them yet. Also activate the cursor feedback for any article
threads in the page.

b) Begin drawing the contents. Whenever there is a reference to an image XObject that has not yet arrived,
skip over it. Whenever there is a reference to a font whose definition is an embedded font file that has not
yet arrived, draw the text using a substitute font (if that is possible).

c) Draw the annotations.

d) Draw the images as they arrive, together with anything that overlaps them.

e) Once the embedded font definitions have arrived, redraw the text using the correct fonts, together with
anything that overlaps the text.

The last two steps should be done using an off-screen buffer, if possible, to avoid objectionable flashing during
the redraw process.

On encountering a reference XObject (see 8.10.4, "Reference XObjects"), the conforming reader may choose
to initially display the object as a proxy and defer the retrieval and rendering of the imported content. Note that,
since all XObjects in a Linearized PDF file follow the content stream of the page on which they appear, their
retrieval is already deferred; the use of a reference XObject results in an additional level of deferral.

G.6 Following an Article Thread

As indicated earlier, the bead dictionaries for any article thread that visits a given page are located with that
page. This enables the bead rectangles to be activated and proper cursor feedback to be shown.

If the user follows a thread, the conforming reader can obtain the object number from the N or P entry of the
bead dictionary. This identifies a target bead, which is located with the page to which it belongs. Given this
object number, the conforming reader can go to that page, as discussed in G.4, "Going to Another Page of an
Open Document."

G.7 Accessing an Updated File

As stated earlier, if a Linearized PDF file subsequently has an incremental update appended to it, the
linearization and hints are no longer valid. Actually, this is not necessarily true, but the conforming reader must
do some additional work to validate the information.

When the conforming reader sees that the file is longer than the length given in the linearization parameter
dictionary, it must issue an additional transaction to read everything that was appended. It must then analyse
the objects in that update to see whether any of them modify objects that are in the first page or that are the
targets of hints. If so, it must augment its internal data structures as necessary to take the updates into account.

For a PDF file that has received only a small update, this approach may be worthwhile. Accessing the file this
way is quicker than accessing it without hints or retrieving the entire file before displaying any of it.

PDF 32000-1:2008

698 © Adobe Systems Incorporated 2008 – All rights reserved

THIS PAGE BLANK

© Adobe Systems Incorporated 2008 – All rights reserved 699

PDF 32000-1:2008

Annex H
(informative)

Example PDF Files

H.1 General

This annex presents several examples showing the structure of actual PDF files:

• A minimal file that can serve as a starting point for creating other PDF files (and that is the basis of later
examples)

• A simple example that shows a text string—the classic “Hello World”—and a simple graphics example that
draws lines and shapes

• A fragment of a PDF file that illustrates the structure of the page tree for a large document and, similarly,
two fragments that illustrate the structure of an outline hierarchy

• An example showing the structure of a PDF file as it is updated several times, illustrating multiple body
sections, cross-reference sections, and trailers

NOTE The Length values of stream objects in the examples and the byte addresses in cross-reference tables are not
necessarily accurate.

H.2 Minimal PDF File

The example in H.2, "Minimal PDF File" is a PDF file that does not draw anything; it is almost the minimum
acceptable PDF file. It is not strictly the minimum acceptable because it contains an outline dictionary
(Outlines in the document catalog) with a zero count (in which case this object would normally be omitted); a
page content stream (Contents in the page object); and a resource dictionary (Resources in the page object)
containing a ProcSet array. These objects were included to make this file useful as a starting point for creating
other, more realistic PDF files.

Table H.1 lists the objects in this example.

NOTE When using the example in H.2, "Minimal PDF File" as a starting point for creating other files, remember to
update the ProcSet array as needed (see 14.2, "Procedure Sets"). Also, remember that the cross-reference
table entries may need to have a trailing SPACE (see 7.5.4, "Cross-Reference Table").

Table H.1 – Objects in minimal example

Object number Object type

1 Catalog (document catalog)

2 Outlines (outline dictionary)

3 Pages (page tree node)

4 Page (page object)

5 Content stream

6 Procedure set array

PDF 32000-1:2008

700 © Adobe Systems Incorporated 2008 – All rights reserved

EXAMPLE %PDF-1. 4
1 0 obj

<< /Type /Catalog
 /Outlines 2 0 R
 /Pages 3 0 R

>>
endobj

2 0 obj

<< /Type Outlines
 /Count 0

>>
endobj

3 0 obj

<< /Type /Pages
 /Kids [4 0 R]
 /Count 1

>>
endobj

4 0 obj

<< /Type /Page
 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 5 0 R
 /Resources << /ProcSet 6 0 R >>

>>
endobj

5 0 obj

<< /Length 35 >>
stream
… Page-marking operators …
endstream
endobj

6 0 obj

[/PDF]
endobj

xref
0 7
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000179 00000 n
0000000300 00000 n
0000000384 00000 n

trailer

<< /Size 7
 /Root 1 0 R

>>
startxref
408
%%EOF

H.3 Simple Text String Example

The example in H.3, "Simple Text String Example" is the classic “Hello World” example built from the preceding
example. It shows a single line of text consisting of the string Hello World, illustrating the use of fonts and

© Adobe Systems Incorporated 2008 – All rights reserved 701

PDF 32000-1:2008

several text-related PDF operators. The string is displayed in 24-point Helvetica. Because Helvetica is one of
the standard 14 fonts, no font descriptor is needed.

Table H.2 lists the objects in this example.

EXAMPLE %PDF-1. 4
1 0 obj

<< /Type /Catalog
 /Outlines 2 0 R
 /Pages 3 0 R

>>
endobj

2 0 obj

<< /Type /Outlines
 /Count 0

>>
endobj

3 0 obj

<< /Type /Pages
 /Kids [4 0 R]
 /Count 1

>>
endobj

4 0 obj

<< /Type /Page
 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 5 0 R
 /Resources << /ProcSet 6 0 R

 /Font << /F1 7 0 R >>
>>

>>
endobj

5 0 obj

<< /Length 73 >>
stream

BT
/F1 24 Tf
100 100 Td
(Hello World) Tj

ET
endstream
endobj

Table H.2 – Objects in simple text string example

Object number Object type

1 Catalog (document catalog)

2 Outlines (outline dictionary)

3 Pages (page tree node)

4 Page (page object)

5 Content stream

6 Procedure set array

7 Font (Type 1 font)

PDF 32000-1:2008

702 © Adobe Systems Incorporated 2008 – All rights reserved

6 0 obj
[/PDF /Text]

endobj

7 0 obj

<< /Type /Font
 /Subtype /Type1
 /Name /F1
 /BaseFont /Helvetica
 /Encoding /MacRomanEncoding

>>
endobj

xref
0 8
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000179 00000 n
0000000364 00000 n
0000000466 00000 n
0000000496 00000 n

trailer

<< /Size 8
 /Root 1 0 R

>>
startxref
625
%%EOF

H.4 Simple Graphics Example

The example in H.4, "Simple Graphics Example" draws a thin black line segment, a thick black dashed line
segment, a filled and stroked rectangle, and a filled and stroked cubic Bézier curve. Table H.3 lists the objects
in this example, and Figure H.1 shows the resulting output. (Each shape has a red border, and the rectangle is
filled with light blue.)

Table H.3 – Objects in simple graphics example

Object number Object type

1 Catalog (document catalog)

2 Outlines (outline dictionary)

3 Pages (page tree node)

4 Page (page object)

5 Content stream

6 Procedure set array

© Adobe Systems Incorporated 2008 – All rights reserved 703

PDF 32000-1:2008

Figure H.1 – Output of the following example

EXAMPLE %PDF-1. 4
1 0 obj

<< /Type /Catalog
 /Outlines 2 0 R
 /Pages 3 0 R

>>
endobj

2 0 obj

<< /Type /Outlines
 /Count 0

>>
endobj

3 0 obj

<< /Type /Pages
 /Kids [4 0 R]
 /Count 1

>>
endobj

4 0 obj

<< /Type /Page
 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 5 0 R
 /Resources << /ProcSet 6 0 R >>

>>
endobj

5 0 obj

<< /Length 883 >>
stream

% Draw a black line segment, using the default line width .
150 250 m
150 350 l
S

% Draw a thicker, dashed line segment .
4 w % Set line width to 4 points
[4 6] 0 d % Set dash pattern to 4 units on, 6 units off
150 250 m
400 250 l
S
[] 0 d % Reset dash pattern to a solid line
1 w % Reset line width to 1 unit

PDF 32000-1:2008

704 © Adobe Systems Incorporated 2008 – All rights reserved

% Draw a rectangle with a 1-unit red border, filled with light blue .
1.0 0.0 0.0 RG % Red for stroke color
0.5 0.75 1.0 rg % Light blue for fill color
200 300 50 75 re
B

% Draw a curve filled with gray and with a colored border .
0.5 0.1 0.2 RG
0.7 g
300 300 m
300 400 400 400 400 300 c
b

endstream
endobj

6 0 obj

[/PDF]
endobj

xref
0 7
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000179 00000 n
0000000300 00000 n
0000001532 00000 n

trailer

<< /Size 7
 /Root 1 0 R

>>
startxref
1556
%%EOF

H.5 Page Tree Example

The example in H.5, "Page Tree Example" is a fragment of a PDF file illustrating the structure of the page tree
for a large document. It contains the page tree nodes for a 62-page document. Figure H.2 shows the structure
of this page tree. Numbers in the figure are object numbers corresponding to the objects in the example.

© Adobe Systems Incorporated 2008 – All rights reserved 705

PDF 32000-1:2008

Figure H.2 – Page tree for the following example

EXAMPLE 337 0 obj
<< /Type /Pages

 /Kids [335 0 R
336 0 R

]
 /Count 62

>>
endobj

335 0 obj

<< /Type /Pages
 /Parent 337 0 R
 /Kids [4 0 R

43 0 R
77 0 R
108 0 R
139 0 R
170 0 R

]
 /Count 36

>>
endobj

336 0 obj

<< /Type /Pages
 /Parent 337 0 R
 /Kids [201 0 R

232 0 R
263 0 R
294 0 R
325 0 R

]
 /Count 26

>>
endobj

4 0 obj

<< /Type /Pages
 /Parent 335 0 R
 /Kids [3 0 R

16 0 R
21 0 R
26 0 R

337

335 336

4 43 77 108 139 170 201 232 263 294 325

3

16

21

26

31

37

42

48

53

58

63

70

76

82

87

92

97

102

107

113

118

123

128

133

138

144

149

154

159

164

169

175

180

185

190

195

200

206

211

216

221

226

231

237

242

247

252

257

262

268

273

278

283

288

293

299

304

309

314

319

324

330

PDF 32000-1:2008

706 © Adobe Systems Incorporated 2008 – All rights reserved

31 0 R
37 0 R

]
 /Count 6

>>
endobj

43 0 obj

<< /Type /Pages
 /Parent 335 0 R
 /Kids [42 0 R

48 0 R
53 0 R
58 0 R
63 0 R
70 0 R

]
 /Count 6

>>
endobj

77 0 obj

<< /Type /Pages
 /Parent 335 0 R
 /Kids [76 0 R

82 0 R
87 0 R
92 0 R
97 0 R
102 0 R

]
 /Count 6

>>
endobj

108 0 obj

<< /Type /Pages
 /Parent 335 0 R
 /Kids [107 0 R

113 0 R
118 0 R
123 0 R
128 0 R
133 0 R

]
 /Count 6

>>
endobj

139 0 obj

<< /Type /Pages
 /Parent 335 0 R
 /Kids [138 0 R

144 0 R
149 0 R
154 0 R
159 0 R
164 0 R

]
 /Count 6

>>
endobj

170 0 obj

<< /Type /Pages

© Adobe Systems Incorporated 2008 – All rights reserved 707

PDF 32000-1:2008

 /Parent 335 0 R
 /Kids [169 0 R

175 0 R
180 0 R
185 0 R
190 0 R
195 0 R

]
 /Count 6

>>
endobj

201 0 obj

<< /Type /Pages
 /Parent 336 0 R
 /Kids [200 0 R

206 0 R
211 0 R
216 0 R
221 0 R
226 0 R

]
 /Count 6

>>
endobj

232 0 obj

<< /Type /Pages
 /Parent 336 0 R
 /Kids [231 0 R

237 0 R
242 0 R
247 0 R
252 0 R
257 0 R

]
 /Count 6

>>
endobj

263 0 obj

<< /Type /Pages
 /Parent 336 0 R
 /Kids [262 0 R

268 0 R
273 0 R
278 0 R
283 0 R
288 0 R

]
 /Count 6

>>
endobj

294 0 obj

<< /Type /Pages
 /Parent 336 0 R
 /Kids [293 0 R

299 0 R
304 0 R
309 0 R
314 0 R
319 0 R

]
 /Count 6

PDF 32000-1:2008

708 © Adobe Systems Incorporated 2008 – All rights reserved

>>
endobj

325 0 obj

<< /Type /Pages
 /Parent 336 0 R
 /Kids [324 0 R

330 0 R
]

 /Count 2
>>

endobj

H.6 Outline Hierarchy Example

This section from a PDF file illustrates the structure of an outline hierarchy with six items. Example 1 in H.6,
"Outline Hierarchy Example" shows the outline with all items open, as illustrated in Figure H.3.

Figure H.3 – Document outline as displayed in Example 1

EXAMPLE 1 21 0 obj
<< /Type /Outlines

 /First 22 0 R
 /Last 29 0 R
 /Count 6

>>
endobj

22 0 obj

<< /Title (Document)
 /Parent 21 0 R
 /Next 29 0 R
 /First 25 0 R
 /Last 28 0 R
 /Count 4
 /Dest [3 0 R /XYZ 0 792 0]

>>
endobj

25 0 obj

<< /Title (Section 1)
 /Parent 22 0 R
 /Next 26 0 R
 /Dest [3 0 R /XYZ null 701 null]

>>
endobj

26 0 obj

Document

Section 1

Section 2

Subsection 1

Section 3

Summary

On-screen appearance Object
number

Count

22

25

26

27

28

29

4

0

1

0

0

0

621

© Adobe Systems Incorporated 2008 – All rights reserved 709

PDF 32000-1:2008

<< /Title (Section 2)
 /Parent 22 0 R
 /Prev 25 0 R
 /Next 28 0 R
 /First 27 0 R
 /Last 27 0 R
 /Count 1
 /Dest [3 0 R /XYZ null 680 null]

>>
endobj

27 0 obj

<< /Title (Subsection 1)
 /Parent 26 0 R
 /Dest [3 0 R /XYZ null 670 null]

>>
endobj

28 0 obj

<< /Title (Section 3)
 /Parent 22 0 R
 /Prev 26 0 R
 /Dest [7 0 R /XYZ null 500 null]

>>
endobj

29 0 obj

<< /Title (Summary)
 /Parent 21 0 R
 /Prev 22 0 R
 /Dest [8 0 R /XYZ null 199 null]

>>
endobj

Example 2 in H.6, "Outline Hierarchy Example" is the same as Example 1, except that one of the outline items
has been closed in the display. The outline appears as shown in Figure H.4.

Figure H.4 – Document outline as displayed in Example 2

EXAMPLE 2 21 0 obj
<< /Type /Outlines

 /First 22 0 R
 /Last 29 0 R
 /Count 5

>>
endobj

22 0 obj

<< /Title (Document)
 /Parent 21 0 R

On-screen appearance Object
number

Count

Document

Section 1

Section 2

Section 3

Summary

22

25

26

28

29

3

0

–1

0

0

521

PDF 32000-1:2008

710 © Adobe Systems Incorporated 2008 – All rights reserved

 /Next 29 0 R
 /First 25 0 R
 /Last 28 0 R
 /Count 3
 /Dest [3 0 R /XYZ 0 792 0]

>>
endobj

25 0 obj

<< /Title (Section 1)
 /Parent 22 0 R
 /Next 26 0 R
 /Dest [3 0 R /XYZ null 701 null]

>>
endobj

26 0 obj

<< /Title (Section 2)
 /Parent 22 0 R
 /Prev 25 0 R
 /Next 28 0 R
 /First 27 0 R
 /Last 27 0 R
 /Count −1
 /Dest [3 0 R /XYZ null 680 null]

>>
endobj

27 0 obj

<< /Title (Subsection 1)
 /Parent 26 0 R
 /Dest [3 0 R /XYZ null 670 null]

>>
endobj

28 0 obj

<< /Title (Section 3)
 /Parent 22 0 R
 /Prev 26 0 R
 /Dest [7 0 R /XYZ null 500 null]

>>
endobj

29 0 obj

<< /Title (Summary)
 /Parent 21 0 R
 /Prev 22 0 R
 /Dest [8 0 R /XYZ null 199 null]

>>
endobj

H.7 Updating Example

This example shows the structure of a PDF file as it is updated several times; it illustrates multiple body
sections, cross-reference sections, and trailers. In addition, it shows that once an object has been assigned an
object identifier, it keeps that identifier until the object is deleted, even if the object is altered. Finally, the
example illustrates the reuse of cross-reference entries for objects that have been deleted, along with the
incrementing of the generation number after an object has been deleted.

The original file is the example in H.2, "Minimal PDF File". The updates are divided into four stages, with the file
saved after each stage:

© Adobe Systems Incorporated 2008 – All rights reserved 711

PDF 32000-1:2008

a) Four text annotations are added.

b) The text of one of the annotations is altered.

c) Two of the text annotations are deleted.

d) Three text annotations are added.

The following sections show the segments added to the file at each stage. Throughout this example, objects
are referred to by their object identifiers, which are made up of the object number and the generation number,
rather than simply by their object numbers as in earlier examples. This is necessary because the example
reuses object numbers; therefore, the objects they denote are not unique.

NOTE The tables in these sections show only those objects that are modified during the updating process. Objects
from H.2, "Minimal PDF File" that are not altered during the update are not shown.

H.7.1 Stage 1: Add Four Text Annotations

Four text annotations are added to the initial file and the file is saved. Table H.4 lists the objects involved in this
update.

The example in H.7.1, "Stage 1: Add Four Text Annotations" shows the lines added to the file by this update.
The page object is updated because an Annots entry has been added to it. Note that the file’s trailer now
contains a Prev entry, which points to the original cross-reference section in the file, while the startxref value at
the end of the trailer points to the cross-reference section added by the update.

EXAMPLE 4 0 obj
<< /Type /Page

 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 5 0 R
 /Resources << /ProcSet 6 0 R >>
 /Annots 7 0 R

>>
endobj

7 0 obj

[8 0 R
 9 0 R
 10 0 R
 11 0 R
]

endobj

8 0 obj

<< /Type /Annot
 /Subtype /Text

Table H.4 – Object usage after adding four text annotations

Object identifier Object type

4 0 Page (page object)

7 0 Annotation array

8 0 Annot (annotation dictionary)

9 0 Annot (annotation dictionary)

10 0 Annot (annotation dictionary)

11 0 Annot (annotation dictionary)

PDF 32000-1:2008

712 © Adobe Systems Incorporated 2008 – All rights reserved

 /Rect [44 616 162 735]
 /Contents (Text #1)
 /Open true

>>
endobj

9 0 obj

<< /Type /Annot
 /Subtype /Text
 /Rect [224 668 457 735]
 /Contents (Text #2)
 /Open false

>>
endobj

10 0 obj

<< /Type /Annot
 /Subtype /Text
 /Rect [239 393 328 622]
 /Contents (Text #3)
 /Open true

>>
endobj

11 0 obj

<< /Type /Annot
 /Subtype /Text
 /Rect [34 398 225 575]
 /Contents (Text #4)
 /Open false

>>
endobj

xref
0 1
0000000000 65535 f
4 1
0000000632 00000 n
7 5
0000000810 00000 n
0000000883 00000 n
0000001024 00000 n
0000001167 00000 n
0000001309 00000 n

trailer

<< /Size 12
 /Root 1 0 R
 /Prev 408

>>
startxref
1452
%%EOF

H.7.2 Stage 2: Modify Text of One Annotation

One text annotation is modified and the file is saved. The example in H.7.2, "Stage 2: Modify Text of One
Annotation" shows the lines added to the file by this update. Note that the file now contains two copies of the
object with identifier 10 0 (the text annotation that was modified) and that the added cross-reference section
points to the more recent version of the object. This added cross-reference section contains one subsection,
which contains only an entry for the object that was modified. In addition, the Prev entry in the file’s trailer has
been updated to point to the cross-reference section added in the previous stage, while the startxref value at
the end of the trailer points to the newly added cross-reference section.

© Adobe Systems Incorporated 2008 – All rights reserved 713

PDF 32000-1:2008

EXAMPLE 10 0 obj
<< /Type /Annot

 /Subtype /Text
 /Rect [239 393 328 622]
 /Contents (Modified Text #3)
 /Open true

>>
endobj

xref
0 1
0000000000 65535 f
10 1
0000001703 00000 n

trailer

<< /Size 12
 /Root 1 0 R
 /Prev 1452

>>
startxref
1855
%%EOF

H.7.3 Stage 3: Delete Two Annotations

Two text annotation are deleted and the file is saved. Table H.5 lists the objects updated.

The Annots array is the only object that is written in this update. It is updated because it now contains two
annotations fewer.

The example in H.7.3, "Stage 3: Delete Two Annotations" shows the lines added when the file was saved. Note
that objects with identifiers 8 0 and 9 0 have been deleted, as can be seen from the fact that their entries in the
cross-reference section end with the keyword f.

EXAMPLE 7 0 obj
[10 0 R
 11 0 R
]

endobj

xref
0 1
0000000008 65535 f
7 3
0000001978 00000 n
0000000009 00001 f
0000000000 00001 f

trailer

<< /Size 12
 /Root 1 0 R

Table H.5 – Object usage after deleting two text annotations

Object identifier Object type

7 0 Annotation array

8 0 Free

9 0 Free

PDF 32000-1:2008

714 © Adobe Systems Incorporated 2008 – All rights reserved

 /Prev 1855
>>

startxref
2027
%%EOF

The cross-reference section added at this stage contains four entries, representing object number 0, the
Annots array, and the two deleted text annotations.

• The cross-reference entry for object number 0 is updated because it is the head of the linked list of free
entries and points to the entry for the newly freed object number 8. The entry for object number 8 points to
the entry for object number 9 (the next free entry), while the entry for object number 9 is the last free entry
in the cross-reference table, indicated by the fact that it points back to object number 0.

• The entries for the two deleted text annotations are marked as free and as having generation numbers of 1,
which are used for any objects that reuse these cross-reference entries. Keep in mind that, although the
two objects have been deleted, they are still present in the file. It is the cross-reference table that records
the fact that they have been deleted.

The Prev entry in the trailer has again been updated so that it points to the cross-reference section added at
the previous stage, and the startxref value points to the newly added cross-reference section.

H.7.4 Stage 4: Add Three Annotations

Finally, three new text annotations are added to the file. Table H.6 lists the objects involved in this update.

Object numbers 8 and 9, which were used for the two annotations deleted in the previous stage, have been
reused; however, the new objects have been given a generation number of 1. In addition, the third text
annotation added has been assigned the previously unused object identifier of 12 0.

The example in H.7.4, "Stage 4: Add Three Annotations" shows the lines added to the file by this update. The
added cross-reference section contains five entries, corresponding to object number 0, the Annots array, and
the three annotations added. The entry for object number 0 is updated because the previously free entries for
object numbers 8 and 9 have been reused. The entry for object number 0 now shows that the cross-reference
table has no free entries. The Annots array is updated to reflect the addition of the three text annotations.

EXAMPLE 7 0 obj
[10 0 R
 11 0 R
 8 1 R
 9 1 R
 12 0 R
]

endobj

8 1 obj

<< /Type /Annot
 /Subtype /Text

Table H.6 – Object usage after adding three text annotations

Object identifier Object type

7 0 Annotation array

8 1 Annot (annotation dictionary)

9 1 Annot (annotation dictionary)

12 0 Annot (annotation dictionary)

© Adobe Systems Incorporated 2008 – All rights reserved 715

PDF 32000-1:2008

 /Rect [58 657 172 742]
 /Contents (New Text #1)
 /Open true

>>
endobj

9 1 obj

<< /Type /Annot
 /Subtype /Text
 /Rect [389 459 570 537]
 /Contents (New Text #2)
 /Open false

>>
endobj

12 0 obj

<< /Type /Annot
 /Subtype /Text
 /Rect [44 253 473 337]
 /Contents (New Text #3\203a longer text annotation which we will continue \

onto a second line)
 /Open true

>>
endobj

xref
0 1
0000000000 65535 f
7 3
0000002216 00000 n
0000002302 00001 n
0000002447 00001 n
12 1
0000002594 00000 n

trailer

<< /Size 13
 /Root 1 0 R
 /Prev 2027

>>
startxref
2814
%%EOF

The annotation with object identifier 12 0 illustrates splitting a long text string across multiple lines, as well as
the technique for including nonstandard characters in a string. In this case, the character is an ellipsis (…),
which is character code 203 (octal) in PDFDocEncoding, the encoding used for text annotations.

As in previous updates, the trailer’s Prev entry and startxref value have been updated.

H.8 Structured Elements That Describe Hierarchical Lists

H.8, "Structured Elements That Describe Hierarchical Lists" presents examples that illustrate how structured
elements are used to describe hierarchical lists, such as a table of contents or an index.

PDF 32000-1:2008

716 © Adobe Systems Incorporated 2008 – All rights reserved

H.8.1 Table of Contents

The structured element’s structure type entry (S) may have values that establish hierarchical relationships
between entries in a table of content. The TOCI value specifies an individual member of a table of contents.
The TOC value specifies a list made up of other table of contents items that are individual members of the table
of contents and/or lists of table of contents items. (The trailing character in TOCI is an upper case “I”.)

Figure H.5 shows the table of contents described by the example in H.8.1, "Table of Contents".

Figure H.5 – Table of contents

Figure H.6 illustrates the association between marked content identifiers (MCID) and content. This illustration
includes part of the stream object so you can see how the MCID entries are associated with the content in the
table of contents.

TABLE OF CONTENTS

1. Chapter One 3

1.1 Section A 4

1.2 Section B 5

2. Chapter Two 6

3. Chapter Three 7

3.1 Section A 8

© Adobe Systems Incorporated 2008 – All rights reserved 717

PDF 32000-1:2008

Figure H.6 – Association between content and marked content identifiers

Figure H.7 shows how the relationships of the structure elements and their use of the TOC and TOCI structure
types represent the structure of a table of contents. This figure also shows the relationship between the
structured content elements and the marked content in the stream. Gray text indicates marked content
identifiers (MCID).

TABLE OF CONTENTS

1. Chapter One 3

1.1 Section A 4

1.2 Section B 5

2. Chapter Two 6

3. Chapter Three 7

3.1 Section A 8

/P <</MCID 1>> BDC
BT T* (TABLE OF CONTENTS) Tj ET

EMC

/Lbl <</MCID 11>> BDC

BT T* (1.) Tj ET EMC

/Reference <</MCID 12>> BDC

BT (Chapter One) Tj ET EMC

/NonStruct <</MCID 13>> BDC

BT (.) Tj ET EMC

/Reference <</MCID 14>> /BDC

BT (3) Tj ET EMC

/Lbl <</MCID 21>> BDC

BT T* (1.1) Tj ET EMC

/Reference <</MCID 22>> BDC

BT (Section A) Tj ET EMC

/NonStruct <</MCID 23>> BDC

BT (.) Tj ET EMC

/Reference <</MCID 24>> /BDC

BT (4) Tj ET EMC

1

11 12 13 14

21 22 23 24

Contents of the stream object (partial)Association of marked content
identifiers (at right) to content

PDF 32000-1:2008

718 © Adobe Systems Incorporated 2008 – All rights reserved

Figure H.7 – Hierarchy of structure elements and relationship with marked content

EXAMPLE

4 0 obj
<< /Type /Page

/Contents 5 0 R
>>

5 0 obj
<< /Length 6 0 R >>
stream

/P <</MCID 1>> BDC
BT T* (TABLE OF CONTENTS) Tj ET EMC

/Lbl <</MCID 11>> BDC
BT T* (1.) Tj ET EMC

/Reference <</MCID 12>> BDC
BT (Chapter One) Tj ET EMC

/NonStruct <</MCID 13>> BDC
BT (.) Tj ET EMC

/Reference <</MCID 14>> /BDC
BT (3) Tj ET EMC

/Lbl <</MCID 21>> BDC

101 ->1

201
/S /Caption

211
/S /TOCI

301
/S /TOC

214
/S /TOCI

215
/S /TOCI

302
/S /TOC

400
/S /TOC

212
/S /TOCI

213
/S /TOCI

216
/S /TOCI

113 ->13

114 ->14

111 ->11

112 ->12

123 ->23

124 ->24

121 ->21

122 ->22

133 ->33

134 ->34

131 ->31

132 ->32

143 ->43

144 ->44

141 ->41

142 ->42

153 ->53

154 ->54

151 ->51

152 ->52

163 ->63

164 ->64

161 ->61

162 ->62

TA
B

LE
 O

F
C

O
N

TE
N

TS

1.
 C

ha
pt

er
 O

ne
 .

. .
 .

. .
 .

. .
 3

1.
1

Se
ct

io
n

A
 .

. .
 .

. .
 .

. 4

1.
2

Se
ct

io
n

B
 .

. .
 .

. .
 .

. 5

2.
 C

ha
pt

er
 T

w
o

. .
 .

. .
 .

. .
 .

6

3.
 C

ha
pt

er
 T

hr
ee

 .
. .

 .
. .

 .
. 7

3.
1

Se
ct

io
n

A
 .

. .
 .

. .
 .

. 8

1

11
13

12
14

21
23

22
24

31
33

32
34

41
43

42
44

51
53

52
54

61
63

62
64

Structure elements

Marked content

© Adobe Systems Incorporated 2008 – All rights reserved 719

PDF 32000-1:2008

BT T* (1.1) Tj ET EMC
/Reference <</MCID 22>> BDC

BT (Section A) Tj ET EMC
/NonStruct <</MCID 23>> BDC

BT (.) Tj ET EMC
/Reference <</MCID 24>> /BDC

BT (4) Tj ET EMC

/Lbl <</MCID 31>> BDC
BT T* (1.2) Tj ET EMC

/Reference <</MCID 32>> BDC
 BT (Section B) Tj ET EMC

/NonStruct <</MCID 33>> BDC
BT (.) Tj ET EMC

/Reference <</MCID 34>> /BDC
BT (5) Tj ET EMC

/Lbl <</MCID 41>> BDC
BT T* (2.) Tj ET EMC

/Reference <</MCID 42>> BDC
 BT (Chapter Two) Tj ET EMC

/NonStruct <</MCID 43>> BDC
BT (.) Tj ET EMC

/Reference <</MCID 44>> /BDC
 BT (6) Tj ET EMC

/Lbl <</MCID 51>> BDC
BT T* (3.) Tj ET EMC

/Reference <</MCID 52>> BDC
BT (Chapter Three) Tj ET EMC

/NonStruct <</MCID 53>> BDC
BT (.) Tj ET EMC

/Reference <</MCID 54>> /BDC
BT (7) Tj ET EMC

/Lbl <</MCID 61>> BDC
BT T* (3.1) Tj ET EM

/Reference <</MCID 62>> BDC
BT (Section A) Tj ET EM

/NonStruct <</MCID 63>> BDC
BT (.) Tj ET EM

/Reference <</MCID 64>> /BDC
BT (8) Tj ET EMC

endstream
endobj

101 0 obj
<< /Type /StructElem

/S /P
/P 201 0 R
/Pg 4 0 R
/K 1

>>
endobj
111 0 obj

<< /Type /StructElem
/S /Lbl

PDF 32000-1:2008

720 © Adobe Systems Incorporated 2008 – All rights reserved

/P 211 0 R
/Pg 4 0 R
 /K 11

>>
endobj

112 0 obj
<< /Type /StructElem

/S /Reference
/P 211 0 R
/Pg 4 0 R
/K 12

>>
endobj

113 0 obj
<< /Type /StructElem

/S /NonStruct
/P 211 0 R
/Pg 4 0 R
 /K 13

>>
endobj

114 0 obj
<< /Type /StructElem

/S /Reference
/P 211 0 R
/Pg 4 0 R
/K 14

 >>
endobj

objects 121-124, 131-134, 141-144, 151-154 and 161-164 referencing MCIDs 21-24, 31-34, 41-44,
51-54, and 61-64 are omitted in the interest of space.

201 0 obj
<< /Type /StructElem

/S /Caption
/P 400 0 R
/K [101 0 R]

>>
endobj

211 0 obj
<< /Type /StructElem

/S /TOCI
/P 400 0 R
/K [111 0 R 112 0 R 113 0 R 114 0 R]

>>
endobj

212 0 obj
<< /Type /StructElem

/S /TOCI
/P 301 0 R
/K [121 0 R 122 0 R 123 0 R 124 0 R]

© Adobe Systems Incorporated 2008 – All rights reserved 721

PDF 32000-1:2008

>>
endobj

213 0 obj
<< /Type /StructElem

/S /TOCI
/P 301 0 R
/K [131 0 R 132 0 R 133 0 R 134 0 R]

>>
endobj

214 0 obj
<< /Type /StructElem

/S /TOCI
/P 400 0 R
/K [141 0 R 142 0 R 143 0 R 144 0 R]

>>
endobj

215 0 obj
<< /Type /StructElem

/S /TOCI
/P 400 0 R
/K [151 0 R 152 0 R 153 0 R 154 0 R]

>>
endobj

216 0 obj
<< /Type /StructElem

/S /TOCI
/P 302 0 R
/K [161 0 R 162 0 R 163 0 R 164 0 R]

>>
endobj

301 0 obj
<< /Type /StructElem

/S /TOC
/P 400 0 R
/K [212 0 R 213 0 R]

>>
endobj

302 0 obj
<< /Type /StructElem

/S /TOC
/P 400 0 R
/K [216 0 R]

>>
endobj

400 0 obj
<< /Type /StructElem

/S TOC
/K [201 0 R 211 0 R 301 0 R 214 0 R 215 0 R 302 0 R]

>>
endobj

PDF 32000-1:2008

722 © Adobe Systems Incorporated 2008 – All rights reserved

H.8.2 Nested Lists

The structured element’s structure type entry (S) may have values that establish hierarchical relationships
between entries in an index. The LI value specifies an individual index entry. The L value specifies a list made
up of individual index entries and/or lists of index entries. (The trailing character in LI is an upper case “I”.)

Figure H.8 shows the index described by the example in H.8.2, "Nested Lists".

Figure H.8 – Index

Figure H.9 shows how the relationships of the structure elements and their use of the L and LI structure types
defines the structure of an index. This figure also shows the relationship between the structured content
elements and the marked content in the stream. Gray text indicates marked content identifiers (MCID).

Figure H.9 – Hierarchy of structure elements and relationship with marked content

INDEX

1. Cats

 a. Lions

 b. Tigers

2. Bears

3. Canines

 a. Wolves

101 ->1

201
/S /Caption

211
/S /LI

301
/S /L

214
/S /LI

215
/S /LI

302
/S /L

400
/S /L

212
/S /LI

213
/S /LI

216
/S /LI

111 ->11

112 ->12

121 ->21

122 ->22

131 ->31

132 ->32

141 ->41

142 ->42

151 ->51

152 ->52

161 ->61

162 ->62

IN
D

EX 1.
 C

at
s

a.
 L

io
ns

b.
 T

ig
er

s

2.
 B

ea
rs

3.
 C

an
in

es

a.
 W

ol
ve

s

1 11
12 21

22

31
32

41
42

51
52

61
62

Structure elements

Marked content

© Adobe Systems Incorporated 2008 – All rights reserved 723

PDF 32000-1:2008

EXAMPLE

4 0 obj
<< /Type /Page

/Contents 5 0 R
>>

endobj

5 0 obj
<< /Length 6 0 R >>
stream

/P <</MCID 1>> BDC
BT T* (INDEX) Tj ET EMC

/Lbl <</MCID 11>> BDC
BT T* (1.) Tj ET EMC

/LBody <</MCID 12>> /BDC
BT (Cats) Tj ET EMC

/Lbl <</MCID 21>> BDC
BT T* (a.) Tj ET EMC

/LBody <</MCID 22>> /BDC
BT (Lions) Tj ET EMC

/Lbl <</MCID 31>> BDC
BT T* (b.) Tj ET EMC

/LBody <</MCID 32>> /BDC
BT (Tigers) Tj ET EMC

/Lbl <</MCID 41>> BDC
BT T* (2.) Tj ET EMC

/LBody <</MCID 42>> /BDC
BT (Bears) Tj ET EMC

/Lbl <</MCID 51>> BDC
BT T* (3.) Tj ET EM

/LBody <</MCID 52>> /BDC
BT (Canines) Tj ET EMC

/Lbl <</MCID 61>> BDC
BT T* (a.) Tj ET EM

/LBody <</MCID 62>> /BDC
BT (Wolves) Tj ET EMC

endstream
endobj

101 0 obj
<< /Type /StructElem

/S /P
/P 201 0 R
/Pg 4 0 R
/K 1

>>
endobj

111 0 obj

PDF 32000-1:2008

724 © Adobe Systems Incorporated 2008 – All rights reserved

<< /Type /StructElem
/S /Lbl
/P 211 0 R
/Pg 4 0 R
/K 11

>>
endobj

112 0 obj
<< /Type /StructElem

/S /LBody
/P 211 0 R
/Pg 4 0 R
/K 12

>>
endobj

objects 121-122, 131-132, 141-142, 151-152 and 161-162 referencing MCIDs 21-22, 31-32, 41-42,
51-52, and 61-62 are omitted in the interest of space.

201 0 obj
<< /Type /StructElem

/S /Caption
/P 400 0 R
/K [101 0 R]

>>
endobj

211 0 obj
<< /Type /StructElem

/S /LI
/P 400 0 R
/K [111 0 R 112 0 R]

>>
endobj

212 0 obj
<< /Type /StructElem

/S /LI
/P 301 0 R
/K [121 0 R 122 0 R]

>>
endobj

213 0 obj
<< /Type /StructElem

/S /LI
/P 301 0 R
/K [131 0 R 132 0 R]

>>
endobj

214 0 obj
<< /Type /StructElem

/S /LI
/P 400 0 R
/K [141 0 R 142 0 R]

© Adobe Systems Incorporated 2008 – All rights reserved 725

PDF 32000-1:2008

>>
endobj

215 0 obj
<< /Type /StructElem

/S /LI
/P 400 0 R
/K [151 0 R 152 0 R]

>>
endobj

216 0 obj
<< /Type /StructElem

/S /LI
/P 302 0 R
/K [161 0 R 162 0 R]

>>
endobj

301 0 obj
<< /Type /StructElem

/S /L
/P 400 0 R
/K [212 0 R 213 0 R]

>>

302 0 obj
<< /Type /StructElem

/S /L
/P 400 0 R
/K [216 0 R]

>>
endobj

400 0 obj
<< /Type /StructElem

/S /L
/K [201 0 R 211 0 R 301 0 R 214 0 R 215 0 R 302 0 R]

>>
endobj

PDF 32000-1:2008

726 © Adobe Systems Incorporated 2008 – All rights reserved

THIS PAGE BLANK

© Adobe Systems Incorporated 2008 – All rights reserved 727

PDF 32000-1:2008

Annex I
(normative)

PDF Versions and Compatibility

I.1 General

The goal of PDF is to enable people to exchange and view electronic documents easily and reliably. Ideally, this
means that any conforming reader should be able to display the contents of any PDF file, even if the PDF file
was created long before or long after the conforming reader was developed. In reality, new versions of PDF are
occasionally introduced to provide additional capabilities not present before. Furthermore, conforming readers
may support private extensions to PDF, making some conforming readers more capable than others,
depending on what extensions are present.

PDF has been designed to enable users to view everything in the document that the conforming reader
understands and to enable the conforming reader to ignore or inform the user about objects not understood.
The decision whether to ignore or inform the user is made on a feature-by-feature basis, at the discretion of the
confirming reader.

I.2 PDF Version Numbers

The PDF version number identifies a specific version of the Adobe PDF specification. A PDF file is labelled with
the version number of the Adobe PDF specification that the file conforms to.

PDF version numbers take the form M . m, where M is the major and m the minor version number, each
represented as a decimal integer.

The version number for a subsequent version of the PDF specification is formed either by incrementing m or by
incrementing M and setting m to zero, as follows:

• The major version is incremented if PDF changes in a way that is not upward-compatible from previous
versions. (In practice, this has never happened; the current major version is 1.)

• The minor version is incremented if PDF changes in a way that is upward-compatible from previous
versions. (The current minor version is 7.)

• The PDF version number does not change at all if private data is included in a PDF file by one of the
extension mechanisms defined in this specification.

The header in the first line of a PDF file specifies a PDF version (see 7.5.2, "File Header"). Starting with PDF
1.4, a PDF version can also be specified in the Version entry of the document catalogue, essentially updating
the version associated with the file by overriding the one specified in the file header (see 7.7.2, "Document
Catalog"). As described in the following paragraphs, the conforming product’s behaviour upon opening or
saving a document depends on comparing the PDF file's version with the PDF version that the conforming
product supports.

A conforming readers shall attempt to read any PDF file, even if the file’s version is more recent than that of the
conforming reader.

If a conforming reader opens a PDF file with a major version number newer than the version that it supports, it
should warn the user that it is unlikely to be able to read the document successfully and that the user cannot
change or save the document. Upon the first error that is caused by encountering an unrecognized feature, the
conforming reader should notify the user that an error has occurred but that no further errors will be reported.

PDF 32000-1:2008

728 © Adobe Systems Incorporated 2008 – All rights reserved

(Some errors should nevertheless be always reported, including file I/O errors, out-of-memory errors, and
notifications that a command has failed.) Processing should continue if possible.

If a conforming reader opens a PDF file that has a minor version number newer than the version that it
supports, it should notify the user that the document may contain information the conforming reader does not
understand. If the conforming reader encounters an error, it should notify the user that the PDF file’s version is
newer than expected, an error has occurred, and no further errors will be reported.

Whether and how the version of a PDF file should change when the document is modified and saved depends
on several factors. If the PDF file has a newer version than the conforming product supports, the conforming
product should not alter the version—that is, a PDF file’s version should never be changed to an older version.
If the PDF file has an older version than the conforming product supports, the conforming product may update
the PDF file’s version to match the conforming product’s version. If a user modifies a document by inserting the
contents of another PDF file into it, the saved document’s version should be the most recent of the conforming
product’s version, the original PDF file's version, and the inserted PDF file’s version.

I.3 Feature Compatibility

When a new version of PDF is defined, many features are introduced simply by adding new entries to existing
dictionaries. Earlier versions of conforming readers do not notice the existence of such entries and behave as if
they were not there. Such new features are therefore both forward- and backward-compatible. Likewise,
adding entries not described in the PDF specification to dictionary objects does not affect the conforming
reader’s behaviour. See Annex E for information on how to choose key names that are compatible with future
versions of PDF. See 7.12.2, “Developer Extensions Dictionary” for a discussion of how to designate the use of
public extensions in PDF file.

In some cases, a new feature is impossible to ignore, because doing so would preclude some vital operation
such as viewing or printing a page. For instance, if a page’s content stream is encoded with some new type of
filter, there is no way for an earlier version of conforming reader to view or print the page, even though the
content stream (if decoded) would be perfectly understood by the reader. There is little choice but to give an
error in cases like these. Such new features are forward-compatible but not backward-compatible.

In a few cases, new features are defined in a way that earlier versions of conforming readers will ignore, but the
output will be degraded in some way without any error indication. If a PDF file undergoes editing by an earlier
version of a conforming product that does not understand some of the features that the file uses, the
occurrences of those features may or may not survive.

© Adobe Systems Incorporated 2008 – All rights reserved 729

PDF 32000-1:2008

Annex J
(informative)

FDF Rename Flag Implementation Example

J.1 General

The Rename flag is used to specify whether fields imported from the template shall be renamed in the event of
name conflicts with existing fields;

J.2 Implementation Example

If the Rename flag in the FDF template dictionary is true, fields with such conflicting names shall be renamed
to guarantee their uniqueness. If Rename is false, the fields shall not be renamed; this results in multiple fields
with the same name in the target document. Each time the FDF file provides attributes for a given field name,
all fields with that name shall be updated.

This can be implemented by a conforming product renaming fields by prepending a page number, a template
name, and an ordinal number to the field name. The ordinal number corresponds to the order in which the
template is applied to a page, with 0 being the first template specified for the page.

EXAMPLE If the first template used on the fifth page has the name Template and has the Rename flag set to true,
fields defined in that template are renamed by prepending the character string P5 . Template_0 . to their
field names.

PDF 32000-1:2008

730 © Adobe Systems Incorporated 2008 – All rights reserved

THIS PAGE BLANK

© Adobe Systems Incorporated 2008 – All rights reserved 731

PDF 32000-1:2008

Annex K
(informative)

PostScript Compatibility — Transparent Imaging Model

K.1 General

Because the PostScript language does not support the transparent imaging model, a conforming reader
desiring to print on a PostScript output device needs to have some means for converting the appearance of a
document that uses transparency to a purely opaque description.

K.2 Conversion

Converting the contents of a page from transparent to opaque form entails some combination of shape
decomposition and prerendering to flatten the stack of transparent objects on the page, performing all the
needed transparency computations, and describing the final appearance using opaque objects only. Whether
the page contains transparent content needing to be flattened can be determined by straightforward analysis of
the page’s resources; it is not necessary to analyse the content stream itself. The conversion to opaque form is
irreversible, since all information about how the transparency effects were produced is lost.

To perform the transparency computations properly, the conforming reader needs to know the native colour
space of the output device. This is no problem when the conforming reader controls the output device directly.
However, when generating PostScript output, the conforming reader has no way of knowing the native colour
space of the PostScript output device. An incorrect assumption will ruin the calibration of any CIE-based
colours appearing on the page. This problem can be addressed in either of two ways:

• If the entire page consists of CIE-based colours, flatten the colours to a single CIE-based colour space
rather than to a device colour space. The preferred colour space for this purpose can easily be determined
if the page has a group attributes dictionary (Group entry in the page object) specifying a CIE-based
colour space (see 11.6.6, "Transparency Group XObjects").

• Otherwise, flatten the colours to some assumed device colour space with predetermined calibration. In the
generated PostScript output, paint the flattened colours in a CIE-based colour space having that
calibration.

Because the choice between using spot colorants and converting them to an alternate colour space affects the
flattened results of process colours, a decision needs to be made during PostScript conversion about the set of
available spot colorants to assume. (This differs from strictly opaque painting, where the decision can be
deferred until the generated PostScript code is executed.)

PDF 32000-1:2008

732 © Adobe Systems Incorporated 2008 – All rights reserved

THIS PAGE BLANK

© Adobe Systems Incorporated 2008 – All rights reserved 733

PDF 32000-1:2008

Annex L
(informative)

Colour Plates

L.1 Colour Plates

This annex consists of figures that logically belong in other parts of this specification. They are collected here
so that all colour figures appear together as a sequence of colour plates that may be produced separately from
the remainder of the specification.

Color Plates

Figure L.1 – Additive and subtractive colour (8.6.4, "Device Colour Spaces")

Additive Subtractive

PDF 32000-1:2008

734 © Adobe Systems Incorporated 2008 – All rights reserved

Figure L.2 – Uncalibrated colour (8.6.5, "CIE-Based Colour Spaces")

Figure L.3 – Lab colour space (8.6.5.4, "Lab Colour Spaces")

L* = 100
white

L* = 0
black

b* = 100
yellow

b* = -100
blue

a* = 100
red

a* = -100
green

© Adobe Systems Incorporated 2008 – All rights reserved 735

PDF 32000-1:2008

Figure L.4 – Color gamuts (8.6.5.4, "Lab Colour Spaces")

Figure L.5 – Rendering intents (8.6.5.8, "Rendering Intents")

RGB

CMYK

L*a*b*

AbsoluteColorimetric RelativeColorimetric

PerceptualSaturation

PDF 32000-1:2008

736 © Adobe Systems Incorporated 2008 – All rights reserved

Figure L.6 – Duotone image (8.6.6.5, "DeviceN Colour Spaces")

Figure L.7 – Quadtone image (8.6.6.5, "DeviceN Colour Spaces"

Grayscale Black Magenta Result

Single-component (grayscale) image Quadtone image

© Adobe Systems Incorporated 2008 – All rights reserved 737

PDF 32000-1:2008

Figure L.8 – Colored tiling pattern (8.7.3.2, "Coloured Tiling Patterns")

Figure L.9 – Uncoloured tiling pattern (8.7.3.3, "Uncoloured Tiling Patterns")

♠♥
♦♣

♠♥
♦♣

PDF 32000-1:2008

738 © Adobe Systems Incorporated 2008 – All rights reserved

Extend = [false false], Background not specified

Extend = [true true], Background not specified

Extend = [true true], Background not specified

Figure L.10 – Axial shading (8.7.4.5.3, "Type 2 (Axial) Shadings")

Figure L.11 – Radial shadings depicting a cone (8.7.4.5.4, "Type 3 (Radial) Shadings")

AB CDE F G HIJ K LM

AB CDE F G HIJ K LM

AB E F G HIJ K LMCDCD K L

Starting from
smaller circle

Starting from
larger circle

Neither circle extended Starting circle extended

© Adobe Systems Incorporated 2008 – All rights reserved 739

PDF 32000-1:2008

Figure L.12 – Radial shadings depicting a sphere (8.7.4.5.4, "Type 3 (Radial) Shadings")

Figure L.13 – Radial shadings with extension (8.7.4.5.4, "Type 3 (Radial) Shadings")

Figure L.14 – Radial shading effect (8.7.4.5.4, "Type 3 (Radial) Shadings")

Starting from inner circle;
no background color specified

Starting from outer circle;
background color specified

No background color specified Background color specified

PDF 32000-1:2008

740 © Adobe Systems Incorporated 2008 – All rights reserved

Figure L.15 – Coons patch mesh (8.7.4.5.7, "Type 6 Shadings (Coons Patch Meshes)")

Unit square

Nonlinear (control points altered)

© Adobe Systems Incorporated 2008 – All rights reserved 741

PDF 32000-1:2008

Figure L.16 – Transparency groups (11.2, "Overview of Transparency")

Figure L.17 – Isolated and knockout groups (11.4.5, "Isolated Groups"
and 11.4.6, "Knockout Groups")

Ungrouped objects
Object opacity = 1.0

Ungrouped objects
Object opacity = 0.5

Transparency group
Object opacity = 1.0
Group opacity = 0.5

Blend mode = Normal

Transparency group
Object opacity = 0.5
Group opacity = 1.0

Blend mode = HardLight

Isolated

Non-isolated

Knockout Non-knockout

PDF 32000-1:2008

742 © Adobe Systems Incorporated 2008 – All rights reserved

Figure L.18 – RGB blend modes (11.3.5, "Blend Mode")

Duck in foreground, rainbow in background

ColorBurn

HardLight

SoftLight

Overlay

Screen

Multiply

Normal

ColorDodge Color

Luminosity

Saturation

Hue

Exclusion

Difference

Lighten

Darken

Rainbow in foreground, duck in background

Color

Luminosity

Saturation

Hue

Exclusion

Difference

Lighten

Darken

ColorBurn

HardLight

SoftLight

Overlay

Screen

Multiply

Normal

ColorDodge

© Adobe Systems Incorporated 2008 – All rights reserved 743

PDF 32000-1:2008

Figure L.19 – CMYK blend modes (11.3.5, "Blend Mode")

Color

Luminosity

Saturation

Hue

Exclusion

Difference

Lighten

Darken

ColorBurn

HardLight

SoftLight

Overlay

Screen

Multiply

Normal

ColorDodge

Rainbow in foreground, duck in background

ColorBurn

HardLight

SoftLight

Overlay

Screen

Multiply

Normal

ColorDodge Color

Luminosity

Saturation

Hue

Exclusion

Difference

Lighten

Darken

Duck in foreground, rainbow in background

PDF 32000-1:2008

744 © Adobe Systems Incorporated 2008 – All rights reserved

Figure L.20 – Blending and overprinting (11.7.4.3, "Compatibility with Opaque Overprinting")

Overprint enabled

and blend mode = Screen

 Blend mode = Screen

Axial shading from [0.0 0.0 1.0 0.0]

 to [0.0 1.0 0.0 0.0]

Overprint enabled

Opacity = 0.5

Color = [0.5 0.0 0.5 0.0]

Overprint enabled and

blend mode = Screen

Blend mode = Screen

Axial shading from [0.0 0.0 1.0 0.0]

 to [0.0 1.0 0.0 0.0]

Overprint enabled

Opacity = 1.0

Color = [0.5 0.0 0.5 0.0]

© Adobe Systems Incorporated 2008 – All rights reserved 745

PDF 32000-1:2008

Bibliography

This Bibliography provides details on books and documents, from ISO, AIIM and other sources, that pertain to
this standard.

[1] ISO 15930-1:2001, Graphic technology — Prepress digital data exchange — Use of PDF — Part 1:
Complete exchange using CMYK data (PDF/X-1 and PDF/X-1a).

[2] ISO 15930-3:2002, Graphic technology — Prepress digital data exchange — Use of PDF — Part 3:
Complete exchange suitable for colour-managed workflows (PDF/X-3).

[3] ISO 15930-4:2003, Graphic technology — Prepress digital data exchange using PDF — Part 4:
Complete exchange of CMYK and spot colour printing data using PDF 1.4 (PDF/X-1a).

[4] ISO 15930-5:2003, Graphic technology — Prepress digital data exchange using PDF — Part 5: Partial
exchange of printing data using PDF 1.4 (PDF/X-2).

[5] ISO 15930-6:2003, Graphic technology — Prepress digital data exchange using PDF — Part 6:
Complete exchange of printing data suitable for colour-managed workflows using PDF 1.4 (PDF/X-3).

[6] ISO 19005-1:2005, Document management — Electronic document file format for long-term
preservation -- Part 1: Use of PDF 1.4 (PDF/A-1) .

[7] ISO 24517-1:2007, Document management — Engineering document format using PDF — Part 1: Use
of PDF 1.6 (PDF/E-1).

[8] PDF Reference, First Edition, version 1.0 (June 1993), Addison-Wesley, 0-201-62628-4.

[9] PDF Reference, First Edition Revised, version 1.1 (March 1996), Adobe Systems Incorporated.

[10] PDF Reference, First Edition Revised, version 1.2 (November 1996), Adobe Systems Incorporated.

[11] PDF Reference, Second Edition, version 1.3 (July 2000), Addison-Wesley, ISBN 0-201-61588-6.

[12] PDF Reference, Third Edition, version 1.4 (November 2001), Addison-Wesley, ISBN 0-201-75839-3.

[13] PDF Reference, Fourth Edition, version 1.5 (August 2003), Adobe Systems Incorporated (website only).

[14] PDF Reference, Fifth Edition, version 1.6 (December 2004), Adobe Press, ISBN 0-321-30474-8.

[15] PostScript Language Reference, Third Edition, Addison-Wesley, Reading, MA, 1999.

[16] Technical Note #5001, PostScript Language Document Structuring Conventions Specification, Version
3.0, Adobe Systems Incorporated.

[17] Technical Note #5044, Color Separation Conventions for PostScript Language Programs, Adobe
Systems Incorporated.

[18] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., Data Structures and Algorithms, Addison-Wesley,
Reading, MA, 1983. Includes a discussion of balanced trees.

[19] Apple Computer, Inc., TrueType Reference Manual. Available on Apple’s Web site at < http://
developer.apple.com/fonts/TTRefMan/>.

http://developer.apple.com/fonts/TTRefMan/
http://developer.apple.com/fonts/TTRefMan/

PDF 32000-1:2008

746 © Adobe Systems Incorporated 2008 – All rights reserved

[20] Arvo, J. (ed.), Graphics Gems II, Academic Press, 1994. The section “Geometrically Continuous Cubic
Bézier Curves” by Hans-Peter Seidel describes the mathematics used to smoothly join two cubic Bézier
curves.

[21] Cascading Style Sheets, level 2 (CSS2) Specification, <http://www.w3.org/TR/REC-CSS2/>.

[22] CIP4. See International Cooperation for the Integration of Processes in Prepress, Press and Postpress.

[23] Ecma International, Standard ECMA-363, Universal 3D File Format, 1st Edition. This document is
available at <http://www.ecma-international.org/>.

[24] Extensible Stylesheet Language (XSL) 1.0, <http://www.w3.org/TR/xsl/>.

[25] Fairchild, M. D., Color Appearance Models, Addison-Wesley, Reading, MA, 1997. Covers color vision,
basic colorimetry, color appearance models, cross-media color reproduction, and the current CIE
standards activities. Updates, software, and color appearance data are available at < http://
www.cis.rit.edu/people/faculty/fairchild/CAM.html >.

[26] Foley, J. D. et al., Computer Graphics: Principles and Practice, Addison-Wesley, Reading, MA, 1996.
(First edition was Foley, J. D. and van Dam, A., Fundamentals of Interactive Computer Graphics,
Addison-Wesley, Reading, MA, 1982.) Covers many graphics-related topics, including a thorough
treatment of the mathematics of Bézier cubics and Gouraud shadings.

[27] Glassner, A. S. (ed.), Graphics Gems, Academic Press, 1993. The section “An Algorithm for
Automatically Fitting Digitized Curves” by Philip J. Schneider describes an algorithm for determining the
set of Bézier curves approximating an arbitrary set of user-provided points. Appendix 2 contains an
implementation of the algorithm, written in the C programming language. Other sections relevant to the
mathematics of Bézier curves include “Solving the Nearest-Point-On-Curve Problem” and “A Bézier
Curve-Based Root-Finder,” both by Philip J. Schneider, and “Some Properties of Bézier Curves” by
Ronald Goldman. The source code appearing in the appendix is available via anonymous FTP, as
described in the preface to Graphics Gems III (Kirk, D. (ed.), Graphics Gems III, Academic Press,
1994).

[28] Hewlett-Packard Corporation, PANOSE Classification Metrics Guide. Available on the Agfa Monotype
Web site at < http://www.agfamonotype.com/printer/pan1.asp >.

[29] HTML 4.01 Specification, <http://www.w3.org/TR/html401/>.

[30] Hunt, R. W. G., The Reproduction of Colour, 5th ed., Fisher Books, England, 1996. A comprehensive
general reference on color reproduction; includes an introduction to the CIE system.

[31] Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point Arithmetic
(IEEE 754-1985).

[32] International Cooperation for the Integration of Processes in Prepress, Press and Postpress (CIP4),
JDF Specification, Version 1.2. Available through the CIP4 Web site at < http://www.cip4.org >.

[33] Kirk, D. (ed.), Graphics Gems III, Academic Press, 1994. The section “Interpolation Using Bézier
Curves” by Gershon Elber contains an algorithm for calculating a Bézier curve that passes through a
user-specified set of points. The algorithm uses not only cubic Bézier curves, which are supported in
PDF, but also higher-order Bézier curves. The appendix contains an implementation of the algorithm,
written in the C programming language. The source code appearing in the appendix is available via
anonymous FTP, as described in the book’s preface .

[34] Lunde, K., CJKV Information Processing, O’Reilly & Associates, Sebastopol, CA, 1999. Excellent
background material on CMaps, character sets, encodings, and the like.

[35] Microsoft Corporation, TrueType 1.0 Font Files Technical Specification. Available at < http://
www.microsoft.com/typography/tt/tt.htm >.

http://www.agfamonotype.com/printer/pan1.asp
http://www.agfamonotype.com/printer/pan1.asp
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/html401/
http://www.cip4.org
http://www.ecma-international.org/
http://www.ecma-international.org/
http://www.cis.rit.edu/people/faculty/fairchild/CAM.html
http://www.cis.rit.edu/people/faculty/fairchild/CAM.html
http://www.microsoft.com/typography/tt/tt.htm
http://www.microsoft.com/typography/tt/tt.htm

© Adobe Systems Incorporated 2008 – All rights reserved 747

PDF 32000-1:2008

[36] Porter, T. and Duff, T., “Compositing Digital Images,” Computer Graphics, Vol. 18 No. 3, July 1984.
Computer Graphics is the newsletter of the ACM’s special interest group SIGGRAPH; for more
information, see < http://www.acm.org >.

[37] RSA Security, Inc. This document, among others related to encryption and digital signatures, is
available at < http://www.rsasecurity.com >: PKCS #1 - RSA Cryptography Standard <http://
www.rsasecurity.com/rsalabs/node.asp?id=2125>.

[38] Scalable Vector Graphics (SVG) 1.0 Specification, <http://www.w3.org/TR/2001/REC-SVG-20010904/>.

[39] Synchronized Multimedia Integration Language (SMIL 2.0), <http//:www.w3.org/TR/smil20/>.

[40] Web Content Accessibility Guidelines 1.0, <http://www.w3.org/TR/WAI-WEBCONTENT/>.

[41] XHTML 1.0: The Extensible HyperText Markup Language, <http://www.w3.org/TR/xhtml1/>.

http://www.rsasecurity.com
http://www.rsasecurity.com
http://www.rsasecurity.com/rsalabs/node.asp?id=2125
http://www.rsasecurity.com/rsalabs/node.asp?id=2125
http://www.w3.org/TR/2001/REC-SVG-20010904/
http://www.w3.org/TR/smil20/
http://www.w3.org/TR/WAI-WEBCONTENT/
http://www.w3.org/TR/xhtml1/
http://www.acm.org
http://www.acm.org

PDF 32000-1:2008

748 © Adobe Systems Incorporated 2008 – All rights reserved

	Document management — Portable document format — Part 1: PDF 1.7
	Contents Page
	Foreword
	Introduction
	1 Scope
	2 Conformance
	2.1 General
	2.2 Conforming readers
	2.3 Conforming writers
	2.4 Conforming products

	3 Normative references
	4 Terms and definitions
	5 Notation
	6 Version Designations
	7 Syntax
	7.1 General
	7.2 Lexical Conventions
	7.2.1 General
	7.2.2 Character Set
	7.2.3 Comments

	7.3 Objects
	7.3.1 General
	7.3.2 Boolean Objects
	7.3.3 Numeric Objects
	7.3.4 String Objects
	7.3.4.1 General
	7.3.4.2 Literal Strings
	7.3.4.3 Hexadecimal Strings

	7.3.5 Name Objects
	7.3.6 Array Objects
	7.3.7 Dictionary Objects
	7.3.8 Stream Objects
	7.3.8.1 General
	7.3.8.2 Stream Extent

	7.3.9 Null Object
	7.3.10 Indirect Objects

	7.4 Filters
	7.4.1 General
	7.4.2 ASCIIHexDecode Filter
	7.4.3 ASCII85Decode Filter
	7.4.4 LZWDecode and FlateDecode Filters
	7.4.4.1 General
	7.4.4.2 Details of LZW Encoding
	7.4.4.3 LZWDecode and FlateDecode Parameters
	7.4.4.4 LZW and Flate Predictor Functions

	7.4.5 RunLengthDecode Filter
	7.4.6 CCITTFaxDecode Filter
	7.4.7 JBIG2Decode Filter
	7.4.8 DCTDecode Filter
	7.4.9 JPXDecode Filter
	7.4.10 Crypt Filter

	7.5 File Structure
	7.5.1 General
	7.5.2 File Header
	7.5.3 File Body
	7.5.4 Cross-Reference Table
	7.5.5 File Trailer
	7.5.6 Incremental Updates
	7.5.7 Object Streams
	7.5.8 Cross-Reference Streams
	7.5.8.1 General
	7.5.8.2 Cross-Reference Stream Dictionary
	7.5.8.3 Cross-Reference Stream Data
	7.5.8.4 Compatibility with Applications That Do Not Support Compressed Reference Streams

	7.6 Encryption
	7.6.1 General
	7.6.2 General Encryption Algorithm
	7.6.3 Standard Security Handler
	7.6.3.1 General
	7.6.3.2 Standard Encryption Dictionary
	7.6.3.3 Encryption Key Algorithm
	7.6.3.4 Password Algorithms

	7.6.4 Public-Key Security Handlers
	7.6.4.1 General
	7.6.4.2 Public-Key Encryption Dictionary
	7.6.4.3 Public-Key Encryption Algorithms

	7.6.5 Crypt Filters

	7.7 Document Structure
	7.7.1 General
	7.7.2 Document Catalog
	7.7.3 Page Tree
	7.7.3.1 General
	7.7.3.2 Page Tree Nodes
	7.7.3.3 Page Objects
	7.7.3.4 Inheritance of Page Attributes

	7.7.4 Name Dictionary

	7.8 Content Streams and Resources
	7.8.1 General
	7.8.2 Content Streams
	7.8.3 Resource Dictionaries

	7.9 Common Data Structures
	7.9.1 General
	7.9.2 String Object Types
	7.9.2.1 General
	7.9.2.2 Text String Type
	7.9.2.3 PDFDocEncoded String Type
	7.9.2.4 Byte String Type

	7.9.3 Text Streams
	7.9.4 Dates
	7.9.5 Rectangles
	7.9.6 Name Trees
	7.9.7 Number Trees

	7.10 Functions
	7.10.1 General
	7.10.2 Type 0 (Sampled) Functions
	7.10.3 Type 2 (Exponential Interpolation) Functions
	7.10.4 Type 3 (Stitching) Functions
	7.10.5 Type 4 (PostScript Calculator) Functions
	7.10.5.1 General
	7.10.5.2 Errors in Type 4 Functions

	7.11 File Specifications
	7.11.1 General
	7.11.2 File Specification Strings
	7.11.2.1 General
	7.11.2.2 Absolute and Relative File Specifications
	7.11.2.3 Conversion to Platform-Dependent File Names
	7.11.2.4 Multiple-Byte Strings in File Specifications

	7.11.3 File Specification Dictionaries
	7.11.4 Embedded File Streams
	7.11.4.1 General
	7.11.4.2 Related Files Arrays

	7.11.5 URL Specifications
	7.11.6 Collection Items
	7.11.7 Maintenance of File Specifications

	7.12 Extensions Dictionary
	7.12.1 General
	7.12.2 Developer Extensions Dictionary
	7.12.3 BaseVersion
	7.12.4 ExtensionLevel

	8 Graphics
	8.1 General
	8.2 Graphics Objects
	8.3 Coordinate Systems
	8.3.1 General
	8.3.2 Coordinate Spaces
	8.3.2.1 General
	8.3.2.2 Device Space
	8.3.2.3 User Space
	8.3.2.4 Other Coordinate Spaces
	8.3.2.5 Relationships among Coordinate Spaces

	8.3.3 Common Transformations
	8.3.4 Transformation Matrices

	8.4 Graphics State
	8.4.1 General
	8.4.2 Graphics State Stack
	8.4.3 Details of Graphics State Parameters
	8.4.3.1 General
	8.4.3.2 Line Width
	8.4.3.3 Line Cap Style
	8.4.3.4 Line Join Style
	8.4.3.5 Miter Limit
	8.4.3.6 Line Dash Pattern

	8.4.4 Graphics State Operators
	8.4.5 Graphics State Parameter Dictionaries

	8.5 Path Construction and Painting
	8.5.1 General
	8.5.2 Path Construction Operators
	8.5.2.1 General
	8.5.2.2 Cubic Bézier Curves

	8.5.3 Path-Painting Operators
	8.5.3.1 General
	8.5.3.2 Stroking
	8.5.3.3 Filling
	8.5.3.3.1 General
	8.5.3.3.2 Nonzero Winding Number Rule
	8.5.3.3.3 Even-Odd Rule

	8.5.4 Clipping Path Operators

	8.6 Colour Spaces
	8.6.1 General
	8.6.2 Colour Values
	8.6.3 Colour Space Families
	8.6.4 Device Colour Spaces
	8.6.4.1 General
	8.6.4.2 DeviceGray Colour Space
	8.6.4.3 DeviceRGB Colour Space
	8.6.4.4 DeviceCMYK Colour Space

	8.6.5 CIE-Based Colour Spaces
	8.6.5.1 General
	8.6.5.2 CalGray Colour Spaces
	8.6.5.3 CalRGB Colour Spaces
	8.6.5.4 Lab Colour Spaces
	8.6.5.5 ICCBased Colour Spaces
	8.6.5.6 Default Colour Spaces
	8.6.5.7 Implicit Conversion of CIE-Based Colour Spaces
	8.6.5.8 Rendering Intents

	8.6.6 Special Colour Spaces
	8.6.6.1 General
	8.6.6.2 Pattern Colour Spaces
	8.6.6.3 Indexed Colour Spaces
	8.6.6.4 Separation Colour Spaces
	8.6.6.5 DeviceN Colour Spaces
	8.6.6.6 Multitone Examples

	8.6.7 Overprint Control
	8.6.8 Colour Operators

	8.7 Patterns
	8.7.1 General
	8.7.2 General Properties of Patterns
	8.7.3 Tiling Patterns
	8.7.3.1 General
	8.7.3.2 Coloured Tiling Patterns
	8.7.3.3 Uncoloured Tiling Patterns

	8.7.4 Shading Patterns
	8.7.4.1 General
	8.7.4.2 Shading Operator
	8.7.4.3 Shading Dictionaries
	8.7.4.4 Colour Space: Special Considerations
	8.7.4.4.1 General

	8.7.4.5 Shading Types
	8.7.4.5.1 General
	8.7.4.5.2 Type 1 (Function-Based) Shadings
	8.7.4.5.3 Type 2 (Axial) Shadings
	8.7.4.5.4 Type 3 (Radial) Shadings
	8.7.4.5.5 Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)
	8.7.4.5.6 Type 5 Shadings (Lattice-Form Gouraud-Shaded Triangle Meshes)
	8.7.4.5.7 Type 6 Shadings (Coons Patch Meshes)
	8.7.4.5.8 Type 7 Shadings (Tensor-Product Patch Meshes)

	8.8 External Objects
	8.8.1 General
	8.8.2 PostScript XObjects

	8.9 Images
	8.9.1 General
	8.9.2 Image Parameters
	8.9.3 Sample Representation
	8.9.4 Image Coordinate System
	8.9.5 Image Dictionaries
	8.9.5.1 General
	8.9.5.2 Decode Arrays
	8.9.5.3 Image Interpolation
	8.9.5.4 Alternate Images

	8.9.6 Masked Images
	8.9.6.1 General
	8.9.6.2 Stencil Masking
	8.9.6.3 Explicit Masking
	8.9.6.4 Colour Key Masking

	8.9.7 Inline Images

	8.10 Form XObjects
	8.10.1 General
	8.10.2 Form Dictionaries
	8.10.3 Group XObjects
	8.10.4 Reference XObjects
	8.10.4.1 General
	8.10.4.2 Printing Reference XObjects
	8.10.4.3 Special Considerations

	8.11 Optional Content
	8.11.1 General
	8.11.2 Optional Content Groups
	8.11.2.1 General
	8.11.2.2 Optional Content Membership Dictionaries
	8.11.2.3 Intent

	8.11.3 Making Graphical Content Optional
	8.11.3.1 General
	8.11.3.2 Optional Content in Content Streams
	8.11.3.3 Optional Content in XObjects and Annotations

	8.11.4 Configuring Optional Content
	8.11.4.1 General
	8.11.4.2 Optional Content Properties Dictionary
	8.11.4.3 Optional Content Configuration Dictionaries
	8.11.4.4 Usage and Usage Application Dictionaries
	8.11.4.5 Determining the State of Optional Content Groups

	9 Text
	9.1 General
	9.2 Organization and Use of Fonts
	9.2.1 General
	9.2.2 Basics of Showing Text
	9.2.3 Achieving Special Graphical Effects
	9.2.4 Glyph Positioning and Metrics

	9.3 Text State Parameters and Operators
	9.3.1 General
	9.3.2 Character Spacing
	9.3.3 Word Spacing
	9.3.4 Horizontal Scaling
	9.3.5 Leading
	9.3.6 Text Rendering Mode
	9.3.7 Text Rise
	9.3.8 Text Knockout

	9.4 Text Objects
	9.4.1 General
	9.4.2 Text-Positioning Operators
	9.4.3 Text-Showing Operators
	9.4.4 Text Space Details

	9.5 Introduction to Font Data Structures
	9.6 Simple Fonts
	9.6.1 General
	9.6.2 Type 1 Fonts
	9.6.2.1 General
	9.6.2.2 Standard Type 1 Fonts (Standard 14 Fonts)
	9.6.2.3 Multiple Master Fonts

	9.6.3 TrueType Fonts
	9.6.4 Font Subsets
	9.6.5 Type 3 Fonts
	9.6.6 Character Encoding
	9.6.6.1 General
	9.6.6.2 Encodings for Type 1 Fonts
	9.6.6.3 Encodings for Type 3 Fonts
	9.6.6.4 Encodings for TrueType Fonts

	9.7 Composite Fonts
	9.7.1 General
	9.7.2 CID-Keyed Fonts Overview
	9.7.3 CIDSystemInfo Dictionaries
	9.7.4 CIDFonts
	9.7.4.1 General
	9.7.4.2 Glyph Selection in CIDFonts
	9.7.4.3 Glyph Metrics in CIDFonts

	9.7.5 CMaps
	9.7.5.1 General
	9.7.5.2 Predefined CMaps
	9.7.5.3 Embedded CMap Files
	9.7.5.4 CMap Example and Operator Summary

	9.7.6 Type 0 Font Dictionaries
	9.7.6.1 General
	9.7.6.2 CMap Mapping
	9.7.6.3 Handling Undefined Characters

	9.8 Font Descriptors
	9.8.1 General
	9.8.2 Font Descriptor Flags
	9.8.3 Font Descriptors for CIDFonts
	9.8.3.1 General
	9.8.3.2 Style
	9.8.3.3 FD

	9.9 Embedded Font Programs
	9.10 Extraction of Text Content
	9.10.1 General
	9.10.2 Mapping Character Codes to Unicode Values
	9.10.3 ToUnicode CMaps

	10 Rendering
	10.1 General
	10.2 CIE-Based Colour to Device Colour
	10.3 Conversions among Device Colour Spaces
	10.3.1 General
	10.3.2 Conversion between DeviceGray and DeviceRGB
	10.3.3 Conversion between DeviceGray and DeviceCMYK
	10.3.4 Conversion from DeviceRGB to DeviceCMYK
	10.3.5 Conversion from DeviceCMYK to DeviceRGB

	10.4 Transfer Functions
	10.5 Halftones
	10.5.1 General
	10.5.2 Halftone Screens
	10.5.3 Spot Functions
	10.5.4 Threshold Arrays
	10.5.5 Halftone Dictionaries
	10.5.5.1 General
	10.5.5.2 Type 1 Halftones
	10.5.5.3 Type 6 Halftones
	10.5.5.4 Type 10 Halftones
	10.5.5.5 Type 16 Halftones
	10.5.5.6 Type 5 Halftones

	10.6 Scan Conversion Details
	10.6.1 General
	10.6.2 Flatness Tolerance
	10.6.3 Smoothness Tolerance
	10.6.4 Scan Conversion Rules
	10.6.5 Automatic Stroke Adjustment

	11 Transparency
	11.1 General
	11.2 Overview of Transparency
	11.3 Basic Compositing Computations
	11.3.1 General
	11.3.2 Basic Notation for Compositing Computations
	11.3.3 Basic Compositing Formula
	11.3.4 Blending Colour Space
	11.3.5 Blend Mode
	11.3.6 Interpretation of Alpha
	11.3.7 Shape and Opacity Computations
	11.3.7.1 General
	11.3.7.2 Source Shape and Opacity
	11.3.7.3 Result Shape and Opacity

	11.3.8 Summary of Basic Compositing Computations

	11.4 Transparency Groups
	11.4.1 General
	11.4.2 Notation for Group Compositing Computations
	11.4.3 Group Structure and Nomenclature
	11.4.4 Group Compositing Computations
	11.4.5 Isolated Groups
	11.4.6 Knockout Groups
	11.4.7 Page Group
	11.4.8 Summary of Group Compositing Computations

	11.5 Soft Masks
	11.5.1 General
	11.5.2 Deriving a Soft Mask from Group Alpha
	11.5.3 Deriving a Soft Mask from Group Luminosity

	11.6 Specifying Transparency in PDF
	11.6.1 General
	11.6.2 Specifying Source and Backdrop Colours
	11.6.3 Specifying Blending Colour Space and Blend Mode
	11.6.4 Specifying Shape and Opacity
	11.6.4.1 General
	11.6.4.2 Object Shape and Opacity
	11.6.4.3 Mask Shape and Opacity
	11.6.4.4 Constant Shape and Opacity

	11.6.5 Specifying Soft Masks
	11.6.5.1 General
	11.6.5.2 Soft-Mask Dictionaries
	11.6.5.3 Soft-Mask Images

	11.6.6 Transparency Group XObjects
	11.6.7 Patterns and Transparency

	11.7 Colour Space and Rendering Issues
	11.7.1 General
	11.7.2 Colour Spaces for Transparency Groups
	11.7.3 Spot Colours and Transparency
	11.7.4 Overprinting and Transparency
	11.7.4.1 General
	11.7.4.2 Blend Modes and Overprinting
	11.7.4.3 Compatibility with Opaque Overprinting
	11.7.4.4 Special Path-Painting Considerations
	11.7.4.5 Summary of Overprinting Behaviour

	11.7.5 Rendering Parameters and Transparency
	11.7.5.1 General
	11.7.5.2 Halftone and Transfer Function
	11.7.5.3 Rendering Intent and Colour Conversions

	12 Interactive Features
	12.1 General
	12.2 Viewer Preferences
	12.3 Document-Level Navigation
	12.3.1 General
	12.3.2 Destinations
	12.3.2.1 General
	12.3.2.2 Explicit Destinations
	12.3.2.3 Named Destinations

	12.3.3 Document Outline
	12.3.4 Thumbnail Images
	12.3.5 Collections

	12.4 Page-Level Navigation
	12.4.1 General
	12.4.2 Page Labels
	12.4.3 Articles
	12.4.4 Presentations
	12.4.4.1 General
	12.4.4.2 Sub-page Navigation

	12.5 Annotations
	12.5.1 General
	12.5.2 Annotation Dictionaries
	12.5.3 Annotation Flags
	12.5.4 Border Styles
	12.5.5 Appearance Streams
	12.5.6 Annotation Types
	12.5.6.1 General
	12.5.6.2 Markup Annotations
	12.5.6.3 Annotation States
	12.5.6.4 Text Annotations
	12.5.6.5 Link Annotations
	12.5.6.6 Free Text Annotations
	12.5.6.7 Line Annotations
	12.5.6.8 Square and Circle Annotations
	12.5.6.9 Polygon and Polyline Annotations
	12.5.6.10 Text Markup Annotations
	12.5.6.11 Caret Annotations
	12.5.6.12 Rubber Stamp Annotations
	12.5.6.13 Ink Annotations
	12.5.6.14 Pop-up Annotations
	12.5.6.15 File Attachment Annotations
	12.5.6.16 Sound Annotations
	12.5.6.17 Movie Annotations
	12.5.6.18 Screen Annotations
	12.5.6.19 Widget Annotations
	12.5.6.20 Printer’s Mark Annotations
	12.5.6.21 Trap Network Annotations
	12.5.6.22 Watermark Annotations
	12.5.6.23 Redaction Annotations

	12.6 Actions
	12.6.1 General
	12.6.2 Action Dictionaries
	12.6.3 Trigger Events
	12.6.4 Action Types
	12.6.4.1 General
	12.6.4.2 Go-To Actions
	12.6.4.3 Remote Go-To Actions
	12.6.4.4 Embedded Go-To Actions
	12.6.4.5 Launch Actions
	12.6.4.6 Thread Actions
	12.6.4.7 URI Actions
	12.6.4.8 Sound Actions
	12.6.4.9 Movie Actions
	12.6.4.10 Hide Actions
	12.6.4.11 Named Actions
	12.6.4.12 Set-OCG-State Actions
	12.6.4.13 Rendition Actions
	12.6.4.14 Transition Actions
	12.6.4.15 Go-To-3D-View Actions
	12.6.4.16 JavaScript Actions

	12.7 Interactive Forms
	12.7.1 General
	12.7.2 Interactive Form Dictionary
	12.7.3 Field Dictionaries
	12.7.3.1 General
	12.7.3.2 Field Names
	12.7.3.3 Variable Text
	12.7.3.4 Rich Text Strings

	12.7.4 Field Types
	12.7.4.1 General
	12.7.4.2 Button Fields
	12.7.4.2.1 General
	12.7.4.2.2 Pushbuttons
	12.7.4.2.3 Check Boxes
	12.7.4.2.4 Radio Buttons

	12.7.4.3 Text Fields
	12.7.4.4 Choice Fields
	12.7.4.5 Signature Fields

	12.7.5 Form Actions
	12.7.5.1 General
	12.7.5.2 Submit-Form Action
	12.7.5.3 Reset-Form Action
	12.7.5.4 Import-Data Action

	12.7.6 Named Pages
	12.7.7 Forms Data Format
	12.7.7.1 General
	12.7.7.2 FDF File Structure
	12.7.7.2.1 General
	12.7.7.2.2 FDF Header
	12.7.7.2.3 FDF Body
	12.7.7.2.4 FDF Trailer

	12.7.7.3 FDF Catalog
	12.7.7.3.1 General
	12.7.7.3.2 FDF Fields
	12.7.7.3.3 FDF Pages
	12.7.7.3.4 FDF Annotation Dictionaries

	12.7.8 XFA Forms

	12.8 Digital Signatures
	12.8.1 General
	12.8.2 Transform Methods
	12.8.2.1 General
	12.8.2.2 DocMDP
	12.8.2.2.1 General
	12.8.2.2.2 Validating Signatures That Use the DocMDP Transform Method

	12.8.2.3 UR
	12.8.2.4 FieldMDP

	12.8.3 Signature Interoperability
	12.8.3.1 General
	12.8.3.2 PKCS#1 Signatures
	12.8.3.3 PKCS#7 Signatures as used in ISO 32000
	12.8.3.3.1 General
	12.8.3.3.2 Revocation Information

	12.8.4 Permissions
	12.8.5 Legal Content Attestations

	12.9 Measurement Properties
	12.10 Document Requirements
	12.10.1 General
	12.10.2 Requirement Handlers

	13 Multimedia Features
	13.1 General
	13.2 Multimedia
	13.2.1 General
	13.2.2 Viability
	13.2.3 Renditions
	13.2.3.1 General
	13.2.3.2 Media Renditions
	13.2.3.3 Selector Renditions

	13.2.4 Media Clip Objects
	13.2.4.1 General
	13.2.4.2 Media Clip Data
	13.2.4.3 Media Clip Section

	13.2.5 Media Play Parameters
	13.2.6 Media Screen Parameters
	13.2.6.1 General
	13.2.6.2 Media Offset Dictionary
	13.2.6.3 Timespan Dictionary

	13.2.7 Other Multimedia Objects
	13.2.7.1 General
	13.2.7.2 Media Players Dictionary
	13.2.7.3 Media Player Info Dictionary
	13.2.7.4 Software Identifier Dictionary
	13.2.7.4.1 General
	13.2.7.4.2 Software URIs
	13.2.7.4.3 Version arrays

	13.2.7.5 Monitor Specifier

	13.3 Sounds
	13.4 Movies
	13.5 Alternate Presentations
	13.6 3D Artwork
	13.6.1 General
	13.6.2 3D Annotations
	13.6.3 3D Streams
	13.6.3.1 General
	13.6.3.2 3D Animation Style Dictionaries
	13.6.3.3 3D Reference Dictionaries

	13.6.4 3D Views
	13.6.4.1 General
	13.6.4.2 Projection Dictionaries
	13.6.4.3 3D Background Dictionaries
	13.6.4.4 3D Render Mode Dictionaries
	13.6.4.5 3D Lighting Scheme Dictionaries
	13.6.4.6 3D Cross Section Dictionaries
	13.6.4.7 3D Node Dictionaries

	13.6.5 Coordinate Systems for 3D
	13.6.6 3D Markup

	14 Document Interchange
	14.1 General
	14.2 Procedure Sets
	14.3 Metadata
	14.3.1 General
	14.3.2 Metadata Streams
	14.3.3 Document Information Dictionary

	14.4 File Identifiers
	14.5 Page-Piece Dictionaries
	14.6 Marked Content
	14.6.1 General
	14.6.2 Property Lists
	14.6.3 Marked Content and Clipping

	14.7 Logical Structure
	14.7.1 General
	14.7.2 Structure Hierarchy
	14.7.3 Structure Types
	14.7.4 Structure Content
	14.7.4.1 General
	14.7.4.2 Marked-Content Sequences as Content Items
	14.7.4.3 PDF Objects as Content Items
	14.7.4.4 Finding Structure Elements from Content Items

	14.7.5 Structure Attributes
	14.7.5.1 General
	14.7.5.2 Attribute Classes
	14.7.5.3 Attribute Revision Numbers
	14.7.5.4 User Properties

	14.7.6 Example of Logical Structure

	14.8 Tagged PDF
	14.8.1 General
	14.8.2 Tagged PDF and Page Content
	14.8.2.1 General
	14.8.2.2 Real Content and Artifacts
	14.8.2.2.1 General
	14.8.2.2.2 Specification of Artifacts
	14.8.2.2.3 Incidental Artifacts

	14.8.2.3 Page Content Order
	14.8.2.3.1 General
	14.8.2.3.2 Sequencing of Annotations
	14.8.2.3.3 Reverse-Order Show Strings

	14.8.2.4 Extraction of Character Properties
	14.8.2.4.1 General
	14.8.2.4.2 Unicode Mapping in Tagged PDF
	14.8.2.4.3 Font Characteristics

	14.8.2.5 Identifying Word Breaks

	14.8.3 Basic Layout Model
	14.8.4 Standard Structure Types
	14.8.4.1 General
	14.8.4.2 Grouping Elements
	14.8.4.3 Block-Level Structure Elements
	14.8.4.3.1 General
	14.8.4.3.2 Paragraphlike Elements
	14.8.4.3.3 List Elements
	14.8.4.3.4 Table Elements
	14.8.4.3.5 Usage Guidelines for Block-Level Structure

	14.8.4.4 Inline-Level Structure Elements
	14.8.4.4.1 General
	14.8.4.4.2 Link Elements
	14.8.4.4.3 Annotation Elements
	14.8.4.4.4 Ruby and Warichu Elements

	14.8.4.5 Illustration Elements

	14.8.5 Standard Structure Attributes
	14.8.5.1 General
	14.8.5.2 Standard Attribute Owners
	14.8.5.3 Attribute Values and Inheritance
	14.8.5.4 Layout Attributes
	14.8.5.4.1 General
	14.8.5.4.2 General Layout Attributes
	14.8.5.4.3 Layout Attributes for BLSEs
	14.8.5.4.4 Layout Attributes for ILSEs
	14.8.5.4.5 Content and Allocation Rectangles
	14.8.5.4.6 Illustration Attributes
	14.8.5.4.7 Column Attributes

	14.8.5.5 List Attribute
	14.8.5.6 PrintField Attributes
	14.8.5.7 Table Attributes

	14.9 Accessibility Support
	14.9.1 General
	14.9.2 Natural Language Specification
	14.9.2.1 General
	14.9.2.2 Language Identifiers
	14.9.2.3 Language Specification Hierarchy
	14.9.2.4 Multi-language Text Arrays

	14.9.3 Alternate Descriptions
	14.9.4 Replacement Text
	14.9.5 Expansion of Abbreviations and Acronyms

	14.10 Web Capture
	14.10.1 General
	14.10.2 Web Capture Information Dictionary
	14.10.3 Content Database
	14.10.3.1 General
	14.10.3.2 URL Strings
	14.10.3.3 Digital Identifiers
	14.10.3.4 Unique Name Generation

	14.10.4 Content Sets
	14.10.4.1 General
	14.10.4.2 Page Sets
	14.10.4.3 Image Sets

	14.10.5 Source Information
	14.10.5.1 General
	14.10.5.2 URL Alias Dictionaries
	14.10.5.3 Command Dictionaries
	14.10.5.4 Command Settings

	14.10.6 Object Attributes Related to Web Capture

	14.11 Prepress Support
	14.11.1 General
	14.11.2 Page Boundaries
	14.11.2.1 General
	14.11.2.2 Display of Page Boundaries

	14.11.3 Printer’s Marks
	14.11.4 Separation Dictionaries
	14.11.5 Output Intents
	14.11.6 Trapping Support
	14.11.6.1 General
	14.11.6.2 Trap Network Annotations
	14.11.6.3 Trap Network Appearances

	14.11.7 Open Prepress Interface (OPI)

	Annex A (informative) Operator Summary
	A.1 General
	A.2 PDF Content Stream Operators

	Annex B (normative) Operators in Type 4 Functions
	B.1 General
	B.2 Arithmetic Operators
	B.3 Relational, Boolean, and Bitwise Operators
	B.4 Conditional Operators
	B.5 Stack Operators

	Annex C (normative) Implementation Limits
	C.1 General
	C.2 Architectural limits
	C.3 Memory limits

	Annex D (normative) Character Sets and Encodings
	D.1 General
	D.2 Latin Character Set and Encodings
	D.3 PDFDocEncoding Character Set
	D.4 Expert Set and MacExpertEncoding
	D.5 Symbol Set and Encoding
	D.6 ZapfDingbats Set and Encoding

	Annex E (normative) PDF Name Registry
	E.1 General
	E.2 Name Registry

	Annex F (normative) Linearized PDF
	F.1 General
	F.2 Background and Assumptions
	F.3 Linearized PDF Document Structure
	F.3.1 General
	F.3.2 Header (Part 1)
	F.3.3 Linearization Parameter Dictionary (Part 2)
	F.3.4 First-Page Cross-Reference Table and Trailer (Part 3)
	F.3.5 Document Catalogue and Document-Level Objects (Part 4)
	F.3.6 Hint Streams (Parts 5 and 10)
	F.3.7 First-Page Section (Part 6)
	F.3.8 Remaining Pages (Part 7)
	F.3.9 Shared Objects (Part 8)
	F.3.10 Other Objects (Part 9)
	F.3.11 Main Cross-Reference and Trailer (Part 11)

	F.4 Hint Tables
	F.4.1 Page Offset Hint Table
	F.4.2 Shared Object Hint Table
	F.4.3 Thumbnail Hint Table
	F.4.4 Generic Hint Tables
	F.4.5 Extended Generic Hint Tables
	F.4.6 Embedded File Stream Hint Tables

	Annex G (informative) Linearized PDF Access Strategies
	G.1 General
	G.2 Opening at the First Page
	G.3 Opening at an Arbitrary Page
	G.4 Going to Another Page of an Open Document
	G.5 Drawing a Page Incrementally
	G.6 Following an Article Thread
	G.7 Accessing an Updated File

	Annex H (informative) Example PDF Files
	H.1 General
	H.2 Minimal PDF File
	H.3 Simple Text String Example
	H.4 Simple Graphics Example
	H.5 Page Tree Example
	H.6 Outline Hierarchy Example
	H.7 Updating Example
	H.7.1 Stage 1: Add Four Text Annotations
	H.7.2 Stage 2: Modify Text of One Annotation
	H.7.3 Stage 3: Delete Two Annotations
	H.7.4 Stage 4: Add Three Annotations

	H.8 Structured Elements That Describe Hierarchical Lists
	H.8.1 Table of Contents
	H.8.2 Nested Lists

	Annex I (normative) PDF Versions and Compatibility
	I.1 General
	I.2 PDF Version Numbers
	I.3 Feature Compatibility

	Annex J (informative) FDF Rename Flag Implementation Example
	J.1 General
	J.2 Implementation Example

	Annex K (informative) PostScript Compatibility — Transparent Imaging Model
	K.1 General
	K.2 Conversion

	Annex L (informative) Colour Plates
	L.1 Colour Plates

	Bibliography
	[1] ISO 15930-1:2001, Graphic technology — Prepress digital data exchange — Use of PDF — Part 1: Complete exchange using CMYK data (PDF/X-1 and PDF/X-1a).
	[2] ISO 15930-3:2002, Graphic technology — Prepress digital data exchange — Use of PDF — Part 3: Complete exchange suitable for colour-managed workflows (PDF/X-3).
	[3] ISO 15930-4:2003, Graphic technology — Prepress digital data exchange using PDF — Part 4: Complete exchange of CMYK and spot colour printing data using PDF 1.4 (PDF/X-1a).
	[4] ISO 15930-5:2003, Graphic technology — Prepress digital data exchange using PDF — Part 5: Partial exchange of printing data using PDF 1.4 (PDF/X-2).
	[5] ISO 15930-6:2003, Graphic technology — Prepress digital data exchange using PDF — Part 6: Complete exchange of printing data suitable for colour-managed workflows using PDF 1.4 (PDF/X-3).
	[6] ISO 19005-1:2005, Document management — Electronic document file format for long-term preservation -- Part 1: Use of PDF 1.4 (PDF/A-1) .
	[7] ISO 24517-1:2007, Document management — Engineering document format using PDF — Part 1: Use of PDF 1.6 (PDF/E-1).
	[8] PDF Reference, First Edition, version 1.0 (June 1993), Addison-Wesley, 0-201-62628-4.
	[9] PDF Reference, First Edition Revised, version 1.1 (March 1996), Adobe Systems Incorporated.
	[10] PDF Reference, First Edition Revised, version 1.2 (November 1996), Adobe Systems Incorporated.
	[11] PDF Reference, Second Edition, version 1.3 (July 2000), Addison-Wesley, ISBN 0-201-61588-6.
	[12] PDF Reference, Third Edition, version 1.4 (November 2001), Addison-Wesley, ISBN 0-201-75839-3.
	[13] PDF Reference, Fourth Edition, version 1.5 (August 2003), Adobe Systems Incorporated (website only).
	[14] PDF Reference, Fifth Edition, version 1.6 (December 2004), Adobe Press, ISBN 0-321-30474-8.
	[15] PostScript Language Reference, Third Edition, Addison-Wesley, Reading, MA, 1999.
	[16] Technical Note #5001, PostScript Language Document Structuring Conventions Specification, Version 3.0, Adobe Systems Incorporated.
	[17] Technical Note #5044, Color Separation Conventions for PostScript Language Programs, Adobe Systems Incorporated.
	[18] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., Data Structures and Algorithms, Addison-Wesley, Reading, MA, 1983. Includes a discussion of balanced trees.
	[19] Apple Computer, Inc., TrueType Reference Manual. Available on Apple’s Web site at < http:// developer.apple.com/fonts/TTRefMan/>.
	[20] Arvo, J. (ed.), Graphics Gems II, Academic Press, 1994. The section “Geometrically Continuous Cubic Bézier Curves” by Hans-Peter Seidel describes the mathematics used to smoothly join two cubic Bézier curves.
	[21] Cascading Style Sheets, level 2 (CSS2) Specification, <http://www.w3.org/TR/REC-CSS2/>.
	[22] CIP4. See International Cooperation for the Integration of Processes in Prepress, Press and Postpress.
	[23] Ecma International, Standard ECMA-363, Universal 3D File Format, 1st Edition. This document is available at <http://www.ecma-international.org/>.
	[24] Extensible Stylesheet Language (XSL) 1.0, <http://www.w3.org/TR/xsl/>.
	[25] Fairchild, M. D., Color Appearance Models, Addison-Wesley, Reading, MA, 1997. Covers color vision, basic colorimetry, color appearance models, cross-media color reproduction, and the current CIE standards activities. Updates, software, and color...
	[26] Foley, J. D. et al., Computer Graphics: Principles and Practice, Addison-Wesley, Reading, MA, 1996. (First edition was Foley, J. D. and van Dam, A., Fundamentals of Interactive Computer Graphics, Addison-Wesley, Reading, MA, 1982.) Covers many g...
	[27] Glassner, A. S. (ed.), Graphics Gems, Academic Press, 1993. The section “An Algorithm for Automatically Fitting Digitized Curves” by Philip J. Schneider describes an algorithm for determining the set of Bézier curves approximating an arbitr...
	[28] Hewlett-Packard Corporation, PANOSE Classification Metrics Guide. Available on the Agfa Monotype Web site at < http://www.agfamonotype.com/printer/pan1.asp >.
	[29] HTML 4.01 Specification, <http://www.w3.org/TR/html401/>.
	[30] Hunt, R. W. G., The Reproduction of Colour, 5th ed., Fisher Books, England, 1996. A comprehensive general reference on color reproduction; includes an introduction to the CIE system.
	[31] Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754-1985).
	[32] International Cooperation for the Integration of Processes in Prepress, Press and Postpress (CIP4), JDF Specification, Version 1.2. Available through the CIP4 Web site at < http://www.cip4.org >.
	[33] Kirk, D. (ed.), Graphics Gems III, Academic Press, 1994. The section “Interpolation Using Bézier Curves” by Gershon Elber contains an algorithm for calculating a Bézier curve that passes through a user-specified set of points. The algorith...
	[34] Lunde, K., CJKV Information Processing, O’Reilly & Associates, Sebastopol, CA, 1999. Excellent background material on CMaps, character sets, encodings, and the like.
	[35] Microsoft Corporation, TrueType 1.0 Font Files Technical Specification. Available at < http:// www.microsoft.com/typography/tt/tt.htm >.
	[36] Porter, T. and Duff, T., “Compositing Digital Images,” Computer Graphics, Vol. 18 No. 3, July 1984. Computer Graphics is the newsletter of the ACM’s special interest group SIGGRAPH; for more information, see < http://www.acm.org >.
	[37] RSA Security, Inc. This document, among others related to encryption and digital signatures, is available at < http://www.rsasecurity.com >: PKCS #1 - RSA Cryptography Standard <http:// www.rsasecurity.com/rsalabs/node.asp?id=2125>.
	[38] Scalable Vector Graphics (SVG) 1.0 Specification, <http://www.w3.org/TR/2001/REC-SVG-20010904/>.
	[39] Synchronized Multimedia Integration Language (SMIL 2.0), <http//:www.w3.org/TR/smil20/>.
	[40] Web Content Accessibility Guidelines 1.0, <http://www.w3.org/TR/WAI-WEBCONTENT/>.
	[41] XHTML 1.0: The Extensible HyperText Markup Language, <http://www.w3.org/TR/xhtml1/>.

